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Abstract In this paper, we consider Cauchy problem for general first order inho-
mogeneous quasilinear strictly hyperbolic systems. Under the matching condition, we
first give an estimate on inhomogeneous terms. By this estimate, we obtain the asymp-
totic behaviour for the life-span of C1 solutions with “slowly” decaying and small initial
data and prove that the formation of singularity is due to the envelope of characteristics
of the same family.
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1. Introduction and Main Results

Consider the following first order inhomogeneous quasilinear system

∂u

∂t
+ A(u)

∂u

∂x
= F (u), (1.1)

where u = (u1, · · · , un)T is the unknown vector function of (t, x), A(u) = (aij(u)) is
an n × n matrix with suitably smooth elements aij(u)(i, j = 1, · · · , n) and F (u) =
(f1(u), · · · , fn(u))T is a vector function of u with suitably smooth elements fi(u)(i =
1, · · · , n).

Suppose that the system (1.1) is strictly hperbolic in a neighbourhood of u = 0,
namely, for any given u in this domain, A(u) has n distinct real eigenvalues

λ1(u) < λ2(u) < · · · < λn(u). (1.2)

For i = 1, · · · , n, let li(u) = (li1(u), · · · , lin(u)) (resp. ri(u) = (rr1(u), · · · , rin(u))T )
be a left (resp. right) eigenvecdtor corresponding to λi(u) :

li(u)A(u) = λi(u)li(u) ( resp. A(u)ri(u) = λi(u)ri(u)) (1.3)
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We have
det |lij(u)| 6= 0 ( resp. det |rij(u)| 6= 0). (1.4)

All λi(u), lij(u) and rij(u)(i, j = 1, · · · , n) have the same regularity as aij(u)(i, j =
1, · · · , n). Without loss of generality, we may suppose that

li(u)rj(u) ≡ δij , i, j = 1, · · · , n (1.5)

and
rT
i (u)ri(u) ≡ 1, i = 1, · · · , n, (1.6)

where δij stands for Kronecker’s symbol.
For the following initial data

t = 0 : u = ϕ(x), (1.7)

where ϕ(x) is a “small” C1 vector function of x with certain decay properties as |x| →
∞, Li et al.[1,2] presented a complete result on the global existence and the blow-up
phenomenon of C1 solution u = u(t, x) to Cauchy problem (1.1) and (1.7) in the case
F (u) ≡ 0. In the case that F (u) satisfies the so-called matching condition, Koing [3]
gave a quite complete result for the global existence and the breakdown of C1 solution
u = u(t, x) to Cauchy problem (1.1) and (1.7). Kiong [4] also proved that the results
given in [2] on the breakdown of C1 solution are still valid for “slow” decaying initial
data. In this paper, in the case that the inhomogeneous term satisfies the matching
condition, we will prove that the system (1.1) has the same result as in the homogeneous
case. We will first give an estimate on the inhomogeneous term under the matching
condition. By this estimate, the corresponding proof given in [3] can be simplified. On
the other hand, we generalize the results in [3] on the breakdown of C1 solution for
“slow” decaying initial data.

For the completeness of statement, we first recall the concepts of the weak linear
degeneracy (see [5] or [1]) and the matching condition (see [6] or [3]).

Definition 1.1 The i-th characteristic λi(u) is weakly linearly degenerate if along
the i-th characteristic trajectory u = u(i)(s) passing through u = 0, defined by

{ du

ds
= ri(u),

s = 0 : u = 0,
(1.8)

we have

∇λi(u)ri(u) ≡ 0, ∀|u| small, namely, λi(u(i)(s) ≡ λi(0), ∀|s| small (1.9)

If all characteristics are wakly linearly degenerate, the system (1.1) is said to be
weakly linearly degenerate.
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Definition 1.2 F (u) is called to satisfy the matching condition if along all char-
acteristic trajectories passing through u = 0, we have

F (u) ≡ 0, ∀|u| small, namely, F (u(i)(s)) = 0, ∀|s| small, i = 1, · · · , n (1.10)

In this case, it is easy to see that

F (0) = 0, ∇F (0) = 0. (1.11)

Suppose that A(u) ∈ Ck, where k is an integer ≥ 1. By Lemma 2.5 in [5], there
exists an invertible Ck+1 transformation u = u(ũ)(u(0) = 0) such that in ũ-space, for
each i = 1, · · · , n, the i-th characteristic trajectory passing through ũ = 0 coincides
with the ũi-axis at least for |ũi| small, namely,

r̃i(ũiei)‖ei, ∀|ũ| small, i = 1, · · · , n, (1.12)

where ei = (0, · · · , 0, 1(i), 0, · · · , 0)T and r̃i denotes the i-th right eigenvector in ũ-space.
Such a transformation is called the normalized transformation and the corresponding
unknown variables ũ = (ũ1, · · · , ũn) are called the normalized variables or normalized
coordinates. Noting (1.15)–(1.16) in [2], we can always find suitable normalized coor-
dinates ũ such that

∂ũi

∂u
(0) = li(0), i = 1, · · · , n, (1.13)

i.e.,
∂ũ

∂u
(0) = L(0), (1.14)

where L(u) is the matrix composed by the left eigenvectors li(u)(i = 1, · · · , n).
The following theorem is proved in [3] (see Theoroem 3.1 in [3]).
Theorem A Suppose that in a neighbourhood of u = 0, A(u) ∈ C2, the system

(1.1) is strictly hyperbolic and weakly linearly degenerate, and F (u) ∈ C2 satisfy the
matching condition. Suppose furthermore that ϕ(x) is a C1 vector function satisfying
that there exists a constant µ > 0 such that

θ
4
= sup

x∈R
{(1 + |x|)1+µ(|ϕ(x)|+ |ϕ′(x)|)} < ∞. (1.15)

Then there exists θ0 > 0 so small that for any given θ ∈ [0, θ0], the Cauchy problem
(1.1) and (1.7) admits a unique global C1 solution u = u(t, x) on all t ∈ R.

When the system (1.1) is not weakly linearly degenerate, there exists a nonempty
set J ⊆ {1, 2, · · · , n} such that λi(u) is not weakly linearly degenerate if and only if
i ∈ J . Note (1.9), for any fixed i ∈ J , either there exists an integer αi ≥ 0 such that

dlλi(u(i)(s))
dsl

∣∣∣∣∣
s=0

= 0, l = 1, · · · , αi, but
dαi+1λi(u(i)(s))

dsαi+1

∣∣∣∣∣
s=0

6= 0, (1.16)
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or
dlλi(u(i)(s))

dsl

∣∣∣∣∣
s=0

= 0, l = 1, 2, · · · , (1.17)

where u = u(i)(s) is defined by (1.8). In the case that (1.17) holds, we define αi = +∞.

