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1. Introduction

A symmetric version of regularized long wave equation (SRLWE)

uxxt − ut = ρx + uux, (1.1)

ρt + ux = 0, (1.2)

has been proposed as a model for propagation of weakly nonlinear ion acoustic and
space-charge waves[1]. The sech2 solitary wave solutions, the four invariants and some
numerical results have been obtained in [1]. Obviously, eliminating ρ from (1.1), we
get a class of symmetric regularized long wave equation (SRLWE)

utt − uxx +
1
2
(u2)xt − uxxtt = 0. (1.3)

The SRLW equation (1.3) is explicitly symmetry in the x and t derivatives and is
very similar to the regularized long wave equation which describes shallow water waves
and plasma drift waves[2-3]. The SRLW equation (1.1)—(1.2) or (1.3) arises also in
many other areas of mathematical physics. Numerical investigation indicated that
interactions of solitary waves are inelastic [4], thus the solitary wave of the SRLW
equation is not soliton. More recently, Chen Lin ([5]) studied the orbital stability and
instability of solitary wave solutions of the generalized SRLW equations. The research
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on the well-posedness and numerical methods for the equation has aroused more and
more interest. In [6] Guo Boling studied the existence, uniqueness and regularity of
the periodic initial value problem for a class of the generalized SRLW equations and
obtained the error estimates of the spectral approximation. Miao Chenxia [7] considered
the initial boundary value problem for symmetric regularized long wave equations with
non homogenous boundary value.

In real processes, viscosity, as well as dispersion, plays an important role. Therefore,
it is more significant to study the behavior (especially the large time behavior)of the
dissipative symmetric regularized long wave equations with damping term

uxxt − ut + νuxx = ρx + uux, (1.4)

ρt + ux + γρ = 0. (1.5)

where γ, ν are positive constants, which is a reasonable model to render essential phe-
nomena of nonlinear ion acoustic wave motion when take account of dissipation.

In this paper, we consider the following periodic initial value problem for the dissi-
pative generalized symmetric regularized long wave equations with damping term

ut − νuxx + ρx + f(u)x − uxxt = g1(x), (x, t) ∈ R× R+, (1.6)

ρt + ux + γρ = g2(x), (x, t) ∈ R× R+, (1.7)

u(x + D, t) = u(x−D, t), ρ(x + D, t) = ρ(x−D, t), x ∈ R, t ≥ 0, (1.8)

u(x, 0) = u0(x), ρ(x, 0) = ρ0(x), x ∈ R, (1.9)

where D > 0, γ, ν > 0 are positive constants, f : R → R are C∞functions, g1(x), g2(x) ∈
L2

per(Ω),Ω = (−D, D), we establish the t-independent a priori estimates of the problem
(1.6)–(1.9), then we prove the existence of global attractor of the problem (1.6)–(1.9)
in H1(Ω) × L2(Ω), and establish the finite-dimensionality of Hausdorff and fractal
dimension for the global attractor. Since the dynamical system S(t) defined by (1.6)
and (1.7) is not compact in H1(Ω) × L2(Ω), we cannot construct the global attractor
by the method introduced by Temam [8] or Constantin, Foias and Temam[9]. We
here employ the techniques developed by Ghidaglia[10] to show the existence of finite
dimensional global weak attractor for (1.6)–(1.7) in H1(Ω)× L2(Ω). For this purpose,
it is necessary that the semigroup S(t) should be weakly continuous in H1(Ω)×L2(Ω)
for every t > 0. We will establish the weak continuity of S(t) in H1(Ω) × L2(Ω) by
applying a direct method.

