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Abstract We study the structure of solutions to the interface problems for second
order quasi-linear elliptic partial differential equations in two dimensional space. We
prove that each weak solution can be decomposed into two parts near singular points,
a finite sum of functions in the form of cr®*log™ rp(8) and a regular one w. The
coefficients ¢ and the C*® norm of w depend on the H'-norm and the C%®-norm of
the solution, and the equation only.
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1. Introduction

We study the structure of the solutions to the equation

D (0 28 = O
c%:j A GIZ _8561"

where Qy C R? and a;j, f; are discontinuous functions, i,j = 1,2. The summation
convention is assumed here. It is known that if u is a weak solution in H'(Q) then

x € Qo, (1)

u € C%%(Q) with a certain o € (0,1). Moreover, if a;;, f; are piecewise smooth, then
the solutions possess some structure near the discontinuous points of the coefficients.
This kind of interface problems has been studied by a number of authors [1-8]. In [8]
we proved that each weak solution to (1) can be decomposed into two parts near a
singular point, a singular part and a regular part. The singular part is a finite sum of
particular solutions with the form of r%p(0), or r*log™ ry(6), where r is the distance
to the singular point, and 6 is the polar angle, and the regular part is bounded with

respect to a norm which is slightly weaker than the H? norm, multiplied by a factor
1
(Ilog r[+1)M~
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The result in [8] does not imply the boundedness of the derivatives of the regular
part. The aim of this paper is to study the C® norm estimate of the regular part. Our
result is optimal here, that is, the regularity of the regular part of a weak solution is
the same as the regularity of those solutions for the equations with smooth coefficients
Ajj-

Let us present a statement of the problem and the main result. Let £2g be a polygonal
domain. We assume that € is decomposed into a finite number of polygonal sub-

domains Q%) such that UQ®*) = Qq, and a;; are sufficiently smooth on Q®*) x R.
Moreover, we assume that a;; satisfy the following elliptic condition:

alj(xau)é-lf] 2 I‘Q|§’2,\V/§ S R2a

for all (z,u) € (Qp x R), where k is a positive number. We also assume that f; €
COx(QW) with o € (0,1). For simplicity we impose the Dirichlet boundary condition,

ulzeon, =0 (2)
on (1), where 9 is the boundary.

The following points will be generally known as singular points: the cross points
of interfaces, the turning points of interfaces, the cross points of interfaces with the
boundary 92y, and the points on 02y with interior angles greater than 7. Let ¥ be the
set of singular points. We assume that ¥ is a finite set. The problem (1) (2) admits a
solution u € H}(Q0) (see [9-11]), and it is easy to prove that for each sub-domain Q*),
u € C’llo’g(Q(k)\Z). Thus the problem is the behavior of u near the singular points.

Let zp be a singular point. We construct local polar coordinates (r,#) with the
origin xg. Let s(xzo,p) C Qo be a disc with center zp and radius p, such that xg is
the only singular point on the disc. The subsets s(xg, p) N Q%) are thus some sectors,
denoted by S;,. The main result of this paper is the following:

Theorem 1.1 Let u be a weak solution to (1) (2) and u € H () C* (),
5 € (0,1). Then there is an integer N and a constant o € (0, 0], such that if 0 < a < ag
then w =" wu, +w on s(zo, p), where

Uy = Cpr™ logmn ’I“QDTL(Q), (3)
Z [Dwl|co.a(s,,) + Z len] < C, (4)

where m,, are non-negative integers, and @, are continuous, periodic, and piecewise
infinitely differentiable functions, which depend only on aij(xo,u(xo)) and n; and C
depends only on agj, ||ull 1 (qy) ||U”co,5(90): and || fill co.e (@)

We will study homogeneous equations with constant coefficients in the next section,
and nonhomogeneous equations with constant coefficients in Section 3, then prove the
main theorem in Section 4. In what follows we assume that the singular point is an
interior point. For those singular points on the boundary the argument is analogous.
Without loss of generality we assume throughout this paper that the radius p = 1, the
singular point g = 0, and C is a generic constant possessing the above property.
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2. Homogeneous Equations with Constant Coefficients

Without loss of generality we assume that the domain is Q = s(o, 1), a disk with
center o and radius 1. Let the point o be the singular point. Then the domain 2 is
divided into some sectors S,,, m = 1,---,mg, by some rays starting from the point o.
We consider the equation