The following theorems are the main results in this paper.
Theorem 1.1 Suppose that A(u) is suitably smooth, the system (1.1) is strictly

hperbolic and F (u) ∈ C2 satisfies the matching condition in a neighbourhood of u = 0.
Suppose furthermore that ϕ(x) = εψ(x), where ε > 0 is a small parameter and ψ(x) is
a C1 vector function satisfying

sup
x∈R

{(1 + |x|)(|ψ(x)|+ |ψ′(x)|)} < ∞. (1.18)

Suppose finally that the system (1.1) is not weakly linearly degenerate and

α = min{αi|i ∈ J} < +∞, (1.19)

where αi is defined by (1.16)–(1.17). Let

J1 = {i|i ∈ J, αi = α}. (1.20)

If there exists i0 ∈ J1 such that
li0(0)ψ(x) 6≡ 0 (1.21)

where li0(u) stands for the i0-th left eigenvector, then there exists ε0 > 0 so small that
for any given ε ∈ (0, ε0], the first order derivative ux of the C1 solution u = u(t, x)
to the Cauchy problem (1.1) and (1.7) must blow up in a finite time and the life-span
T̃ (ε) of u = u(t, x) satisfies

lim
ε→0+

(εα+1T̃ (ε)) = M0, (1.22)

where M0 is a positive constant independent of ε, given by

M0 =

(
max
i∈J1

sup
x∈R

{
− 1

α!
dα+1λi(u(i)(s))

dsα+1

∣∣∣∣∣
s=0

· (li(0)ψ(x))αli(0)ψ′(x)

})−1

, (1.23)

in which u = u(i)(s) is defined by (1.8).
Theorem 1.2 Under the assumptions of Theorem 1.1, on the existence domain

0 ≤ t < T̃ (ε) of the C1 solution u = u(t, x) to Cauchy problem (1.1) and (1.7), the
solution itself remains bounded and small, but the first order derivative ux of u = u(t, x)
tends to infinity as t ↑ T̃ (ε). Moreover, the singularity occurs at the starting point of the
envelope of characteristics of the same family, i.e., at the point with minimum t-value
on the envelope.

Theorem 1.3 Under the assumptions of Theorem 1.1, for each i 6∈ J1, the family
of i-th characteristics never forms any envelope on the domain 0 ≤ t ≤ T̃ (ε). In



50 Li Shumin Vol.15

particular, each family of weakly linearly degenerate characteristics and then each family
of linearly degenerate characteristics never forms any envelope on 0 ≤ t ≤ T (ε).

Remark 1.1 Theorems 1.2–1.4 still hold if

ϕ(x) = εψ(x) + ψ1(x, ε), (1.24)

where ψ1(x, ε) has the same decay property as in (1.18) and

ψ1(x, ε),
∂ψ1(x, ε)

∂x
= O(ε2). (1.25)

Remark 1.2 By Theorem 2.2 in [4], suppose that µ = 0 in Theorem A, the C1

solution u = u(t, x) to Cauchy problem (1.1) and (1.7) may blow up in a finite time.
Remark 1.3 Theorem A can be proved in a simpler way by using Lemma 2.1

given in Section 2.
Remark 1.4 Suppose that in a neighbourhood of u = 0, the system (1.1) is

strictly hyperbolic, F (u) satisfies the matching condition and A(u) ∈ C1, F (u) ∈ C1.
Suppose furthermore that for any given small and decaying initial data ϕ(x) ∈ C1,
Cauchy problem (1.1) and (1.8) always admits a unique global C1 solution on t ≥ 0.
Then the system (1.1) must be weakly linearly degenerate.

Remark 1.4 can be proved as in the case F (u) ≡ 0 (cf. [7]).

2. Preliminaries

Let
vi = li(u)u, i = 1, · · · , n (2.1)

and
wi = li(u)ux, i = 1, · · · , n, (2.2)

where li(u) = (li1(u), · · · , lin(u)) denotes the i-th left eigenvector.
By (1.5), it is easy to see that

u =
n∑

k=1

vkrk(u) (2.3)

and

ux =
n∑

k=1

wkrk(u). (2.4)

Let
d

dit
=

∂

∂t
+ λi(u)

∂

∂x
(2.5)

be the directional derivative with respect to t along the i-th characteristic. We have
(cf.[8], [5] and [6])

dvi

dit
=

n∑

j=1

(
n∑

k=1

Bijk(u)ρk(u)

)
vj +

n∑

j,k=1

βijk(u)vjwk + ρi(u), i = 1, · · · , n, (2.6)
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where

Bijk(u) = −li(u)∇rj(u)rk(u), (2.7)

ρk(u) = lk(u)F (u) (2.8)

and
βijk(u) = (λk(u)− λi(u))li(u)∇rj(u)rk(u). (2.9)

Hence, we have
βiji(u) ≡ 0, ∀i, j, (2.10)

and by (1.12), in normalized coordinates we have

βijj(ujej) = 0, ∀|uj | small , ∀i, j. (2.11)

On the other hand, we have (cf.[8], [5] and [6]),

dwi

dit
=

n∑

j=1

(
n∑

k=1

Bijk(u)ρk(u) + νij(u)

)
wj +

n∑

j,k=1

γijk(u)wjwk, i = 1, · · · , n, (2.12)

where
νij(u) = li(u)∇F (u)rj(u) (2.13)

and

γijk(u) =
1
2
{(λj(u)− λk(u))li(u)∇rk(u)rj(u)−∇λk(u)rj(u)δik + (j|k)}, (2.14)

where (j|k) denotes all the terms obtained by changing j and k in the revious terms.
Hence

γijj(u) ≡ 0, ∀j 6= i, i, j = 1, · · · , n (2.15)

and
γiii(u) = −∇λi(u)ri(u), i = 1, · · · , n. (2.16)

When the i-th characteristic λi(u) is linearly degenerate in the sense of Lax, we have

γiii(u) ≡ 0; (2.17)

while, λi(u) is weakly linearly degenerate, in normalized coordinates we have

γiii(uie)i) ≡ 0, ∀|ui| small. (2.18)

Lemma 2.1 Suppose that A(u) ∈ C2, the system (1.1) is strictly hyperbolic and
F (u) ∈ C2 satisfies the matching condition in a neighbourhood of u = 0. Then in
normalized coordinates, we have

∣∣∣∣∣∣

n∑

j=1

(
n∑

k=1

Bijk(u)ρk(u)

)
vj + ρi(u)

∣∣∣∣∣∣
≤

n∑

j,k=1

|Pijk(u)vjvk|, ∀|u| small , ∀i, (2.19)
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where Pijk(u) is bounded in a neighbourhood of u = 0 and