The outline of this article is as follows. In Section 2, we show that the solution
semigroup S(t) is weakly continuous in H1(Ω)×L2(Ω) for every t > 0. In Section 3, we
derive the uniform a priori estimates in time on the solution of the equations (1.6)–(1.7)
in H1(Ω) × L2(Ω). Then we show that the existence of global weak attractor for the
equations (1.6)–(1.7) in H1(Ω) × L2(Ω). The finite dimensionality of the global weak
attractor is also deduced.
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2. The Nonlinear Solution Semigroup

By Galerkin method, we can easily deduce the following existence results.
Theorem 1 Assume that (u0, ρ0) ∈ H1

per(Ω) × L2
per(Ω), g1(x) ∈ L2

per(Ω), g2(x) ∈
L2

per(Ω). Then the problem (1.6)–(1.9) possesses a unique solution (u(t), ρ(t)) defined
on R+such that

u(t) ∈L∞(0, T ;H1(Ω)),
∂u

∂t
∈ L∞(0, T ;H1(Ω)),

ρ(t) ∈L∞(0, T ;L2(Ω)),
∂ρ

∂t
∈ L∞(0, T ;L2(Ω)), ∀ T > 0.

This shows that the system (1.6)–(1.9) defines a solution semigroup S(t) which maps
H1(Ω)× L2(Ω) to H1(Ω)× L2(Ω) such that S(t)(u0, ρ0) = (u(t), ρ(t)), the solution of
the problem (1.6)–(1.9).

Let H = L2(Ω) be Hilbert space endowed with its usual inner product (·, ·) and
norm ‖·‖ , ‖·‖p denote the norm of Lp(Ω) for all 1 ≤ p ≤ ∞(‖·‖2 = ‖·‖), ‖·‖X denotes
the norm of any Banach space X.

We first establish the following fact about the solution semigroup S(t).
Proposition 1 Assume that g1(x) ∈ L2

per(Ω), g2(x) ∈ L2
per(Ω), (u0, ρ0) ∈ H1

per(Ω)×
L2

per(Ω). Then the dynamical system S(t) : H1(Ω)×L2(Ω) → H1(Ω)×L2(Ω) is weakly
continuous for every t > 0.

Proof ∀t1 > 0 fixed,we shall show S(t1) is weakly continuous from H1(Ω)×L2(Ω)
to H1(Ω)× L2(Ω). Assume now that

(uk
0, ρ

k
0) → (w0, σ0) weakly in H1(Ω)× L2(Ω). (2.1)

We are going to show that S(t1)(uk
0, ρ

k
0) → S(t1)(w0, σ0) weakly in H1(Ω) × L2(Ω).

Choose T > t1,and denote by (uk(t), ρk(t)) = S(t)(uk
0, ρ

k
0), (w(t), σ(t)) = S(t)(w0, σ0).

Since the weak convergence implies the boundedness, it follows that
∥∥∥(uk

0, ρ
k
0)

∥∥∥
H1×L2

≤ R, (2.2)

where R is a constant independent of k,‖(u, ρ)‖2
H1×L2 = ‖u‖2

H2 + ‖ρ‖2 .

We note that (uk(t), ρk(t)) satisfies the following equations

ukt − νukxx + ρkx + f(uk)x − ukxxt = g1(x), (2.3)

ρkt + ukx + γρk = g2(x). (2.4)

Taking the inner product of(2.3)with uk in H,we find that

1
2

d

dt
(‖uk‖2 + ‖ukx‖2) + ν ‖ukx‖2 +

∫

Ω
ρkxukdx +

∫

Ω
f(uk)xukdx = (g1, uk). (2.5)
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Let
F (s) =

∫ s

0
f(τ)dτ.

Then we have
∫

Ω
f(uk)xukdx = −

∫

Ω
f(uk)ukxdx = −

∫

Ω

∂

∂x
F (uk)dx = 0. (2.6)

Taking the inner product of (2.4) with ρk in H,we get that

1
2

d

dt
‖ρk‖2 +

∫

Ω
ρkukxdx + γ ‖ρk‖2 = (g2, ρk). (2.7)

By using the conditions of Proposition 1, it comes from (2.5)–(2.7) that

d

dt
(‖uk‖2 + ‖ukx‖2 + ‖ρk‖2) + 2ν ‖ukx‖2 + 2γ ‖ρk‖2

≤(‖uk‖2 + ‖ukx‖2 + ‖ρk‖2) + ‖g1‖2 + ‖g2‖2 . (2.8)

Applying Gronwall lemma to (2.8) we find that

‖uk(t)‖2 + ‖ukx(t)‖2 + ‖ρk(t)‖2

≤ et(‖uk(0)‖2 + ‖ukx(0)‖2 + ‖ρk(0)‖2) + et(‖g1‖2 + ‖g2‖2)

≤ R2et + et(‖g1‖2 + ‖g2‖2).

