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prove that each weak solution can be decomposed into two parts near singular points,
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1. Introduction

We study the structure of the solutions to the equation

∂

∂xj

(
aij(x, u)

∂u

∂xi

)
=

∂fi

∂xi
, x ∈ Ω0, (1)

where Ω0 ⊂ R2 and aij , fi are discontinuous functions, i, j = 1, 2. The summation
convention is assumed here. It is known that if u is a weak solution in H1(Ω) then
u ∈ C0,α(Ω) with a certain α ∈ (0, 1). Moreover, if aij , fi are piecewise smooth, then
the solutions possess some structure near the discontinuous points of the coefficients.
This kind of interface problems has been studied by a number of authors [1–8]. In [8]
we proved that each weak solution to (1) can be decomposed into two parts near a
singular point, a singular part and a regular part. The singular part is a finite sum of
particular solutions with the form of rαϕ(θ), or rα logm rϕ(θ), where r is the distance
to the singular point, and θ is the polar angle, and the regular part is bounded with
respect to a norm which is slightly weaker than the H2 norm, multiplied by a factor

1
(| log r|+1)M .
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The result in [8] does not imply the boundedness of the derivatives of the regular
part. The aim of this paper is to study the C1,α norm estimate of the regular part. Our
result is optimal here, that is, the regularity of the regular part of a weak solution is
the same as the regularity of those solutions for the equations with smooth coefficients
aij .

Let us present a statement of the problem and the main result. Let Ω0 be a polygonal
domain. We assume that Ω0 is decomposed into a finite number of polygonal sub-
domains Ω(k), such that ∪Ω(k) = Ω0, and aij are sufficiently smooth on Ω(k) × R.
Moreover, we assume that aij satisfy the following elliptic condition:

aij(x, u)ξiξj ≥ κ|ξ|2,∀ξ ∈ R2,

for all (x, u) ∈ (Ω0 × R), where κ is a positive number. We also assume that fi ∈
C0,α(Ω(k)) with α ∈ (0, 1). For simplicity we impose the Dirichlet boundary condition,

u|x∈∂Ω0 = 0 (2)

on (1), where ∂Ω0 is the boundary.
The following points will be generally known as singular points: the cross points

of interfaces, the turning points of interfaces, the cross points of interfaces with the
boundary ∂Ω0, and the points on ∂Ω0 with interior angles greater than π. Let Σ be the
set of singular points. We assume that Σ is a finite set. The problem (1) (2) admits a
solution u ∈ H1

0 (Ω0) (see [9–11]), and it is easy to prove that for each sub-domain Ω(k),
u ∈ C1,α

loc (Ω(k)\Σ). Thus the problem is the behavior of u near the singular points.
Let x0 be a singular point. We construct local polar coordinates (r, θ) with the

origin x0. Let s(x0, ρ) ⊂ Ω0 be a disc with center x0 and radius ρ, such that x0 is
the only singular point on the disc. The subsets s(x0, ρ) ∩ Ω(k) are thus some sectors,
denoted by Sm. The main result of this paper is the following:

Theorem 1.1 Let u be a weak solution to (1) (2) and u ∈ H1(Ω0)
⋂

C0,δ̄(Ω0),
δ̄ ∈ (0, 1). Then there is an integer N and a constant α0 ∈ (0, δ̄], such that if 0 < α < α0

then u =
∑N

n=1 un + w on s(x0, ρ), where

un = cnrαn logmn rϕn(θ), (3)∑
m

‖Dw‖C0,α(Sm) +
∑

n

|cn| ≤ C, (4)

where mn are non-negative integers, and ϕn are continuous, periodic, and piecewise
infinitely differentiable functions, which depend only on aij(x0, u(x0)) and n; and C

depends only on aij, ‖u‖H1(Ω0), ‖u‖C0,δ̄(Ω0), and ‖fi‖C0,α(Ω(k)).
We will study homogeneous equations with constant coefficients in the next section,

and nonhomogeneous equations with constant coefficients in Section 3, then prove the
main theorem in Section 4. In what follows we assume that the singular point is an
interior point. For those singular points on the boundary the argument is analogous.
Without loss of generality we assume throughout this paper that the radius ρ = 1, the
singular point x0 = 0, and C is a generic constant possessing the above property.
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2. Homogeneous Equations with Constant Coefficients