Pijj(ujej) ≡ 0, ∀|uj | small , ∀i, j; (2.20)

on the other hand, we have
∣∣∣∣∣∣

n∑

j=1

(
n∑

k=1

Bijk(u)ρk(u) + νij(u)

)
wj

∣∣∣∣∣∣
≤

n∑

j,k=1

|Qijk(u)vkwj |, ∀|u| small , ∀i, (2.21)

where Qijk(u) is bounded in a neighbourhood of u = 0 and

Qijj(ujej) ≡ 0, ∀|uj | small , ∀i, j. (2.22)

Proof First we prove that

|ρi(u)| ≤
n∑

j,k=1

|fijk(u)vjvk|, ∀|u| small , ∀i, (2.23)

where fijk(u) is bounded in a neighbourhood of u = 0 and

fijj(ujej) ≡ 0, ∀|uj | small , ∀i, j. (2.24)

Note (1.10), (1.12) and (2.8), it is easy to see that

ρi(ukek) ≡ 0, ∀|uk| small , ∀i, k (2.25)

and then

|ρi(u)| ≤
n∑

m,l=1

|f̃imlumul|, ∀|u| small , ∀i, (2.26)

where f̃iml(i,m, l = 1, · · · , n, m 6= l) are constants and

f̃imm = 0, i,m = 1, · · · , n. (2.27)

By (2.3) and (2.26), we get

|ρi(u)| ≤
n∑

m,l=1

|f̃iml|
n∑

j=1

|vjrjm(u)|
n∑

k=1

|vkrkl(u)|

=
n∑

j,k=1




n∑

m,l=1

|f̃imlrjm(u)rkl(u)|

 |vjvk|, ∀|u| small , ∀i. (2.28)

Taking

fijk(u) =
n∑

m,l=1

|f̃imlrjm(u)rkl(u)|, i, j, k = 1, · · · , n, (2.29)

we get (2.23).
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Note (1.12) and (2.27), it follows from (2.29) that

|fijj(ujej)| =
n∑

m,l=1

|f̃imlrjm(ujej)rjl(ujej)| =
n∑

m,l=1

|f̃imlδjmδjl|

= |f̃ijj | = 0, ∀|u| small , ∀i, j, (2.30)

which is nothing but (2.24).
Let

ν̃ij(u) =
n∑

k=1

Bijk(u)ρk(u), i, j = 1, · · · , n. (2.31)

Now we prove

|ν̃ij(u)| ≤
n∑

k=1

|P̃ijk(u)vk|, ∀|u| small , ∀i, j, (2.32)

where P̃ijk(u) is bounded in a neighbourhood of u = 0 and

P̃ijj(ujej) ≡ 0, ∀|uj | small , ∀i, j. (2.33)

By (2.25), we have
ν̃ij(ujej) ≡ 0, ∀|uj | small , ∀i, j (2.34)

and then

|ν̃ij(u)| ≤
n∑

m=1

|P̂ijmum|, ∀|u| small , ∀i, j, (2.35)

where P̂ijm(i, j,m = 1, · · · , n, j 6= m) are constants and

P̂ijj = 0, i, j = 1, · · · , n. (2.36)

Note (2.3), it follows from (2.35) that

|ν̃ij(u)| ≤
n∑

m=1

|P̂ijm|
n∑

k=1

|vkrkm(u)|

=
n∑

k=1

(
n∑

m=1

|P̂ijmrkm(u)|
)
|vk|, ∀|u| small , ∀i, j. (2.37)

Taking

P̃ijk(u) =
n∑

m=1

|P̂ijmrkm(u)|, i, j, k = 1, · · · , n, (2.38)

we get (2.32).
Note (1.12) and (2.36), it follows from (2.38) that

P̃ijj(ujej) =
n∑

m=1

|P̂ijmrjm(ujej)| =
n∑

m=1

|P̂ijmδjm|

= |P̂ijj | = 0, ∀|uj | small , ∀i, j, (2.39)
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which is just (2.33).
Let

Pijk(u) = |fijk(u)|+ |P̃ijk(u)|, i, j, k = 1, · · · , n. (2.40)

Noting (2.23) and (2.32), we have (2.19); noting (2.24) and (2.33), we have (2.20). The
proof of the first part of this lemma is finished.

Note (1.10), (1.12) and (2.13), it is easy to see that

νij(ujej) ≡ 0, ∀|uj | small , ∀i, j. (2.41)

Let

ν̂ij(u) =
n∑

k=1

Bijk(u)ρk(u) + νij(u), i, j = 1, · · · , n. (2.42)

Noting (2.31), (2.34) and (2.41), we have

ν̂ij(ujej) ≡ 0, ∀|uj | small , ∀i, j. (2.43)

By (2.43), similarly to the proof of (2.32)–(2.33), we get

|ν̂ij(u)| ≤
n∑

k=1

|Qijk(u)vk|, ∀|u| small , ∀i, j, (2.44)

where Qijk(u) is bounded in a neighbourhood of u = 0 and (2.22) holds.
This proves the last part of this lemma. The proof of Lemma 2.1 is finished.
For any given y ≥ 0, on the existence domain of C1 solution, let x = x̃i(t, y) denote

the i-th characteristic passing through a point (y/a, y)(a > 0, constant), we have




dx̃i(t, y)
dt

= λi(u(t, x̃i(t, y))),

x̃i

(
y

a
, y

)
= y.

(2.45)

Let pi(t, x) be defined by

pi(t, x̃i(t, y)) = vi(t, x̃i(t, y))
∂x̃i(t, y)

∂y
. (2.46)

It is easy to see that along the i-th characteristic x = x̃i(t, y), we have

dpi

dit
=

n∑

j=1

(
n∑

k=1

Bijk(u)ρk(u)

)
vj

∂x̃i(t, y)
∂y

+
n∑

j,k=1

β̃ijk(u)
∂x̃i(t, y)

∂y
vjwk

+ ρi(u)
∂x̃i(t, y)

∂y
, (2.47)

where
β̃ijk(u) = βijk(u) +∇λi(u)rk(u)δij , (2.48)
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By (2.11), in normalized coordinates we have

β̃ijj(ujej) ≡ 0, ∀|uj | small , ∀j 6= i (2.49)

and, when the i-th characteristic λi(u) is weakly linearly degenerate, we have

β̃iii(uiei) ≡ 0, ∀|ui| small. (2.50)

Moreover, by (2.10), we have

β̃iji(u) ≡ 0, ∀j 6= i; (2.51)

while
β̃iii(u) = ∇λi(u)ri(u), (2.52)

which identically vanishes only in the case that λi(u) is linearly degenerate in the sense
of Lax.