And hence
‖uk(t)‖2

H1 + ‖ρk(t)‖2 ≤ C, ∀ 0 ≤ t ≤ T, (2.9)

where C is a constant depending on T.

By (2.9) and Agmon inequality

‖u‖∞ ≤ C ‖u‖ 1
2 ‖u‖H1 , ∀ u ∈ H1(Ω). (2.10)

We obtain that
‖u‖∞ ≤ C, ∀ 0 ≤ t ≤ T. (2.11)

Taking the inner product of (2.3) with ukt in H,we find that

‖ukt(t)‖2 + ‖ukxt(t)‖2

=− ν(ukx, ukxt) + (ρk, ukxt) + (f(uk), ukxt) + (g1, ukt)

≤ν ‖ukx‖ |ukxt‖+ ‖ρk‖ ‖ukxt‖+ ‖f(uk)‖ ‖ukxt‖+ ‖g1‖ ‖ukt(t)‖ . (2.12)

By using the smoothness of f and (2.11) we have

‖f(uk)‖∞ ≤ C, ∀ 0 ≤ t ≤ T. (2.13)
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And then we get from (2.9) and (2.13) that

‖ukt‖2 + ‖ukxt‖2 ≤ C ‖ukt‖+ C ‖ukxt‖ ≤ 1
2
‖ukt‖2 +

1
2
‖ukxt‖2 + C, (2.14)

which implies that
‖ukt‖H1 ≤ C, ∀ 0 ≤ t ≤ T. (2.15)

We get from(2.4) and(2.9) that

‖ρkt‖ ≤ ‖ukx‖+ γ ‖ρk‖+ ‖g2‖ ≤ C, ∀ 0 ≤ t ≤ T. (2.16)

By (2.9),(2.15), and(2.16) we find that there exist θ ∈ H1(Ω), ϑ ∈ L2(Ω), and (u(t), ρ(t))
such that u(t) ∈ L∞(0, T ;H1(Ω)), ρ(t) ∈ L∞(0, T ;H) and a subsequence, which is still
denoted by (uk, ρk), such that

uk(t1) → θ weakly in H1(Ω), (2.17)

uk(t) → u(t) in L∞(0, T ;H1(Ω)) weak star, (2.18)

ukt(t) → ut(t) in L∞(0, T ;H1(Ω)) weak star, (2.19)

ρk(t1) → ϑ weakly in H, (2.20)

ρk(t) → ρ(t) in L∞(0, T ;H) weak star, (2.21)

ρkt(t) → ρt(t) in L∞(0, T ;H) weak star. (2.22)

By (2.18),(2.19) and a compactness theorem[11] we infer that

uk(t) → u(t) in L2(0, T ;H) strongly. (2.23)

∀v ∈ H1
per(Ω),∀ψ(t) ∈ C∞

0 (0, T ), by (2.3) we claim that

∫ T

0
(ukt, ψ(t)v)dt + ν

∫ T

0
(ukx, ψ(t)vx)dt +

∫ T

0
(ukxt, ψ(t)vx)dt

−
∫ T

0
(ρk, ψ(t)vx)dt−

∫ T

0
(f(uk), ψ(t)vx)dt

=
∫ T

0
(g1, ψ(t)v)dt. (2.24)

Note that
∣∣∣∣∣
∫ T

0
(f(u), ψ(t)vx)dt−

∫ T

0
(f(uk), ψ(t)vx)dt

∣∣∣∣∣

=

∣∣∣∣∣
∫ T

0
(f(u)− f(uk), ψ(t)vx)dt

∣∣∣∣∣

≤
∫ T

0
‖f(u)− f(uk)‖ ‖ψ(t)vx‖ dt ≤ ∥∥f ′(ξ)