0 ou

where a;; are constants on each sector S,,. Denote by I'g the boundary of Q2. We
take a constant & € (0,1). Then we define sub-domains Qg,Q1,---,Qp, -+, where

Qp = {€F > r > ¢¥1}. In addition, we denote €FQ = {0 < r < ¢F} and Ty = {r = ¢},
Let H be the space H%(Fo). Define a mapping T}, : © — &*z. We take an arbitrary
g € H, and consider the boundary condition u|r, = ¢g. The equation (5) admits a
unique solution u € H'(Q) satisfying the boundary condition. Let § =

X : g — goT is a bounded operator from H to H. It is proved in [4] that X is

u|r,, then

a compact operator. By the Riesz-Schauder Theorem, the spectrum of X consists of
isolated eigenvalues and the point 0. The null spaces N((X — AI)P) for all eigenvalues
are finite dimensional. We arrange the eigenvalues so that |A\1| > [A2| > ---. It is proved
that if {A, g} is a pair of eigenvalue and eigenfunction, then either A = 1, g =constant,
or || < 1. There is a particular solution to the equation (5) in the form of r7g, where

_log A
7= log&”

If the degree of the elementary divisor of an eigenvalue is higher than 1, then there
are particular solutions in the form of

(6)

N
u = Z cnr log" ren (6), (7)

n=0

where oy = g.
We define a weighted Holder norm as follows. For b € [0,1] and a € (0,1) let

[U] b = sup Tb|U(ZL')—’U,(y)‘
om T,YESm |1‘ _y|a

)

where r = min(|z|, |y|), and

lullaps, = Waps, + sup |z"~*u(z)].
IGSm

If b =0, then the norm is abbreviated to || - ||a,s,,-

Lemma 2.1 Ifu € C(Sy,), then the norm ||ullap.s,, s equivalent to
supy, £ u|

a,Sm ﬂ Q-
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Proof We have for each k that
b
rPlu(z) — u(y _
[ullaps, > sup DOl e
syeSmN% 1T Yl 2€Sm )

(k+1)
> ap SO Wy )
2yESm N U lz —y] 2€Sm )

=& ulla,s,, N oy

On the other hand, for any z,y € S, let (), .- 2 be the cross points of the line
segment xy with {I'y}. Then we have

lu(z) = u(y)] < |u@) = w(@D)] + -+ [u(z™) - u(y)|
< (ér)” Supfbklw\asmmak(\ﬂf—x ot 2 = y)).

We may assume that z € Q, y € Q, and k < I. If [z—21)| = max(|Jz—z @], .-, |z —
yl), then
|z — W) |2 gl < |ac—:z:(1)\°‘+ |z —x 1)|a—|—£|x—x | +
9 _¢ 92—
< _ o _ «
< Tl M) < T !w yl*.
Therefore plu(x) —u(y)]

<C bk :

The other cases can be considered in the same way, and the estimate for the maximum
norm is obvious. The lemma is proved.

For simplicity, in what follows we will always omit the domain S, in the Holder
norm, that is, || - a0, for | las,s,. 0o

We have the following decomposition result:

Lemma 2.2 The solution u to (5) can be decomposed into v = v + w, where v
is a finite sum of the above particular solutions (7), and ||Dw|aca < C|lullg1(q) with
O0<a<l.

Proof We define two spectrum sets:{A\1,---,An}, {Ant1,---,0},where [An| >
JAni1] and [Ayy1] < €12, The space H is decomposed to two subspaces such that
H = H; ® Hy and the spectrum of Xg, in Hj is just {\1, -+, Ax}, the spectrum of
Xpp, in Hy is {An41, -+, 0}. Since limy oo | X5, | = [An+1], where || - || stands for the
spectrum norm, we have || X}, || < (|An41] +€)* for any e > 0 and sufficiently large k.
We require that [Ayy1|+¢e < £+,

For any g € H, we have a unique decomposition g = g1 + g2, g1 € Hy, and go € Hs.
Let v, w be the solutions corresponding to g1, g2 respectively. If k is large enough, then
1XFgallr < CE+]g]l .

Let @ = w o T},_o, then @ satisfies the same equation. The standard interior C'¢
estimate is valid for this case. See [9] [10] [7] for details.