Similarly, define qi(t, x) by

qi(t, x̃i(t, y)) = wi(t, x̃i(t, y))
∂x̃i(t, y)

∂y
. (2.53)

We have

dqi

dit
=

n∑

j=1

(
n∑

k=1

Bijk(u)ρk(u) + νij(u)

)
wj

∂x̃i(t, y)
∂y

+
n∑

j,k=1

γ̃ijk(u)wjwk
∂x̃i(t, y)

∂y
, (2.54)

where
γ̃ijk(u) = γijk(u) +∇λi(u)rk(u)δij . (2.55)

By (2.15)–(2.16), we have
γ̃ijj(u) ≡ 0, ∀i. (2.56)

3. Proof of Theorem 1.1

Consider the following Cauchy problem
{ ∂u

∂t
+ A(u)

∂u

∂x
= F (u),

t = 0 : u = εψ(x),
(3.1)

where ε > 0 is a small parameter and ψ(x) is a C1 vector function satisfying

sup
x∈R

{(1 + |x|)(|ψ(x)|+ |ψ′(x)|)} < ∞. (3.2)
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Using Lemma 2.1, we will prove Theorem 1.1 in a way similar to the proof of
Theorem 1.3 in [4].

As in [1], we may suppose that

0 < λ1(0) < λ2(0) < · · · < λn(0). (3.3)

By (3.3), there exist positive constants δ > 0 and δ0 > 0 so small that

λi+1(u)− λi(v) ≥ 4δ0, ∀|u|, |v| ≤ δ, i = 1, · · · , n− 1 (3.4)

and

|λi(u)− λi(v)| ≤ δ0

2
, ∀|u|, |v| ≤ δ, i = 1, · · · , n. (3.5)

For the time being we suppose that on the existence domain 0 ≤ t ≤ T (with
Tεα+ 4

3 ≤ 1) of the C1 solution u = u(t, x) to Cauchy problem (3.1) we have

|u(t, x)| ≤ δ. (3.6)

At the end of the proof of Lemma 3.3, we will explain that this hypothesis is reasonable.
By (3.4) and (3.6), on the existence domain 0 ≤ t ≤ T (with Tεα+ 4

3 ≤ 1) of the C1

solution u = u(t, x) to (3.1) we have

0 < λ1(u) < λ2(u) < · · · < λn(u). (3.7)

For any fixed T > 0, let

DT
+ = {(t, x)|0 ≤ t ≤ T, x ≥ (λn(0) + δ0)t}, (3.8)

DT
− = {(t, x)|0 ≤ t ≤ T, x ≤ (λ1(0)− δ0)t}, (3.9)

DT = {(t, x)|0 ≤ t ≤ T, (λ1(0)− δ0)t ≤ x ≤ (λn(0) + δ0)t} (3.10)

and

DT
i ={(t, x)|0 ≤ t ≤ T,−[δ0 + η(λi(0)− λ1(0))]t ≤ x− λi(0)t

≤[δ0 + η(λn(0)− λi(0))]t}, i = 1, · · · , n, (3.11)

where η > 0 is suitably small.
Note that η > 0 is small, by (3.4) it is easy to see that

DT
i

⋂
DT

j = ∅, ∀i 6= j (3.12)

and
n⋃

i=1

Dt
i ⊂ DT . (3.13)
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Let

V (DT
±) = max

i=1,···,n
‖(1 + |x|)vi(t, x)‖L∞(DT

±), (3.14)

W (DT
±) = max

i=1,···,n
‖(1 + |x|)wi(t, x)‖L∞(DT

±), (3.15)

V c
∞(T ) = max

i=1,···,n
sup

(t,x)∈DT \DT
i

(1 + |x− λi(0)t|)|vi(t, x)|, (3.16)

U c
∞(T ) = max

i=1,···,n
sup

(t,x)∈DT \DT
i

(1 + |x− λi(0)t|)|ui(t, x)|, (3.17)

W c
∞(T ) = max

i=1,···,n
sup

(t,x)∈DT \DT
i

(1 + |x− λi(0)t|)|wi(t, x)|, (3.18)

V1(T ) = max
i=1,···,n

sup
0≤t≤T

∫

DT
i (t)

|vi(t, x)|dx, (3.19)

W1(T ) = max
i=1,···,n

sup
0≤t≤T

∫

DT
i (t)

|wi(t, x)|dx, (3.20)

V∞(T ) = max
i=1,···,n

sup
0≤t≤T

x∈R

|vi(t, x)| (3.21)

and
W∞(T ) = max

i=1,···,n
sup

0≤t≤T
x∈R

|wi(t, x)|, (3.22)

where DT
i (t)(t ≥ 0) denotes the t-section of DT

i :

DT
i (t) = {(τ, x)|τ = t, (τ, x) ∈ DT

i }. (3.23)

Obviously, V∞(T ) is equivalent to

U∞(T ) = max
i=1,···,n

sup
0≤t≤T

x∈R

|ui(t, x)|. (3.24)

It is easy to see that Lemma 3.1 in [1] is still valid, namely
Lemma 3.1 For each i = 1, · · · , n, on the domain DT \DT

i , we have

ct ≤ |x− λi(0)t| ≤ Ct, cx ≤ |x− λi(0)t| ≤ Cx, (3.25)

where c and C are positive constants independent of (t, x) and T .
In the present situation, Lemma 3.2 in [4] is still valid, namely
Lemma 3.2 Suppose that in a neighbourhood of u = 0, A(u) ∈ C2, the system

(1.1) is strictly hyperbolic and F (u) ∈ C2 satisfies the matching condition. Then in
normalized coordinates there exists ε0 > 0 so small that for any fixed ε ∈ (0, ε0], on
any given existence domain 0 ≤ t ≤ T of the C1 solution u = u(t, x) to the Cauchy
problem (3.1), there exists a positive constant k1 independent of ε and T , such that the
following uniform a priori estimates hold:

V (DT
±),W (DT

±) ≤ k1ε. (3.26)
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Lemma 3.3 Under the assumptions of Theorem 1.1, in normalized coordinates
there exists ε0 > 0 so small that for any fixed ε ∈ (0, ε0], on any given existence domain
0 ≤ t ≤ T of the C1 solution u = u(t, x) to Cauchy problem (3.1), there exist positive
constants ki(i = 2, · · · , 8) independent of ε and T , such that the following uniform a
priori estimates hold:

W c
∞(T ) ≤ k2ε, (3.27)

W1(T ) ≤ k3ε| log ε|, (3.28)

V c
∞(T ) ≤ k4ε, (3.29)

V1(T ) ≤ K5ε| log ε|+ k6(ε| log ε|)2+αT, (3.30)

V∞(T ), U∞(T ) ≤ k7ε| log ε|, (3.31)

where

Tεα+ 4
3 ≤ 1. (3.32)

Moreover,

W∞(T ) ≤ k8ε, (3.33)

where

Tεα+ 3
4 ≤ 1. (3.34)

Proof This lemma will be proved in a way similar to the proof of Lemma 5.1 and
Lemma 5.2 in [4]. In what follows we only point out the essentially different part in
the proof and ε0 > 0 is always supposed to be suitably small.

