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Abstract In this paper, firstly we give an atomic decomposition of the local Hardy
spaces P[0 < p < 1) and their dual spaces, where the domain @ is exterior regular
in £™(n = 3). Then for given data f € h2(Q2), we discuss the inhomogeneous Dirichlet

problems:
{ bw=f ‘in:0} (1)
u=0  on di
where the operator L is uniformly elliptic. Also we obtain the estimation of Green
potential in the local Hardy spaces RE({1).
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0. Introduction

In [1], the authors brought forward the two questions. What are the possible notions
of HP(€) that generalize the usual Hardy spaces HP(R")? And in the context of the
relevant HP?(), can one utilize these spaces to partial differential equations. In [1-3],
the boundary of the domains £} in R™ are O or Lipschitz. In this paper, we only
request that the domain is exterior regular. Let’s restrict n = 3.

We say that a domain § is exterior regular (brev., 2 € ER(n)) as [4], if Q is a
bounded domain in R™, and there is a constant ¢ > 0,8y € (0, 1), such that for all cube
) centered at 94 with side-length less than or equal &, then there exists a subcube
Q¢ with side-length cI(@) and Q¢ C Qn (2)°.

We recall the local Hardy spaces AP(R™) for 0 < p < 1 in [3], AP(R") = {f €
I'(R™) : “sup |pe=f(z)| € LP(R™)}, where ¢ € CF°(R"), [ ¢(z)de = 1,¢, = t7"¢(t " x).

<t :
In [5], the author gives the atomic decomposition and their dual space in R™. Let
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hP()) denote the local Hardy spaces in @ as [1], i.e., RE(Q) = {f € DY) : dF €
HE(R™), st Flo= f}

Naturally, we may ask how about the atomic decompositions and their dual spaces
for hP(£2) for the general domains £1.

Definition 1 [Let the domain §@ be bounded and connected, 0 < p £ 1, and the
function a(z) € LE(Q), (then there exists a constant &y = bo(St) = 0),

(1) there exists a cube @ C £, such that supp a C Q, lallzziqy = (] Mkl S

(2) [qa(x)a“dz =0,|a] < [n(1/p — 1)], where [z] denotes the integer part of a real
number x;

(3) the side length of the eube [{Q) > bo;

(4) if 1(Q) < &g, then 4G C

(5) @ C Q, and I(Q) < dist(Q, I2) < 41(Q).
The function a(z) is called (p, I)-atom if a(x) satisfies (1) (2) (4) {brev. Q@ € 1).
The function a(z) is called (p,II)-atom if a(x) satisfies (1) (5), (brev. €} € Ir).
The function a{z) is called (p, III)-atom if alx) satisfies (1) (3), (brev. ¢ € 11T).

We have the following atomic decomposition theorem (See [1]):

Theorem 2 Let Q € ER(n),0 < p < 1, then f € hB(Q) iff the funclion f has the
atomic decompositon, {hat ts

flz}) = Z"J"Hlf +Z:‘lﬂﬂn +Z}L,r”ﬂ”;r in D'(£1)

where ay (respectively arr,arrr) is (p0)-atom (respectively (p, IT)-atom, (p,III)-atom),
and 3 |Ar]P 4+ T |AmlP + T Al < oo

For o € (0,20), let An(R™) denote the inhomogeneous Lipschitz spaces ([5] or see
it 1in the first section}, and let

C2(1) := {u is continuous function : 3F € A*(R"), s.t.u = Flal
B LR el Caff2) : ulan = 0}

We have the dual theorem as follows:

Theorem 3 Lei € ER(n),nfin+1) <p < la=n{l/p—1), we have the dual
theorem: (RE(S2))* = C§(82). :

Let L = —&;(ay;(x)d;) be uniformly elliptic operator, i.e. 34 > 0,z € {1, satishes
the following:

(1) aifx) = aji(z) € L*°(0) is real-valued and measurable function;

(2) A EP < ) ai(@)&do < A€, VE € R™.
1,7

We know that there is a Green function G(a,y) for uniformly elliptic operator in
the domain £ x Q\{(z,y) : z,y € O,z =y} (See [6]).

Definition 4 For a function f € h2(0), we say that v € L'(Q) is ¢ weak solution
of the equation Lu = f vanishing at the boundary 2 if it satisfies: |

f uL®dz = (f, ®)
i
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for every ® € CFR(R), such that L® € C(R), where the (.-} is in the dual sense as
theorem 3.