[1D@|a05 < Cliw] < O X gl < CEH | g .
H

(Q\E9Q)
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Therefore
| Dwlla,, < Cllglla < Cllull g g

for sufficiently large k, say k > Ky. The estimate of |Dwl||q,q, for k = 1,---, Ky is
standard since Kg is a fixed number and there is no singular point. The lemma is
proved.

3. Nonhomogeneous Equations with Constant Coefficients

For the nonhomogeneous equation

) ( 8u)_8fi -

— |Gy =— | =
695]- J 833‘2 03}1‘7

we recall a result in [8] first.
Lemma 3.1 There is a particular solution to the equation

Lu= 0 ( Ou > 0 (ro‘l log™ rq1(0) 88

aij — | =
81’]' 81‘@ ox o

(r° log™ rq2<9>>> L)

10

in the form of

u = Z cnr log™ ™ ron(0), (10)

where ig and jo are equal to 1 or 2, Rea; > 0, Reag > 0, q1, g2 are continuous, periodic,
and piecewise infinitely differentiable functions, and v = a1 + as.

To study the nonhomogeneous equation (8) we consider the equation on the space
R? first. The sectors S,, are extended to |r| = oo, and then R? is divided into myg
sectors. We define a space

ZY(R?) = {u € H} .(R?); Vu € L2(R2),/ udx = 0}.
lz|<1

Then equipped with the norm |[Vul|p2(ge) it is a Hilbert space. We assume that
suppf; C s(o,1), and f; € C%%(S,,). Consider the equation (8) and define the corre-

sponding sesquilinear form

ou v
a(u,v) = /R2 a,-ja—xia—xj dzx.

The weak formulation of (8) is: find u € Z!(IR?) such that

a(u,v) = / fzgv dzx, Vo € Z1(R?). (11)
lz|<1 i

By the Lax-Milgram theorem there exists a unique solution w,

lull 712y < C Y N fill 2 rey-
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Moreover, on any bounded domain Q' CC S,,, u € C1*(Q), and
|Dullasr 32D Ifillas..
7 m

We return to the domain s(o,1) and construct a particular solution u to the equation
(8), so that u possesses the desired regularity. Let

1, 1>r>¢,
0, r>& orr < €2,

(0= {
and ¢ € C°, 0 < ¢ < 1. Then we define {, = (o T}/ > 21 ¢ o T}, and F = (f1, fa),
Fy, = (i F. Let up be the solution to (11) with F' replaced by Fj. wy satisfies the
homogeneous equation (5) on £*+2Q. Analogous to the previous section we have the
decomposition uy = ukl) + u,(f), with u/,(fl)]rk+2 € Hy and 7VL,(€2)\F,€Jr2 € Hs, where Hy and

Hy will be specified later on. We extend u,(i,l)

by u,(gl). Let u="> 72 (u, — u,(cl)).

analytically to €2, which is still denoted

Lemma 3.2 We assume that ||F||op < 00, o € (0,1), b € [0,1]. The subspaces Hy
and Hy are defined according to the spectrum sets {\1, -+, An}, {AN+1,--,0}, where
Avi1] +e <& < |Ay|—¢,e>0. Then

1D (g =)o
4

§1+a k—l-1
R () |Fellar V< k=2,
[An|—€
< CEY Fella, k41> k=2 (g
Ceh=D0Fa)+b) ) Vk+4 <1< k+ Ko,
Anaa] +e\F
| o¢” <£+1+a I Fkllas VI > k+ Ko,
where Ky is a fized positive number.
Proof Ifl <k —3,let & =uyoTy_1, then @ satisfies
Li =1V - (F, 0 Ty_y).
Hence
il ry < CETH|Fy 0 Thotla < CEEDITI L, (13)

We consider the exterior problem and let |, , ., = XF"24p,, then being the same
as X, X7 is a bounded operator.

||7-LHH7F1—1€+2 < Cé‘(kil)(lJra)”FkHa'

Let u* = up o Tj_1, then

lu* |, < CEEVFD Fy g
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Applying the C1* estimate result we get
1Du* a0, < CEEDIFD| B q,
Returning to the domain €);, we get

IDug a0 < CEEDIFI | Fy .
There are only a finite number of terms in ug). We consider one of them, wj z,
corresponding to an eigenvalue A;. By (13) we have

wj © Th—illmr, < CEFVITIFl,.