Similarly to (3.60) in [4], on any given existence domain of the C1 solution, when
δ > 0 is suitably small, we have

U c
∞(T ) ≤ c1V

c
∞(T ), (3.35)

henceforth, cj(j = 1, 2, · · ·) will denote positive constants independent of ε and T .
Let

Ṽ1(T ) = max
i=1,···,n

max
j 6=i

sup
c̃j

∫

c̃j

|vi(t, x)|dt, (3.36)

W̃1(T ) = max
i=1,···,n

max
j 6=i

sup
c̃j

∫

c̃j

|wi(t, x)|dt|, (3.37)

where c̃j(j 6= i) stands for any given j-th characteristic in DT
i .

As in the proof of Lemma 3.3 in [4], we first estimate W̃1(T ). Using (2.54) and
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Lemma 2.1, instead of (3.32) in [4] we have

|qi(t, x̃i(t, y))|t=t(y) ≤
∣∣∣∣wi

(
y

λn(0) + δ0
, y

)∣∣∣∣

+ c2

{
W c
∞(T )(W c

∞(T ) + V c
∞(T ))

∫ t(y)

y/(λn(0)+δ0)
(1 + s)−1(1 + |xi(s, y)|)−1 ∂x̃i(s, y)

∂y
ds

+ (W c
∞(T ) + V c

∞(T ))
n∑

k=1

∫

(s,x̃i(s,y))∈DT
k

(1 + s)−1|wk(s, x̃i(s, y))|∂x̃i(s, y)
∂y

ds

+W c
∞(T )

n∑

j=1

∫

(s,x̃i(s,y))∈DT
j

(1 + s)−1|vj(s, x̃i(s, y))|∂x̃i(s, y)
∂y

ds



 . (3.38)

Thus, using Lemma 3.2, similarly to (5.5) in [4], we get

W̃1(T ) ≤c3{k1ε log(1 + T ) + (W c
∞(T ) log(1 + T ))2

+ W c
∞(T )W1(T ) log(1 + T ) + W c

∞(T )V c
∞(T )(log(1 + T ))2

+ V c
∞(T )W1(T ) log(1 + T ) + W c

∞(T )V1(T ) log(1 + T )}, (3.39)

where k1 is given by Lemma 3.2.
Similarly, usinig Lemma 2.1 and Lemma 3.2, instead of (5.6)–(5.7) and (5.15)–(5.17)

in [4] we have

W1(T ) ≤c4{k1ε log(1 + T ) + (W c
∞(T ) log(1 + T ))2

+ W c
∞(T )W1(T ) log(1 + T ) + W c

∞(T )V c
∞(T )(log(1 + T ))2

+ V c
∞(T )W1(T ) log(1 + T ) + W c

∞(T )V1(T ) log(1 + T )}, (3.40)

W c
∞(T ) ≤c5{k1ε + (W c

∞(T ))2 log(1 + T ) + W c
∞(T )W̃1(T )

+ W c
∞(T )V c

∞(T ) log(1 + T ) + W c
∞(T )Ṽ1(T ) + V c

∞(T )W̃1(T )}, (3.41)

Ṽ1(T ) ≤c6{k1ε log(1 + T ) + W c
∞(T )V c

∞(T )(log(1 + T ))2

+ W c
∞(T )V1(T ) log(1 + T ) + V c

∞(T )W1(T ) log(1 + T )

+ (V c
∞(T ) log(1 + T ))2 + V c

∞(T )V1(T ) log(1 + T )

+ (V∞(T ))1+α(W c
∞(T ) log(1 + T ) + W1(T ))T}, (3.42)

V1(T ) ≤c7{k1ε log(1 + T ) + W c
∞(T )V c

∞(T )(log(1 + T ))2

+ W c
∞(T )V1(T ) log(1 + T ) + V c

∞(T )W1(T ) log(1 + T )

+ (V c
∞(T ) log(1 + T ))2 + V c

∞(T )V1(T ) log(1 + T )

+ (V∞(T ))1+α(W c
∞(T ) log(1 + T ) + W1(T ))T} (3.43)

and

V c
∞(T ) ≤c8{k1ε + W c

∞(T )V c
∞(T ) log(1 + T ) + W c

∞(T )Ṽ1(T )

+ V c
∞(T )W̃1(T ) + (V c

∞(T ))2 log(1 + T ) + V c
∞(T )Ṽ1(T )}. (3.44)
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When T satisfies (3.32), it follows from (3.39)–(3.44) that

W̃1(T ),W1(T ) ≤c9{k1ε| log ε|+ (W c
∞(T )| log ε|)2 + W c

∞(T )W1(T )| log ε|
+ W c

∞(T )V c
∞(T )| log ε|2 + V c

∞(T )W1(T )| log ε|
+ W c

∞(T )V1(T )| log ε|}, (3.45)

W c
∞(T ) ≤c10{k1ε + (W c

∞(T ))2| log ε|+ W c
∞(T )W̃1(T )

+ W c
∞(T )V c

∞(T )| log ε|+ W c
∞(T )Ṽ1(T ) + V c

∞(T )W̃1(T )}, (3.46)

Ṽ1(T ), V1(T ) ≤c11{k1ε| log ε|+ W c
∞(T )V c

∞(T )| log ε|2 + W c
∞(T )V1(T )| log ε|

+ V c
∞(T )W1(T )| log ε|+ (V c

∞(T )| log ε|)2 + V c
∞(T )V1(T )| log ε|

+ (V∞(T ))1+α(W c
∞(T )| log ε|+ W1(T ))T} (3.47)

and

V c
∞(T ) ≤c12{k1ε + W c

∞(T )V c
∞(T )| log ε|+ W c

∞(T )Ṽ1(T ) + V c
∞(T )W̃1(T )

+ (V c
∞(T ))2| log ε|+ V c

∞(T )Ṽ1(T )}. (3.48)

Noting Lemma 3.2, similarly to (3.48) in [4], we have

V∞(T ), U∞(T ) ≤ c13(k1ε + W c
∞(T ) + W1(T )). (3.49)

By (3.2), it is easy to see that

V c
∞(0),W c

∞(0) ≤ c14ε, V1(0) = Ṽ1(0) = W1(0) = W̃1(0) = 0,

V∞(0), U∞(0) ≤ c15ε.
(3.50)

Then, by continuity, there exist positive constants ki(i = 2, 3, · · · , 7) independent of ε,
such that (3.27)–(3.31) and

Ṽ1(T ) ≤ k5ε| log ε|+ k6(ε| log ε|)2+αT, (3.51)