Without loss of generality we assume that the domain is Ω = s(o, 1), a disk with
center o and radius 1. Let the point o be the singular point. Then the domain Ω is
divided into some sectors Sm, m = 1, · · · ,m0, by some rays starting from the point o.
We consider the equation

Lu =
∂

∂xj

(
ai j

∂u

∂xi

)
= 0, (5)

where aij are constants on each sector Sm. Denote by Γ0 the boundary of Ω. We
take a constant ξ ∈ (0, 1). Then we define sub-domains Ω0,Ω1, · · · ,Ωk, · · ·, where
Ωk = {ξk > r > ξk+1}. In addition, we denote ξkΩ = {0 < r < ξk} and Γk = {r = ξk}.
Let H be the space H

1
2 (Γ0). Define a mapping Tk : x → ξkx. We take an arbitrary

g ∈ H, and consider the boundary condition u|Γ0 = g. The equation (5) admits a
unique solution u ∈ H1(Ω) satisfying the boundary condition. Let g̃ = u|Γ1 , then
X : g → g̃ ◦ T1 is a bounded operator from H to H. It is proved in [4] that X is
a compact operator. By the Riesz-Schauder Theorem, the spectrum of X consists of
isolated eigenvalues and the point o. The null spaces N((X − λI)p) for all eigenvalues
are finite dimensional. We arrange the eigenvalues so that |λ1| ≥ |λ2| ≥ · · ·. It is proved
that if {λ, g} is a pair of eigenvalue and eigenfunction, then either λ = 1, g =constant,
or |λ| < 1. There is a particular solution to the equation (5) in the form of rγg, where

γ =
log λ

log ξ
. (6)

If the degree of the elementary divisor of an eigenvalue is higher than 1, then there
are particular solutions in the form of

u =
N∑

n=0

cnrγ logn rϕn(θ), (7)

where ϕN = g.
We define a weighted Hölder norm as follows. For b ∈ [0, 1] and α ∈ (0, 1) let

[u]α,b,Sm = sup
x,y∈Sm

rb|u(x)− u(y)|
|x− y|α

,

where r = min(|x|, |y|), and

‖u‖α,b,Sm = [u]α,b,Sm + sup
x∈Sm

|x|b−α|u(x)|.

If b = 0, then the norm is abbreviated to ‖ · ‖α,Sm .

Lemma 2.1 If u ∈ C(Sm), then the norm ‖u‖α,b,Sm is equivalent to
supk ξbk‖u‖α,Sm

⋂
Ωk

.
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Proof We have for each k that

‖u‖α,b,Sm ≥ sup
x,y∈Sm

⋂
Ωk

rb|u(x)− u(y)|
|x− y|α

+ sup
x∈Sm

⋂
Ωk

|x|b−α|u(x)|

≥ sup
x,y∈Sm

⋂
Ωk

ξb(k+1)|u(x)− u(y)|
|x− y|α

+ sup
x∈Sm

⋂
Ωk

ξb(k+1)|x|−α|u(x)|

= ξb(k+1)‖u‖α,Sm
⋂

Ωk
.

On the other hand, for any x, y ∈ Sm, let x(1), · · · , x(n) be the cross points of the line
segment xy with {Γk}. Then we have

|u(x)− u(y)| ≤ |u(x)− u(x(1))|+ · · ·+ |u(x(n))− u(y)|
≤ (ξr)−b sup

k
ξbk‖u‖α,Sm

⋂
Ωk

(|x− x(1)|α + · · ·+ |x(n) − y|α).

We may assume that x ∈ Ωk, y ∈ Ωl, and k ≤ l. If |x−x(1)| = max(|x−x(1)|, · · · , |x(n)−
y|), then

|x− x(1)|α + · · ·+ |x(n) − y|α ≤ |x− x(1)|α + |x− x(1)|α + ξ|x− x(1)|α + · · ·

≤ 2− ξ

1− ξ
|x− x(1)|α ≤ 2− ξ

1− ξ
|x− y|α.