We note that log A
wj i = cr e< log™ ro(6).

Consequently, we have
ID(wik 0 Te-)llaeu iy < C(N| — &)t e ImRDIr =Dl By

which yields

£1+a k—i-1
[Dwj gl < C <|)\N|_€> [ Fla-

Ifk+4>1>k—2, then

HDﬁHa,g\ng < cek=D+| B,
which yields
(2O Jpp—e A
Analogously, we have
1
106, eh- 1 < Cl ke

If i > k+ 4, then uy — u,(cl) = uf) on {2, and by (13) we get
e o Tyallzsr, < CEEDEED B o

If | — k> Ky and K is sufficiently large, then ng_‘l < (JAn41] 4+ €)7F4. Conse-
quently, we have

lu® o T,y < CEFDOFD Ay i1| 4 ) 5 Filo.
Let u* = u,(f) oTj_1, then
||y < CEFDIFO Ny | 4 2)' 7| Py o
Then we get the C® norm estimate

1Du*[la0, < CEFDOFI ([ Ay ] + ) F ) Fyla-
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Consequently, we have

Anvia] +e\"
1D, < © (€+ TN

Ifl > k+3but l < k+ Ky, then it is easy to see that
104 a0, < CEXDIE|| By .

We multiply each inequality by a factor ¢ then the conclusion follows. The lemma is
proved.

Lemma 3.3 Under the assumptions of Lemma 3.2 it holds that

(14)
Proof Letl > 1. By Lemma 3.2 we have
- Ky ‘>\N+1|+5 I—k -4
[Dullape, <C S CE (U) IFlat 3 Celbasasty) g,
k=1 k=l-Ko+1
141 TN
r 3 cetinlor 3 cetfern s (LY s,
k=1—3 k=142 N
- K I—k -4
Zofl k)b <|)\N—|1-1+|+€) LY gl
(0]
5 k=l—Kp+1

I+1 : gl+a k—l—1
(I—k)b )1+«
- 21+Z§ ( +<|AN’_€> >}

k=l—3  k=it+2
<Ol Flap-

The lemma is proved.

4. Nonlinear Equations

We recall some results in [7] for the boundary value problem (1) (2) first. The
solution u belongs to 00’5(9), and in the neighborhood of a singular point it holds that
7179 Dul| e < C with § > 0 and §; > 0. Following the same argument we can prove
the following lemma.

Lemma 4.1 The weak solution u to (1), (2) satisfies
[Dulla < C, (15)

provided 0 < o < 6.
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Proof Let v =wuoTj_q, then v satisfies

0 _ ov _, 0
9, (aij(fk 'z,v0 THI)(‘)@-) = ¢ laxi (fi o Ti—1).
It was shown in [7] that
1Dl < Ol nasmy + € IF 0 Tl )
Then
&1 IDullan, < CEF Dl gz + Il ggemmg). (16)

By the Caccioppoli inequality we have the estimate

1Dl 1200 < Ol = 0(0) g5, + 1€ F 0 T g5,
Then

|1 Dull 120,y < CE*H u— wWO)| o er—1gngrrzgy + 1| Lo o109 g2y (17)
Since Ju — u(0)] < C7?, we have

lu = u(0) | < Cghted), (18)

‘|L2(£k719\§k+29

We substitute (18) into (17), then (17) into (16). Then (15) follows. The lemma is
proved.

To prove the main theorem we need the following lemma. We will assume that
u(0) =0, otherwise u(x) can be replaced by u(z)—u(0). We denote L = a%j (aij((), 0)%) ,
where a;;(0,0) are piecewise constant functions, which are equal to a;;(0,0) on each
sector Sp,.