W̃1(T ) ≤ k3ε| log ε|, (3.52)

hold at least for T > 0 suitably small.
Thus, in order to prove (3.27)–(3.31), it suffices to show that we can choose ki(i =

2, 3, · · · , 7) in such a way that for any fixed T0(0 < T0 ≤ T with T0ε
α+ 4

3 ≤ 1),such that

W c
∞(T0) ≤ 2k2ε, (3.53)

W1(T0), W̃1(T0) ≤ 2k3ε| log ε|, (3.54)

V c
∞(T0) ≤ 2k4ε, (3.55)

V1(T0), Ṽ1(T0) ≤ 2(k5ε| log ε|+ k6(ε| log ε|)2+αT0) (3.56)

and
V∞(T0), U∞(T0) ≤ 2k7ε| log ε|, (3.57)
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we have

W c
∞(T0) ≤ k2ε, (3.58)

W1(T0), W̃1(T0) ≤ k3ε| log ε|, (3.59)

V c
∞(T0) ≤ k4ε, (3.60)

V1(T0), Ṽ1(T0) ≤ k5ε| log ε|+ k6(ε| log ε|)2+αT0 (3.61)

and
V∞(T0), U∞(T0) ≤ k7ε| log ε|. (3.62)

Substituting (353)–(3.57) into the right hand side of (3.45)–(3.49) (in which we take
T = T0), we get

W1(T0), W̃1(T0) ≤c9

{
2k1 + 4k2k6ε

2
3 | log ε|2+α

}
ε| log ε| ≤ 3c9k1ε| log ε|, (3.63)

W c
∞(T0) ≤c10

{
2k1 + 4k2k6ε

2
3 | log ε|2+α

}
ε ≤ 3c10k1ε, (3.64)

V1(T0), Ṽ1(T0) ≤c11{[2k1 + 4(k2 + k4)k6ε
2
3 | log ε|2+α]ε| log ε|

+ 2(k2 + k3)(2k7)1+α(ε| log ε|)2+αT0}
≤c11{3k1ε| log ε|+ 2(k2 + k3)(2k7)1+α(ε| log ε|)2+αT0}, (3.65)

V c
∞(T0) ≤c12

{
2k1 + 4(k2 + k4)k6ε

2
3 | log ε|2+α

}
ε ≤ 3c12k1ε (3.66)

and

V∞(T0), U∞(T0) ≤ c13{k1ε + 2k2ε + 2k3ε| log ε|} ≤ 3c13k3ε| log ε|. (3.67)

Hence, taking

k2 ≥ 3c10k1, k3 ≥ 3c9k1, k4 ≥ 3c12k1, k5 ≥ 3c11k1,

k7 ≥ 3c13k3, k6 ≥ 2c11(k2 + k3)(2k7)1+α,

we get (3.58)–(3.62). This proves (3.27)–(3.31).
Here we point out that when ε0 > 0 is suitably small, we have

U∞(T ) ≤ k7ε| log ε| ≤ k7ε0| log ε0| ≤ 1
2
δ. (3.68)

This implies the validity of hypothesis (3.6).
Finally, we prove (3.33). By (2.12) and Lemma 2.1, instead of (5.20) in [4] we have

|wi(t, x)| ≤c16{W (DT
+) + [1 + V∞(T )](W c

∞(T ))2

+ [1 + V∞(T )]W c
∞(T )V c

∞(T ) + W c
∞(T )V∞(T ) log(1 + T )

+ [W c
∞(T ) log(1 + T ) + V c

∞(T ) log(1 + T ) + V c
∞(T )V∞(T ) log(1 + T )]W∞(T )

+ V c
∞(T )(W∞(T ))2 log(1 + T ) + (V∞(T ))α(W∞(T ))2T}. (3.69)
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Noting Lemma 3.2, by (3.27), (3.29) and (3.31), we get (5.21) in [4] from (3.69), namely

W∞(T ) ≤ c17{ε(1+ | log ε|W∞(T )+ | log ε|(W∞(T ))2)+(ε| log ε|)αT (W∞(T ))2} (3.70)

where T ≤ ε−(α+ 4
3).

Then, completely repeating the procedure of proving (5.13) in [4], we can prove
(3.33). This completes the proof of Lemma 3.3.

By the existence and uniqueness of local C1 solution to Cauchy problem(cf.[9]), by
Lemma 3.3, similarly to Remark 5.1 and Remark 5.2 in [4], we have

Remark 3.1 When ε0 > 0 is suitably small, for any fixed ε ∈ (0, ε0], Cauchy
problem (3.1) admits a unique C1 solution u = u(t, x) on 0 ≤ t ≤ ε−(α+ 3

4). Hence, we
get the following lower bound on the life-span T̃ (ε) of C1 solution

T̃ (ε) ≥ ε−(α+ 3
4). (3.71)

Remark 3.2 Similarly to the proof of (3.33) under (3.34), we can easily prove that
for any fixed ˜µ ∈ (0, 1), there exists ε0 = ε0(µ̃) > 0 so small that for any fixed ε ∈ (0, ε0],
Cauchy problem (3.1) admits a unique C1 solution u = u(t, x) on 0 ≤ t ≤ ε−(α+µ̃).
Hence, we have

T̃ (ε) ≥ ε−(α+µ̃) (3.72)

where 0 < µ̃ < 1.

Using Lemma 3.2, Lemma 3.3 and Remark 3.1, almost completely repeating the
proof of Theorem 1.1 in [2] or Theorem 1.3 in [4], we can easily show Theorem 1.1.
In what follows we only point out the essentially different part in the proof and will
directly use the notation and results given in [2] and [4].

Proof of Theorem 1.1 As in [4], it suffices to prove Lemma 3.1 in [2], i.e., in
normalized coordinates ũ satisfying (1.14), to prove

lim
ε→0

{εα+1T̃ (ε)} ≤ M0 (1.22a)

and
lim
ε→0 {εα+1T̃ (ε)} ≥ M0, (1.22b)

where M0 is given by (1.23). As in [2] and [4], we still denote ũ by u. Moreover, in the
proof, ε0 > 0 is always supposed to be suitably small.

(1) Proof of (1.22a)
By Remark 3.1, there exists ε0 > 0 so small that for any fixed ε ∈ (0, ε0], Cauchy

problem (3.1) admits a unique C1 solution u = u(t, x) on the domain 0 ≤ t ≤ T1, where

T1
4
= ε−(α+ 3

4) ≤ T̃ (ε)− 1
4
= T̄ . (3.73)

Similarly to (5.26) in [4], we may suppose that

T̃ (ε)εα+ 4
3 ≤ 1. (3.74)
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Thus, in what follows we only discuss the problem in the domain 0 ≤ t ≤ ε−(α+ 4
3). By

Lemma 3.3, on the domain 0 ≤ t ≤ ε−(α+ 4
3), we have

u(t, x), v(t, x) = O(ε| log ε|). (3.75)

By (3.2), there exist i0 ∈ J1 and x0 ∈ R such that (3.19) in [2] is still valid. Without
loss of generality, we may assume i0 = 1 ∈ J1.