∥∥∞
∫ T

0
‖u− uk‖ ‖ψ(t)vx‖ dt

≤C ‖u− uk‖L2(0,T ;H) ‖ψ(t)vx‖L2(0,T ;H) → 0. (2.25)
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Taking the limit of (2.24) as k →∞, by (2.18),(2.19),(2.20) and (2.25) we find that

∫ T

0
(ut, v)ψ(t)dt + ν

∫ T

0
(ux, vx)ψ(t)dt +

∫ T

0
(uxt, vx)ψ(t)dt

−
∫ T

0
(ρ, vx)ψ(t)dt−

∫ T

0
(f(u), vx)ψ(t)dt

=
∫ T

0
(g1, v)ψ(t)dt. (2.26)

Similarly, ∀v ∈ L2
per(Ω),∀ψ(t) ∈ C∞

0 (0, T ), by (2.4) we claim that

∫ T

0
(ρkt, ψ(t)v)dt +

∫ T

0
(ukx, ψ(t)v)dt + γ

∫ T

0
(ρk, ψ(t)v)dt =

∫ T

0
(g2, ψ(t)v)dt. (2.27)

Taking the limit of (2.27) as k →∞, by (2.18),(2.21), and(2.22) we get

∫ T

0
(ρt, v)ψ(t)dt +

∫ T

0
(ux, v)ψ(t)dt + γ

∫ T

0
(ρ, v)ψ(t)dt =

∫ T

0
(g2, v)ψ(t)dt. (2.28)

Hence, the following holds in the sense of distributions

ut − νuxx + ρx + f(u)x − uxxt = g1(x), (2.29)

ρt + ux + γρ = g2(x), (2.30)

that is, (u(t), ρ(t)) satisfies the equations (1.6)-(1.7).
∀v ∈ H1

per(Ω),∀ψ(t) ∈ C∞(0, T ) with ψ(T ) = 0, ψ(0) = 1, by (2.3) we obtain

−
∫ T

0
(uk, v)ψ′(t)dt + ν

∫ T

0
(ukx, vx)ψ(t)dt +

∫ T

0
(ukxt, vx)ψ(t)dt

−
∫ T

0
(ρk, vx)ψ(t)dt−

∫ T

0
(f(uk), vx)ψ(t)dt

=(uk(0), v) +
∫ T

0
(g1, v)ψ(t)dt. (2.31)

Similarly, ∀v ∈ L2
per(Ω),∀ψ(t) ∈ C∞(0, T ) with ψ(T ) = 0, ψ(0) = 1, by (2.4) we get

−
∫ T

0
(ρk, v)ψ′(t)dt +

∫ T

0
(ukx, v)ψ(t)dt + γ

∫ T

0
(ρk, v)ψ(t)dt

=(ρk(0), v) +
∫ T

0
(g2, v)ψ(t)dt. (2.32)

Assumption (2.1) implies that

uk(0) =uk
0 → w0 weakly in H1

per(Ω), (2.33)

ρk(0) =ρk
0 → σ0 weakly in H. (2.34)
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Then taking the limit of (2.31) and (2.32) as before, by (2.33) and (2.34) we obtain

−
∫ T

0
(u, v)ψ′(t)dt + ν

∫ T

0
(ux, vx)ψ(t)dt +

∫ T

0
(uxt, vx)ψ(t)dt

−
∫ T

0
(ρ, vx)ψ(t)dt−

∫ T

0
(f(u), vx)ψ(t)dt

=(w0, v) +
∫ T

0
(g1, v)ψ(t)dt, (2.35)

−
∫ T

0
(ρ, v)ψ′(t)dt +

∫ T

0
(ux, v)ψ(t)dt + γ

∫ T

0
(ρ, v)ψ(t)dt

=(σ0, v) +
∫ T

0
(g2, v)ψ(t)dt. (2.36)

On the other hand, by (2.29) and (2.30) we infer that

−
∫ T

0
(u, v)ψ′(t)dt + ν

∫ T

0
(ux, vx)ψ(t)dt +

∫ T

0
(uxt, vx)ψ(t)dt

−
∫ T

0
(ρ, vx)ψ(t)dt−

∫ T

0
(f(u), vx)ψ(t)dt

=(u(0), v) +
∫ T

0
(g1, v)ψ(t)dt, (2.37)