Therefore
rb |u(x)− u(y)|

|x− y|α
≤ C sup

k
ξbk‖u‖α,Sm

⋂
Ωk

.

The other cases can be considered in the same way, and the estimate for the maximum
norm is obvious. The lemma is proved.

For simplicity, in what follows we will always omit the domain Sm in the Hölder
norm, that is, ‖ · ‖α,b,Ωl

for ‖ · ‖α,b,Sm
⋂

Ωl
.

We have the following decomposition result:

Lemma 2.2 The solution u to (5) can be decomposed into u = v + w, where v

is a finite sum of the above particular solutions (7), and ‖Dw‖α,ξΩ < C‖u‖H1(Ω) with
0 < α < 1.

Proof We define two spectrum sets:{λ1, · · · , λN}, {λN+1, · · · , 0},where |λN | >

|λN+1| and |λN+1| < ξ1+α. The space H is decomposed to two subspaces such that
H = H1 ⊕ H2 and the spectrum of XH1 in H1 is just {λ1, · · · , λN}, the spectrum of
XH2 in H2 is {λN+1, · · · , 0}. Since limk→∞ ‖Xk

H2
‖

1
k = |λN+1|, where ‖ · ‖ stands for the

spectrum norm, we have ‖Xk
H2
‖ ≤ (|λN+1|+ ε)k for any ε > 0 and sufficiently large k.

We require that |λN+1|+ ε < ξ1+α.
For any g ∈ H, we have a unique decomposition g = g1 + g2, g1 ∈ H1, and g2 ∈ H2.

Let v, w be the solutions corresponding to g1, g2 respectively. If k is large enough, then
‖Xkg2‖H ≤ Cξk(1+α)‖g‖H .

Let w̃ = w ◦ Tk−2, then w̃ satisfies the same equation. The standard interior C1,α

estimate is valid for this case. See [9] [10] [7] for details.

‖Dw̃‖α,Ω2 ≤ C|w̃|
H1(Ω\ξ3Ω)

≤ C‖Xkg2‖H ≤ Cξk(1+α)‖g‖H .
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Therefore
‖Dw‖α,Ωk

≤ C‖g‖H ≤ C‖u‖H1(Ω)

for sufficiently large k, say k > K0. The estimate of ‖Dw‖α,Ωk
for k = 1, · · · ,K0 is

standard since K0 is a fixed number and there is no singular point. The lemma is
proved.

3. Nonhomogeneous Equations with Constant Coefficients

For the nonhomogeneous equation

∂

∂xj

(
aij

∂u

∂xi

)
=

∂fi

∂xi
, (8)

we recall a result in [8] first.

Lemma 3.1 There is a particular solution to the equation

Lu ≡ ∂

∂xj

(
aij

∂u

∂xi

)
=

∂

∂xj0

(
rα1 logm1 rq1(θ)

∂

∂xi0

(rα2 logm2 rq2(θ))
)

, (9)

in the form of
u =

∑
n

cnrγ logmn rϕn(θ), (10)

where i0 and j0 are equal to 1 or 2, Reα1 > 0, Reα2 > 0, q1, q2 are continuous, periodic,
and piecewise infinitely differentiable functions, and γ = α1 + α2.

To study the nonhomogeneous equation (8) we consider the equation on the space
R2 first. The sectors Sm are extended to |x| = ∞, and then R2 is divided into m0

sectors. We define a space

Z1(R2) = {u ∈ H1
loc(R2);∇u ∈ L2(R2),

∫
|x|<1

u dx = 0}.

Then equipped with the norm ‖∇u‖L2(R2) it is a Hilbert space. We assume that
suppfi ⊂ s(o, 1), and fi ∈ C0,α(Sm). Consider the equation (8) and define the corre-
sponding sesquilinear form

a(u, v) =
∫

R2

aij
∂u

∂xi

∂v

∂xj
dx.