Lemma 4.2 If a solution u of (1) can be decomposed as

N
u= Zun + w, (19)
n=1

where uy, are in the form of (4), and
||Dw”0¢,b + T_IHU}Ha,b,s(o,T) < Cv (20)

where b € [0,1], 0 < Rea; < Reag < --- < Reay, and a < Reay, then there is a new
decomposition of u, still given by (19), such that

”DwHa,bl + T_le”a,ln,s(o,r) < Ca (21)

where by > b — Reay, by > max(b — 5, 0), and there exists an integer N such that
Ans1| < o7t < Ay
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Proof We rewrite the equation (1) as

) 0 O
Lu — 5 <(aij(x,u) - aij(o,o))au> 3j;'

By Taylor’s expansion we have
aij(z,u) — a;;(0,0) = {a;;(0,u) — ai;(0,0)} + {ai;(z,u) — a;;(0,u)}
- a(l) (Oa ’LL) + CL(2) (337 U),

v v

where
al(-;)(O,u) =biu+ - + by u,
ag) (z,u) = b(u)uN1+1 + {aij(x,u) — aij(o,u)}.
Then
) Y du
0 ow afz
_%j <(am(az u) — a4 (0, O))a ) Birs
— ?’L - a_ ) 22
where

(1) < = ou
fj,‘:(aij (0,u) — a, Z )Z&;j

ow
Z (91:, ((ajj(x,u) — ai;(0, 0))833,

We consider the first term on the right of (22). By Lemma 3.1 there is a particular

!

solution w; = Zﬁle Win, Win = ey log™" ry,(0), such that |c,| < C, and Re~y, >
2Re a1, to the equation

Lw, = — < (0, Zun Zgin>

We estimate || f}[|la,0, next. We have the following estimates on Q[ Sy

N

al})(0,u) = alP (0,3 un)| < Clu| < CeMI-br),
n=1
N
[aE” Zun < Clula + C([ula + Y [tn]a) max|w| < CE-);
n=1

ouy,

< Cgh6-D)
83;Z Cf
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where § = Reaj — ¢ > 0 with ¢ positive and small,
ouy,
8901-
|%(32')| < Cék(min(N1+1)6,1) _ C€k7

:| S ka‘(&—l—a’)7

[al(?)]a < CgkNuSMa + Cgk(lfa) < Cgk(lfa)

for Ny large enough;

lagj (2, u) — a;(0,0)] < CEM,
[aij(-,u) — a;;(0,0)]q < CEFO—),

By interpolation we get
|Dw\ < Cgk(bera)‘

Therefore, we have

Hfj/Ha < Cgk((sfb) + Cé-k((sfoz) + Cé-k(gfb) (23)
Let € be small enough, then b—3d =b— Rea; +e <bj, d —a=Rea; —e—a > 0. By
af!
Lemma 3.3 there is a solution wy to the equation Lwy = — ai; such that

IDwsllae0 < C Y11

J

b, Q- (24)

gj: ¢ such that

Finally, by Lemma 3.3 there is a solution ws to the equation Lws =

| Dws

a2 < C Y | fillasr.o- (25)
)

By (24) (25) we have

lwi + w2 +w3l|pr, <C.

Since [Ju||1 < C, we get |lu||gr, < C. u—w; —ws —ws is a solution to the homoge-
neous equation Lu = 0, then using the results for homogeneous equations [4], we get a
decomposition on €2, u — wy; — wy — w3 = v + wy, such that

[Dwalla,e20 < C, (26)

and v =) uy,. Let w = wy+w3+ w4 and combine the terms of w; and v, still denoted
by >, un. If there are some terms in ) u, satisfying the conditions for w, then we
put them in w. It has no harm in assuming w(0) = 0, otherwise we can plus a constant
on it, then there is no constant term in ) | u,. Combining the estimates (24)-(26), the
inequality (21) is verified on the domain ¢2Q. Then applying the condition (20), we see
that (21) is in fact satisfied on €2. The lemma is proved.
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Proof of Theorem 1.1 We use Lemma 4.2 to prove by induction. We fix a
positive constant Ab such that Ab < Rea; and Ab < §. By Lemma 4.1 we take w = u,
b =1 first. If ¢Ire—b+Ab — |\, | for some k, we reduce Ab slightly, denoted by AV, such
that Ab > Ab/2 and there exists an integer N such that [Ay,q| < T2 0TAY < |\y|.
Then we get (21) with by = b— Ab or by = b— Ab'. Again we take b = by, and so on. In
each step the exponents decrease by a positive constant Ab or Ab'. We notice that the
spectrum set is discrete, so there is no eigenvalue )\, satisfying £€1+® = |\;| for small a.
After a finite number of steps we get b = 0, then (3) follows and the proof is complete.
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