−
∫ T

0
(ρ, v)ψ′(t)dt +

∫ T

0
(ux, v)ψ(t)dt + γ

∫ T

0
(ρ, v)ψ(t)dt

=(ρ(0), v) +
∫ T

0
(g2, v)ψ(t)dt. (2.38)

Thus it follows from (2.35)–(2.36) and (2.37)–(2.38) that

(w0, v) =(u(0), v), ∀ v ∈ H1
per(Ω),

(σ0, v) =(ρ(0), v), ∀ v ∈ L2
per(Ω),

which show that
u(0) = w0, ρ(0) = σ0. (2.39)

And thus by (2.28)–(2.29) and (2.38) we see that

(u(t), ρ(t)) = S(t)(w0, σ0) = (w(t), σ(t)). (2.40)

∀v ∈ H1
per(Ω)(L2

per(Ω)),∀ψ(t) ∈ C∞[0, t1] with ψ(t1) = 1, ψ(0) = 0, then repeating the
procedure of the proofs of (2.31)–(2.39), by (2.17) and (2.20) we find that

(u(t1), v) =(θ, v), ∀ v ∈ H1
per(Ω), (2.41)

(ρ(t1), v) =(ϑ, v), ∀ v ∈ L2
per(Ω). (2.42)

It comes from (2.40)–(2.42) that

(θ, ϑ) = (u(t1), ρ(t1)) = S(t1)(w0, σ0). (2.43)
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And then (2.17) and (2.20) imply that

S(t1)(uk
0, ρ

k
0) → S(t1)(w0, σ0) weakly in H1(Ω)× L2(Ω),

which concludes proposition 1.

3. The Global Attractor

In this section, we construct the global attractor for the dynamical system S(t)
generated by the problem (1.6)–(1.9) in H1(Ω)×L2(Ω) . Hereafter, we always assume
that

g1(x) ∈ L2
per(Ω),

∫

Ω
g1(x)dx = 0 (3.1)

and then integrating (1.6) over Ω and applying (1.8) we find that the average of u(t) is
conserved, i.e. for all t > 0 :

θ(u(t)) =
1
|Ω|

∫

Ω
u(x, t)dx =

1
|Ω|

∫

Ω
u0(x)dx = θ(u0). (3.2)

This shows that the problem (1.6)–(1.9) has not bounded absorbing sets in the
whole space E = H ×H. To overcome this difficulty, we introduce the subset of E:

Eα = {(u, ρ) ∈ H ×H, |θ(u)| ≤ α} ,

for some fixed α. The equation (2.2) indicates that Eα is invariant under the semigroup
S(t) associated to system(1.6)–(1.9).

In the sequel, we will show that there indeed exist bounded absorbing sets in Eα.

Lemma 1 Assume that (2.1) holds, (u0(x), ρ0(x)) ∈ Hα, u0(x) ∈ H1
per(Ω). Then

for the solution (u(t), ρ(t)) of the problem (1.6)–(1.9) we have

‖u(t)‖H1 ≤ K, ‖ρ(t)‖ ≤ K, ∀t ≥ t1,

where K denotes a constant depending only on the data (ν, γ, α, f, g1, g2,Ω), t1 depend-
ing on the data (ν, γ, α, f, g1, g2,Ω, R) when ‖u0‖H1 ≤ R and ‖ρ0‖ ≤ R.

Proof For convenience, we denote

u = u− θ(u), (3.3)

where θ(u) =
1
|Ω|

∫

Ω
u(x)dx, and then we have

θ(u) =
1
|Ω|

∫

Ω
u(x, t)dx =

1
|Ω|

∫

Ω
u(x, t)dx− 1

|Ω|
∫

Ω
θ(u)dx = 0. (3.4)

We note that (1.6),(1.7),(3.2) and (3.3) imply that

ut − νuxx + ρx + f(u)x − uxxt = g1(x), (3.5)

ρt + ux + h(ρ) = g2(x). (3.6)
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Taking the inner product of (3.5) with u in H we infer that