The weak formulation of (8) is: find u ∈ Z1(R2) such that

a(u, v) =
∫
|x|<1

fi
∂v

∂xi
dx, ∀v ∈ Z1(R2). (11)

By the Lax-Milgram theorem there exists a unique solution u,

‖u‖Z1(R2) ≤ C
∑

i

‖fi‖L2(R2).
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Moreover, on any bounded domain Ω′ ⊂⊂ Sm, u ∈ C1,α(Ω′), and

‖Du‖α,Ω′ ≤
∑

i

∑
m

‖fi‖α,Sm .

We return to the domain s(o, 1) and construct a particular solution u to the equation
(8), so that u possesses the desired regularity. Let

ζ(r, θ) =
{

1, 1 > r > ξ,

0, r > ξ−1, or r < ξ2,

and ζ ∈ C∞, 0 ≤ ζ ≤ 1. Then we define ζk = ζ ◦ Tk/
∑∞

l=1 ζ ◦ Tl, and F = (f1, f2),
Fk = ζkF . Let uk be the solution to (11) with F replaced by Fk. uk satisfies the
homogeneous equation (5) on ξk+2Ω. Analogous to the previous section we have the
decomposition uk = u

(1)
k + u

(2)
k , with u

(1)
k |Γk+2

∈ H1 and u
(2)
k |Γk+2

∈ H2, where H1 and

H2 will be specified later on. We extend u
(1)
k analytically to Ω, which is still denoted

by u
(1)
k . Let u =

∑∞
k=1(uk − u

(1)
k ).

Lemma 3.2 We assume that ‖F‖α,b < ∞, α ∈ (0, 1), b ∈ [0, 1]. The subspaces H1

and H2 are defined according to the spectrum sets {λ1, · · · , λN}, {λN+1, · · · , 0}, where
|λN+1|+ ε < ξ1+α−b < |λN | − ε, ε > 0. Then

‖D(uk−u
(1)
k )‖α,b,Ωl

≤



Cξlb

{
ξ(k−l)(1+α) +

(
ξ1+α

|λN | − ε

)k−l−1
}
‖Fk‖α, ∀l ≤ k − 2,

Cξlb‖Fk‖α, ∀k + 4 > l > k − 2,

Cξ(k−l)(1+α)+lb‖Fk‖α, ∀k + 4 ≤ l < k + K0,

Cξlb

(
|λN+1|+ ε

ξ1+α

)l−k

‖Fk‖α, ∀l ≥ k + K0,

(12)

where K0 is a fixed positive number.

Proof If l ≤ k − 3, let ũ = uk ◦ Tk−1, then ũ satisfies

Lũ = ξk−1∇ · (Fk ◦ Tk−1).

Hence
‖ũ‖H,Γ0 ≤ Cξk−1‖Fk ◦ Tk−1‖α ≤ Cξ(k−1)(1+α)‖Fk‖α. (13)

We consider the exterior problem and let ũ|Γl−k+2
= Xk−l−2

1 ũ|Γ0 , then being the same
as X, X1 is a bounded operator.

‖ũ‖H,Γl−k+2
≤ Cξ(k−1)(1+α)‖Fk‖α.

Let u∗ = uk ◦ Tl−1, then

‖u∗‖H,Γ2 ≤ Cξ(k−1)(1+α)‖Fk‖α.
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Applying the C1,α estimate result we get

‖Du∗‖α,Ω1 ≤ Cξ(k−1)(1+α)‖Fk‖α.

Returning to the domain Ωl, we get

‖Duk‖α,Ωl
≤ Cξ(k−l)(1+α)‖Fk‖α.

There are only a finite number of terms in u
(1)
k . We consider one of them, wj,k,

corresponding to an eigenvalue λj . By (13) we have

‖wj,k ◦ Tk−1‖H,Γ0 ≤ Cξ(k−1)(1+α)‖Fk‖α.

We note that
wj,k = cr

log λj
log ξ logm rϕ(θ).