By (2.12), on the existence domain of C1 solution, along the 1st characteristic
x = x1(t, x0) passing through point (0, x0), (3.22) in [2] should be rewritten as

dw1

d1t
= ā0(t)w2

1 + ā1(t)w1 + ā2(t), (3.76)

where 



ā0(t) = a0(t),

ā1(t) = a1(t) +
n∑

k=1

B11k(u)ρk(u) + ν11(u),

ā2(t) = a2(t) +
n∑

j=2

(
n∑

k=1

B1jk(u)ρk(u) + ν1j(u)

)
wj ,

(3.77)

in which a0(t), a1(t) and a2(t) are defined by (3.23) in [2].
When ε0 > 0 is suitably small, by (3.73), we have

T1 > ε−α 4
= T0 > t0 (3.78)

(see [2] for the definition of t0).
By Lemma 3.3, on 0 ≤ t ≤ T0, we have

w(t, x),
∂u

∂x
(t, x) = O(ε). (3.79)

Integrating

dw1

d1t
=

n∑

j=1

(
n∑

k=1

B1jk(u)ρk(u) + ν1j(u)

)
wj +

n∑

j,k=1

γ1jk(u)wjwk, (3.80)

along the characteristic x = x1(t, x0), noting Lemma 2.1, we get

|w1(t, x1(t, x0))− w1(0, x0)| ≤
∣∣∣∣∣∣

∫ t

0

n∑

j,k=1

γ1jk(u)wjwkds

∣∣∣∣∣∣
+

∫ t0

0

n∑

j,k=1

|Q1jk(u)vkwj |ds

+
∫ t

t0

∑

j 6=k

|Q1jk(u)vkwj |ds +
∫ t

t0

n∑

j=1

|(Q1jj(u)

−Q1jj(ujej))vjwj |ds, ∀t ∈ [0, T0]. (3.81)
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By Lemma 3.2 and Lemma 3.3, noting (3.35), similarly to (4.62) in [1] and (3.25) in
[2], instead of (5.28) iin [4] we have

|w1(t, x1(t, x0))− w1(0, x0)|
≤ c18{ε2 + W∞(t)W c

∞(t) log(1 + t) + (W∞(t))2V c
∞(t) log(1 + t)

+ (V∞(t))α(W∞(t))2t + V∞(t)W∞(t) + V c
∞(t)W∞(t) log(1 + t)

+ W c
∞(t)V∞(t) log(1 + t) + V c

∞(t)V∞(t)W∞(t) log(1 + t)}
≤ c19ε

2| log ε|max{2,α}, ∀t ∈ [0, T0] (3.82)

and then, noting (3.15) in [2], instead of (5.29) in [4] we have

w1(T0, x1(T0, x0)) = εl1(0)ψ′(x0) + O(ε2| log ε|max{2,α}). (3.83)

Noting (2.6), (2.10), using Lemma 2.1 and Lemma 3.3, similarly to (4.49) in [1], we
have

|v1(t, x1(t, x0))− v1(0, x0)|

≤
∣∣∣∣∣∣

∫ t

0

∑

k 6=1

β1jk(u)vjwks, x1(s, x0))ds

∣∣∣∣∣∣
+

∫ t

0

n∑

j,k=1

|P1jk(u)vjvk|(s, x1(s, x0))|ds

≤ c20ε
2| log ε|2 +

∣∣∣∣∣∣

∫ t

t0

∑

k 6=1

β1jk(u)vjwkds

∣∣∣∣∣∣
+

∫ t

t0

∑

j 6=k

|P1jk(u)vjvk|ds

+
∫ t

t0

n∑

j=1

|(P1jj(u)− P1jj(ujej))v2
j |ds. (3.84)

Then, by Lemma 3.1 and Lemma 3.3, noting (3.35), instead of (4.50) in [1] we have

|v1(t, x1(t, x0))− v1(0, x0)| ≤c20ε
2| log ε|2 + c21{V∞(t)W c

∞(t) log(1 + t)

+ V∞(t)V c
∞(t) log(1 + t) + (V∞(t))2V c

∞(t) log(1 + t)}
≤c22ε

2| log ε|2. (3.85)

Noting (4.51) in [1] and (3.75), instead of (4.52) in [1] we have

|u1(t, x)− v1(t, x)| ≤ c23ε
2| log ε|2. (3.86)

Hence, noting (3.14) in [2], instead of (5.33) in [4] we have

|u1(t, x1(t, x0))− εl1(0)ψ(x0)| ≤ c24ε
2| log ε|2. (3.87)

By (3.87), repeating the corresponding procedure in [4], we can easily get (5.35) in [4],
namely

ā0(t) = a0(t) ≥ 1
2
bεα > 0, ∀t ∈ [T0, T̄ ], (3.88)
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where b is defined by (3.21) in [2].
Noting (5.36)–(5.37) in [4], (3.77) and (3.35), using Lemma 2.1 and Lemma 3.3,

similarly to (5.36)–(5.39) in [4], we have

∫ T̄

T0

|ā1(t)|dt ≤
∫ T̄

T0

|a1(t)|dt +
∫ T̄

T0

n∑

k=2

|Q11k(u)vk(t, x1(t, x0))|dt

+
∫ T̄

T0

|(Q111(u)−Q111(u1e1))v1(t, x1(t, x0))|dt

≤C25ε| log ε|+ c26

{
V c
∞(T̄ )

∫ T̄

T0

(1 + t)−1dt + V c
∞(T̄ )V∞(T̄ )

∫ T̄

T0

(1 + t)−1dt

}

≤c27ε| log ε| (3.89)
∫ T̄

T0

|ā2(t)|dt ≤
∫ T̄

T0

|a2(t)|dt +
∫ T̄

T0

n∑

j=2

n∑

k=1

|Q1jk(u)vkwj(t, x1(t, x0))|dt

≤C28ε
2 + c29W

c
∞(T̄ )V∞(T̄ )

∫ T̄

T0

(1 + t)−1dt

≤c30ε
2| log ε|2, (3.90)

K
4
=

∫ T̄

T0

|ā2(t)| exp
(
−

∫ t

T0

ā1(s)ds

)
dt ≤

∫ T̄

T0

|ā2(t)|dt exp

(∫ T̄

T0

|ā1(t)|dt

)

≤c31ε
2| log ε|2 (3.91)

and

w1(T0, x1(T0, x0)) > c31ε
2| log ε|2 ≥ K. (3.92)

Applying Lemma 2.1 in [2] and completely repeating the rest of the proof (1.25a)
in [4], we get (1.22a) immediately.