1
2

d

dt
‖u‖2 +

1
2

d

dt
‖ux‖2 + ν ‖ux‖2 +

∫

Ω
(f(u))x · udx +

∫

Ω
ρx · udx = (g1, u). (3.7)

Similarly, taking the inner product of (3.6) with ρ in H we get

1
2

d

dt
‖ρ‖2 + γ ‖ρ‖2 +

∫

Ω
ux · ρdx ≤ (g2,ρ). (3.8)

Adding (3.7) to (3.8) and noting that
∫

Ω
(f(u))x · udx = −

∫

Ω
f(u) · uxdx−

∫

Ω
f(u) · uxdx

=−
∫

Ω
(F (u))xdx = −F (u(D)) + F (u(−D)) = 0 (3.9)

where F (s) =
∫ s
0 f(τ)dτ, we have

1
2

d

dt
(‖u‖2 + ‖ux‖2 + ‖ρ‖2) + ν ‖ux‖2 + γ ‖ρ‖2

≤(g1, u) + (g2,ρ). (3.10)

We recall the Poincare inequality

‖v‖ ≤ C1 ‖vx‖ , if
∫

Ω
v(x)dx = 0, (3.11)

it follows from (3.4) that
‖u‖ ≤ C1 ‖ux‖ , ∀ t ≥ 0. (3.12)

Thus, Applying Hölder and Young inequalities we obtain

|(g1, u)| ≤ ‖g1‖ ‖u‖ ≤ C1 ‖g1‖ ‖ux‖ ≤ 1
4
ν ‖ux‖2 +

C2
1

ν
‖g1‖2 , (3.13)

|(g2, ρ)| ≤ ‖g2‖ ‖ρ‖ ≤ 1
4
γ ‖ρ‖2 +

1
γ
‖g2‖2 . (3.14)

In the sequel, we denote any constants depending only on the data (ν, γ, α, f, g1, g2,Ω)
by C and Ci(i = 1, 2, · · ·).

By (3.10),(3.13) and (3.14)we have

d

dt
(‖u‖2 + ‖ux‖2 + ‖ρ‖2) +

3ν

2
‖ux‖2 +

3γ

2
‖ρ‖2 ≤ 2C2, (3.15)

where C2 = C2
1

ν ‖g1‖2 + 1
γ ‖g2‖2 .

Due to
3ν

2
‖ux‖2 =

ν

2
‖ux‖2 + ν ‖ux‖2 ≥ ν

2
‖ux‖2 + νC−2

1 ‖u‖2

≥C3(‖u‖2 + ‖ux‖2), (3.16)
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where C3 = min{1
2ν, νC−2

1 }, by (3.15) we claim that

d

dt
(‖u‖2 + ‖ux‖2 + ‖ρ‖2) + C4(‖u‖2 + ‖ux‖2 + ‖ρ‖2) ≤ 2C2, ∀ t ≥ 0, (3.17)

where C4 = min{C3,
3
2
γ}.

Applying Gronwall lemma we get

‖u(t)‖2 + ‖ux(t)‖2 + ‖ρ(t)‖2

≤(‖u(0)‖2 + ‖ux(0)‖2 + ‖ρ(0)‖2)e−C4t +
2C2

C4

≤(1 + C2
1 ) ‖ux(0)‖2 e−C4t + ‖ρ(0)‖2 e−C4t +

2C2

C4

≤(1 + C2
1 ) ‖ux(0)‖2 e−C4t + ‖ρ(0)‖2 e−C4t +

2C2

C4

≤(2 + C2
1 )R2e−C4t +

2C2

C4
, ∀t ≥ 0

≤4C2

C4
, ∀ t ≥ t∗. (3.18)

where t∗ = 1
C4

lnC4(2+C2
1 )R2

2C2
.