Consequently, we have

‖D(wj,k ◦ Tk−1)‖α,Ωl−k+1
≤ C(|λj | − ε)l−k+1ξ−(l−k+1)(1+α)ξ(k−1)(1+α)‖Fk‖α,

which yields

‖Dwj,k‖α,Ωl
≤ C

(
ξ1+α

|λN | − ε

)k−l−1

‖Fk‖α.

If k + 4 > l > k − 2, then

‖Dũ‖
α,Ω\ξ4Ω

≤ Cξ(k−1)(1+α)‖Fk‖α,

which yields
‖Duk‖α,ξk−1Ω\ξk+3Ω

≤ C‖Fk‖α.

Analogously, we have
‖Du

(1)
k ‖

α,ξk−1Ω\ξk+3Ω
≤ C‖Fk‖α.

If l ≥ k + 4, then uk − u
(1)
k = u

(2)
k on Ωl, and by (13) we get

‖u(2)
k ◦ Tk−1‖H,Γ3 ≤ Cξ(k−1)(1+α)‖Fk‖α.

If l − k ≥ K0 and K0 is sufficiently large, then X l−k−4
H2

≤ (|λN+1| + ε)l−k−4. Conse-
quently, we have

‖u(2)
k ◦ Tk−1‖H,Γl−k−1

≤ Cξ(k−1)(1+α)(|λN+1|+ ε)l−k−4‖Fk‖α.

Let u∗ = u
(2)
k ◦ Tl−1, then

‖u∗‖H,Γ−1 ≤ Cξ(k−1)(1+α)(|λN+1|+ ε)l−k−4‖Fk‖α.

Then we get the C1,α norm estimate

‖Du∗‖α,Ω1 ≤ Cξ(k−1)(1+α)(|λN+1|+ ε)l−k−4‖Fk‖α.
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Consequently, we have

‖Du
(2)
k ‖α,Ωl

≤ C

(
|λN+1|+ ε

ξ1+α

)l−k

‖Fk‖α.

If l ≥ k + 3 but l < k + K0, then it is easy to see that

‖Du
(2)
k ‖α,Ωl

≤ Cξ(k−l)(1+α)‖Fk‖α.

We multiply each inequality by a factor ξlb then the conclusion follows. The lemma is
proved.

Lemma 3.3 Under the assumptions of Lemma 3.2 it holds that

‖Du‖α,b,ξΩ ≤ C‖F‖α,b,Ω. (14)

Proof Let l ≥ 1. By Lemma 3.2 we have

‖Du‖α,b,Ωl
≤C

l−K0∑
k=1

Cξlb

(
|λN+1|+ ε

ξ1+α

)l−k

‖Fk‖α +
l−4∑

k=l−K0+1

Cξ(k−l)(1+α)+lb‖Fk‖α

+
l+1∑

k=l−3

Cξlb‖Fk‖α +
∞∑

k=l+2

Cξlb

{
ξ(k−l)(1+α) +

(
ξ1+α

|λN | − ε

)k−l−1
}
‖Fk‖α

≤C‖F‖α,b


l−K0∑
k=1

ξ(l−k)b

(
|λN+1|+ ε

ξ1+α

)l−k

+
l−4∑

k=l−K0+1

ξ(k−l)(1+α−b)

+
l+1∑

k=l−3

1 +
∞∑

k=l+2

ξ(l−k)b

(
ξ(k−l)(1+α) +

(
ξ1+α

|λN | − ε

)k−l−1
)}

≤C‖F‖α,b.

The lemma is proved.

4. Nonlinear Equations

We recall some results in [7] for the boundary value problem (1) (2) first. The
solution u belongs to C0,δ̄(Ω), and in the neighborhood of a singular point it holds that
‖r1−δ1Du‖L∞ ≤ C with δ̄ > 0 and δ1 > 0. Following the same argument we can prove
the following lemma.

Lemma 4.1 The weak solution u to (1), (2) satisfies

‖Du‖α,1 ≤ C, (15)

provided 0 < α ≤ δ̄.
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Proof Let v = u ◦ Tk−1, then v satisfies

∂

∂xj

(
aij(ξk−1x, v ◦ T−k+1)

∂v

∂xi

)
= ξk−1 ∂

∂xi
(fi ◦ Tk−1).