(2) Proof of (1.22b)

We can prove (1.22b) by almost completely repeating the procedure of proving
(1.25b) in [4] and only changing (5.49)–(5.51) and (5.53) in [4].

Using Lemma 2.1 and Lemma 3.3, noting (5.49)–(5.50) in [4], (3.77) and (3.35),
instead of (5.49)–(5.51) in [4] we have

∫ T

0
|ā1(t)|dt ≤

∫ T

0
|a1(t)|dt +

n∑

k=2

∫ T

0
|Q11k(u)vk|dt +

∫ T

0
|(Q111(u)−Q111(u1e1))v1|dt

≤c32

{∫ T

0
|a1(t)|dt +

n∑

k=1

(∫ Ty

0
|vk|dt +

∫ T̃y

Ty

|vk|dt

)

+
n∑

k=2

∫ T

T̃y

|vk|dt +
∫ T

T̃y

|(Q111(u)−Q111(u1e1))v1|dt

}
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≤c33(ε| log ε|+ V (DT
+) log(1 + T ) + V (DT

−) log(1 + T )

+ Ṽ1(T ) + V c
∞(T ) log(1 + T ) + V c

∞(T )V∞(T ) log(1 + T ))

≤c34(ε| log ε|+ k6(ε| log ε|)2+αε−(1+α) + ε2| log ε|2)
≤c35ε| log ε|2+α, (3.93)

∫ T

0
|ā2(t)|dt ≤

∫ T

0
|a2(t)|dt +

n∑

j=2

∫ Ty

0

n∑

k=1

|Q1jk(u)vkwj |dt

+
n∑

j=2

∫ T̃y

Ty

n∑

k=1

|Q1jk(u)vkwj |dt +
n∑

j=2

∫ T

T̃y

n∑

k=1

|Q1jk(u)vkwj |dt

≤c36(ε2| log ε|+ (W (DT
+) + W (DT

−) + V (DT
+) + V (DT

−))2

+ W c
∞(T )V∞(T ) log(1 + T ) + W̃1(T )V∞(T ))

≤c37ε
2| log ε|2 (3.94)

and

K
4
=

∫ T

0
|ā2(t)| exp

(
−

∫ t

0
ā1(s)ds

)
dt ≤

∫ T

0
|ā2(t)|dt exp

(∫ T

0
|ā1(t)|dt

)

≤ c38ε
2| log ε|2. (3.95)

Instead of (5.53) in [4] we have

(w1(0, y) + K)
∫ T

0
ā+

0 (t)dt ≤ M

M0
+ c39ε| log ε|1+α + K

∫ T

0
|ā0|(t)dt

≤ M

M0
+ c40ε| log ε|max{1+α,2} < 1. (3.96)

Then completely repeating the rest of the proof of (1.25b) in [4], we obtain (1.22b).
This finishes the proof of Theorem 1.1.

4. Proof of Theorem 1.2 and Theorem 1.3

We can prove Theorem 1.2 and Theorem 1.3 by almost completely repeating the
procedure of proving Theorem 1.4 and Theorem 1.5 in [4] and only changing (6.17)–
(6.19) and (6.24) in [4].

In the present situation, by (3.82), instead of (6.17) in [4] we have

|wi(t, xi(t, yi))− εli(0)ψ̃′i(yi)|
≤ c41{ε2 + W∞(t)W c

∞(t) log(1 + t) + V∞(t)W∞(t)

+ (W∞(t))2V c
∞(t) log(1 + t) + (V∞(t))α(W∞(t))2t + V c

∞(t)W∞(t) log(1 + t)

+ W c
∞(t)V∞(t) log(1 + t) + V c

∞(t)V∞(t)W∞(t) log(1 + t)}
≤ c42(ε2 + ε2| log ε|+ ε2| log ε|2 + ε2+α| log ε|αt)}
≤ c43(ε2 + ε2| log ε|+ ε2| log ε|2 + ε

5
4 | log ε|α)

≤ c44ε
9
8 , ∀t ∈ [0, T1]. (4.1)
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Then we get (6.18) in [4].
On the other hand, noting Lemma 2.1 and Lemma 3.3, along x = xi(t, yi) we have

∣∣∣∣∣∣

n∑

j=1

(
n∑

k=1

Bijk(u)ρk(u) + νij(u)

)
wj

∣∣∣∣∣∣
≤

∑

j 6=k

|Qijk(u)vkwj |+
∑

j 6=i

|Qijj(u)vjwj |+ |(Qiii(u)−Qiii(uiei))viwi|

≤ c45(1 + t)−1{V c
∞(t)|wi|+ V c

∞(t)W c
∞(t)(1 + t)−1 + W c

∞(t)V∞(t) + V c
∞(t)V∞(t)|wi|}

≤ c46

{
|wi|ε1+( 3

4
+α) + ε2(1+( 3

4
+α)) + ε2+( 3

4
+α)| log ε|+ |wi|ε2+( 3

4
+α)| log ε|

}

≤ c47

{
|wi|ε

7
4
+α + ε

11
4

+α| log ε|
}

, ∀t ∈ [T1, t
∗). (4.2)

Moreover, similarly to (4.68)–(4.70) in [1], along x = xi(t, yi) we have

γiii(uiei) ≥ 1
2
ai

(
ψ̃i(yi)

)α
> 0, (4.3)

|γiii(u)− γiii(uiei)| ≤ c48ε
α+ 7

4 , ∀t ∈ [T1, t
∗) (4.4)

and ∣∣∣∣∣∣
∑

j 6=k

γijk(u)wjwk

∣∣∣∣∣∣
≤ c49

{
|wi|εα+ 7

4 + ε2(α+ 7
4)

}
, ∀t ∈ [T1, t

∗). (4.5)

Then, instead of (4.71) in [1] we have

dwi

dit
≥ 1

4
ai

(
ψ̃i(yi)

)α
εαw2

i − c50ε
11
4

+α| log ε|, ∀t ∈ [T1, t
∗). (4.6)

Hence, as in [1], noting (2.12), we have wi(t, xi(t, yi)) is strictly increasing function of
t for t ≥ T1; then we get (6.19) in [4].

Instead of (6.24) in [4] we have

Qi(t) ≤ Qi(T1) + C51(V∞(t) + W c
∞(t))

∫ t

T1

(1 + τ)−1Qi(τ)dτ, ∀t ∈ [T1, t
∗). (4.7)

The rest of the proof of Theorem 1.2 and Theorem 1.3 is the same as that of Theorem
1.4 and Theorem 1.5 in [4]. This finishes the proof of Theorem 1.2 and Theorem 1.3.
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