Since ∫

Ω
u(x, t) · θ(u(x, t))dx = θ(u)

∫

Ω
u(x, t)dx = 0, (3.19)

we see that u(t) and θ(u(t)) are orthogonal in H. Thus,we get that

‖u(t)‖2 = ‖u(t)‖2 + ‖θ(u(t))‖2 = ‖u(t)‖2 + |θ(u)|2 |Ω|
= ‖u(t)‖2 + |θ(u0)|2 |Ω| ≤ ‖u(t)‖2 + α2 |Ω| . (3.20)

And so, we claim that

‖u(t)‖2
H1 + ‖ρ(t)‖2 = ‖u(t)‖2 + ‖ux(t)‖2 + ‖ρ(t)‖2

≤‖u(t)‖2 + α2 |Ω|+ ‖ux(t)‖2 + ‖ρ(t)‖2

≤4C2

C4
+ α2 |Ω| .

which concludes Lemma 1.
We observe that Lemma 2 shows that there exists constant K such that the ball

B1 =
{
(u, ρ) ∈ H1(Ω)× L2(Ω) : ‖u‖H1 ≤ K, ‖ρ‖ ≤ K.

}
(3.21)

is an absorbing set in H1(Ω)×H ∩Hα.
Let

A1 =
⋂

s≥0

⋃

t≥s

S(t)B1 , (3.22)
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where the closure is taken with respect to the weak topology of H1(Ω) × L2(Ω). And
then by Proposition 1 we know that A1 is a global weak attractor for S(t). More
precisely, we have the following

Theorem 2 Assume that the conditions of Lemma 1 hold. Then the set A1 defined
by (3.22) satisfies that

(i) A1 is bounded and weakly closed in H1(Ω)× L2(Ω) ∩Hα;
(ii) S(t)A1 = A1 ,∀t ≥ 0;
(iii) For every bounded set X in H2(Ω)×H1(Ω),S(t)X converges to A1 with respect

to the H1(Ω)× L2(Ω)−weak topology as t →∞.

Proof The proof of this theorem is similar to that of [10], and so omitted here.
Quite analogous to [12] where we dealt with the finite dimensionality of the global

attractor in H2(Ω) × H1(Ω), we also deduce the finite dimensionality of the global
attractor A1 in H1(Ω)× L2(Ω) here, that is, we have

Theorem 3 The attractor A1 of Theorem 2 has finite fractal and Hausdorff di-
mensions in H1(Ω)× L2(Ω).

Acknowledgment The authors would like to express their thanks to the anony-
mous referee for his helpful suggestions.

References

[1] Seyler E. C., Fanstermacler D. C., A symmetric regularized long wave equation, Phys.Fluids.,27
(1) (1984),4—7.

[2] Albert J., On the decay of solutions of the generalized BBM equation, J.Math.Anal.Appl.,141
(1989), 527–537.

[3] Amick C. J., Bona J. L. and Schonbek M. E., Decay of solutions of some non-linear wave
equations, J.Diff.Eqn., 81(1989),1–49.

[4] Bogolubsky J. L., Some examples of inelastic soliton interaction, Comput. Phys.Comm.,13
(1977), 149-155.

[5] Chen lin, Stability and instability of solitary wave for generalized symme-tric regularized
long wave equations, Physica D,118 (1-2)(1998),53–68.

[6] Guo Boling, The spectral method for symmetric regularized wave equations, J.Comp.Math.,
5(4)(1987),297–306.

[7] Miao Chenxia, The initial boundary value problem for symmetric long wave equations with
non-homogeneous boundary value, Northeastern. Math. J., 10(4)(1994), 463–472.

[8] Temam R., Infinite Dimensional Dynamical System in Mechanics and Physics, NewYork,
Springer-Verlag,1988.

[9] Constantin P., Foias C. and Temam R., Attractors representing turbulent flows, Memoirs
of AMS., 53(314)(1985),

[10] Ghidaglia J. M., Finite dimensional behavior for weakly damped driven Schrodinger equa-
tions, Ann.Inst.Henri.Poincare, Analyse Nonlineaire, 5(1988),365–405.

[11] Temam R., Navier–Stokes Equations: Theory and Numerical Analysis. 3rd. rev. ed., New
York, North-Holland,1984.

[12] Shang Yadong and Guo Boling, Finite dimensional behavior for the dissipative generalized
symmetric regularized long wave equations, to appear.