It was shown in [7] that

‖Dv‖α,Ω1 ≤ C(|v|
H1(Ω\ξ3Ω)

+ ξk−1‖F ◦ Tk‖α,Ω\ξ3Ω
).

Then

ξk−1‖Du‖α,Ωk
≤ C(ξ−(k−1)α|u|

H1(ξk−1Ω\ξk+2Ω)
+ ‖F‖

α,ξk−1Ω\ξk+2Ω
). (16)

By the Caccioppoli inequality we have the estimate

‖Dv‖L2(Ω1) ≤ C(‖v − v(0)‖
L2(Ω\ξ3Ω)

+ ‖ξk−1F ◦ Tk−1‖L2(Ω\ξ3Ω)
).

Then

‖Du‖L2(Ωk) ≤ C(ξ−k+1‖u− u(0)‖
L2(ξk−1Ω\ξk+2Ω)

+ ‖F‖
L2(ξk−1Ω\ξk+2Ω)

). (17)

Since |u− u(0)| ≤ Crδ̄, we have

‖u− u(0)‖
L2(ξk−1Ω\ξk+2Ω)

≤ Cξk(1+δ̄). (18)

We substitute (18) into (17), then (17) into (16). Then (15) follows. The lemma is
proved.

To prove the main theorem we need the following lemma. We will assume that
u(0)=0, otherwise u(x) can be replaced by u(x)−u(0).We denote L= ∂

∂xj

(
aij(0, 0) ∂

∂xi

)
,

where aij(0, 0) are piecewise constant functions, which are equal to aij(0, 0) on each
sector Sm.

Lemma 4.2 If a solution u of (1) can be decomposed as

u =
N∑

n=1

un + w, (19)

where un are in the form of (4), and

‖Dw‖α,b + r−1‖w‖α,b,s(o,r) ≤ C, (20)

where b ∈ [0, 1], 0 < Re α1 ≤ Re α2 ≤ · · · ≤ Re αN , and α < Re α1, then there is a new
decomposition of u, still given by (19), such that

‖Dw‖α,b1 + r−1‖w‖α,b1,s(o,r) ≤ C, (21)

where b1 > b − Re α1, b1 ≥ max(b − δ̄, 0), and there exists an integer N such that
|λN+1| < ξ1+α−b1 < |λN |.
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Proof We rewrite the equation (1) as

Lu = − ∂

∂xj

(
(aij(x, u)− aij(0, 0))

∂u

∂xi

)
+

∂fi

∂xi
.

By Taylor’s expansion we have

aij(x, u)− aij(0, 0) = {aij(0, u)− aij(0, 0)}+ {aij(x, u)− aij(0, u)}

= a
(1)
ij (0, u) + a

(2)
ij (x, u),

where

a
(1)
ij (0, u) = b1u + · · ·+ bN1u

N1 ,

a
(2)
ij (x, u) = b(u)uN1+1 + {aij(x, u)− aij(0, u)}.

Then

Lu = − ∂

∂xj

(
(aij(x, u)− aij(0, 0))

N∑
n=1

∂un

∂xi

)

− ∂

∂xj

(
(aij(x, u)− aij(0, 0))

∂w

∂xi

)
+

∂fi

∂xi

= − ∂

∂xj

(
a

(1)
ij (0,

N∑
n=1

un)
N∑

n=1

∂un

∂xi

)
−

∂f ′j
∂xj

+
∂fi

∂xi
, (22)

where

f ′j =

(
a

(1)
ij (0, u)− a

(1)
ij (0,

N∑
n=1

un)

)
N∑

n=1

∂un

∂xi

+ a
(2)
ij (x, u)

N∑
n=1

∂un

∂xi
+ ((aij(x, u)− aij(0, 0))

∂w

∂xi

We consider the first term on the right of (22). By Lemma 3.1 there is a particular
solution w1 =

∑N ′

n=1 w1n, w1n = cnrγn logmn rϕn(θ), such that |cn| ≤ C, and Re γn ≥
2Re α1, to the equation

Lw1 = − ∂

∂xj

(
a

(1)
ij (0,

N∑
n=1

un)
N∑

n=1

∂un

∂xi

)
.

We estimate ‖f ′j‖α,Ωk
next. We have the following estimates on Ωk

⋂
Sm:∣∣∣∣∣a(1)

ij (0, u)− a
(1)
ij (0,

N∑
n=1

un)

∣∣∣∣∣ ≤ C|w| ≤ Cξk(1−b+α),[
a

(1)
ij (0, u)− a

(1)
ij (0,

N∑
n=1

un)

]
α

≤ C[w]α + C([u]α +
N∑

n=1

[un]α) max |w| ≤ Cξk(1−b);∣∣∣∣∂un

∂xi

∣∣∣∣ ≤ Cξk(δ−1),
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where δ = Re α1 − ε > 0 with ε positive and small,[
∂un

∂xi

]
α

≤ Cξk(δ−1−α);

|a(2)
ij | ≤ Cξk(min(N1+1)δ,1) = Cξk,

[a(2)
ij ]α ≤ CξkN1δ[u]α + Cξk(1−α) ≤ Cξk(1−α)

for N1 large enough;

|aij(x, u)− aij(0, 0)| ≤ Cξkδ̄,

[aij(·, u)− aij(0, 0)]α ≤ Cξk(δ̄−α).

By interpolation we get
|Dw| ≤ Cξk(−b+α).

Therefore, we have

‖f ′j‖α ≤ Cξk(δ−b) + Cξk(δ−α) + Cξk(δ̄−b). (23)

Let ε be small enough, then b− δ = b−Re α1 + ε ≤ b1, δ − α = Re α1 − ε− α ≥ 0. By
Lemma 3.3 there is a solution w2 to the equation Lw2 = − ∂f ′j

∂xj
such that

‖Dw2‖α,b1,ξΩ ≤ C
∑

j

‖f ′j‖α,b1,Ω. (24)

Finally, by Lemma 3.3 there is a solution w3 to the equation Lw3 = ∂fi

∂xi
such that

‖Dw3‖α,b1,ξΩ ≤ C
∑

i

‖fi‖α,b1,Ω. (25)

By (24) (25) we have
‖w1 + w2 + w3‖H,Γ1 ≤ C.

Since ‖u‖1 ≤ C, we get ‖u‖H,Γ1 ≤ C. u − w1 − w2 − w3 is a solution to the homoge-
neous equation Lu = 0, then using the results for homogeneous equations [4], we get a
decomposition on ξ2Ω, u− w1 − w2 − w3 = v + w4, such that

‖Dw4‖α,ξ2Ω < C, (26)

and v =
∑

n un. Let w = w2+w3+w4 and combine the terms of w1 and v, still denoted
by
∑

n un. If there are some terms in
∑

n un satisfying the conditions for w, then we
put them in w. It has no harm in assuming w(0) = 0, otherwise we can plus a constant
on it, then there is no constant term in

∑
n un. Combining the estimates (24)-(26), the

inequality (21) is verified on the domain ξ2Ω. Then applying the condition (20), we see
that (21) is in fact satisfied on Ω. The lemma is proved.
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Proof of Theorem 1.1 We use Lemma 4.2 to prove by induction. We fix a
positive constant ∆b such that ∆b < Re α1 and ∆b ≤ δ̄. By Lemma 4.1 we take w = u,
b = 1 first. If ξ1+α−b+∆b = |λk| for some k, we reduce ∆b slightly, denoted by ∆b′, such
that ∆b′ > ∆b/2 and there exists an integer N such that |λN+1| < ξ1+α−b+∆b′ < |λN |.
Then we get (21) with b1 = b−∆b or b1 = b−∆b′. Again we take b = b1, and so on. In
each step the exponents decrease by a positive constant ∆b or ∆b′. We notice that the
spectrum set is discrete, so there is no eigenvalue λk satisfying ξ1+α = |λk| for small α.
After a finite number of steps we get b = 0, then (3) follows and the proof is complete.
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