For s > 1, let Hé,"?{ﬂ} denote the usual Sobolev spaces on £,

Theorem 5 Let {1 € ER(n), there exists pyp = pp(A,n, Q) € (0, 1).

(1) If p satisfies po < p < 1, then for every [ € hP(), the equation Lu = f has
a unique solulion w £ H&"‘gf{ﬂ} (in the sense of the definition 4). Moreover, there is a
constant C = Cn, A, 1), such that

el . gy < €l Fllnziays 1n+1/s' = 1/p

If f € Cg°(2), the solution has a Green formula
u(w) = [ 60 f @y (2)

(2) If p = 1, for every f € R1(), the equation Lu = f has o unigue solution
W E H[}'tlfﬁjlfl =t < nf(n—1)} (in the sense of the paper [6]). Mereover, the solution
v has the Green formula (2) for a.e. x € €1

The next part of this paper has three sections. In the first section we provide the
atomic decomposition of the local Hardy spaces and their dual theorem, in the second
section we discuss the inhomogeous Dirichlet problems, and the third section is about,
the estimations of Green potential.

1. Local Hardy Spaces and Their Dual Spaces on Domains

Before the proof of Theorem 2, we recall the atomic decomposition of the local
Hardy space in A",

Let 0 < p £ 1, a bounded and measurable funetion alz) supported on a cube
Q C R" is called a local p-atom ([5]) if [|a|| 2;gry < |@]*?1/7 and either (1) (@) > 1
or (2) {Q) =1 and [5a(z)zdz = 0 for all multi-indices o with |o] < [n(1/p-1)]. A
distribution f is in #P(R") iff there is a sequence {A;} € {* and local p-atoms a; such

%

that [ = E Ajaj. Here the infimum of the norms ||A;]|, taken over all possible atomic
J=1

decompositions, is comparable o the A norm of f.

[0 < o < 2, let Aa(R?) == {f € L®(R™) : [|(f (2 +) + fz—t) — 20 (2))/1t1]]eo <
oo}, Ifa > 2,f € Aq iff f € L and 8f/8z; € Aa—1(7 = 1,2,---n). The dual of
hF{R“} 15 -"E-Fz-{lfp—lj [[5”

When a bounded domain £2 in R£" is Lipschitz, E.M. Stein and other authors give
the atomic decompositon. Now we prove Theorem 2.

FProof of Theorem 2

“=" Given a distribution f € BP{Q), then there exists a distribution F € RP(R™),
such that F'lnp = f, and /' has an atomic decomposition:

F= ; hoAg(x) + sz.:apﬁ'p{s:}
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where Ag(z) is local p-atom with (@) < 1, Bp(z) is local p-atom with [(Q?) > 1, and

ST Aelf + > |ApP < oo
1 z

For the part of Z, we have several cases:

1
(1} If Q@ C Q,4Q N 89 = 0, then we know that Ag(z) is (p,I)-atom and @ €l m £2.

(2) If @ C ©2,4Q N 80 # B, then we know that Ag(x) is (p, IIT)-atom and @ €Il
in £2.

(3) If @ N §t = 0, there is nothing to do.

(4) Suppose @ N Q # @ and QM (£2)° # B. In this case, let {Qx} be the dyadic
cube decomposition of Whitney type in £2, i.e., Q@ = UpQs, @ NQY = 8 (il k # j), with
[(Qr) < dist(Qr, 8Q) < 4U(Q)-

Now we take the all {@r} with @ N Qg # 0, let Qr = Qr N1, then we have

o Ixa,AllzlQe M2
AQ(:I:}_ZE AT xa Alx) = ) Apar(z)

where ax(z) = [Ixg, Al |Qcl P x0, A=), Ak = lIxq, All2|Qx VP12, then [lax]l2 <
|@Qx ||} 2= 1P, suppag(x) € Qk, and by Holder inequality, we have

, B 2 1—p/f
S P = 3 ko, AR < (3 lixg, 418)" (S 1Qul) ™
Claim Y Qi <cClQl

QunQ#D
If Claim is true, we can casily prove the formula 3 [P < € < co.
Proof of Claim Let zg be the center of the cube Q. If zg € Q, let 25 € 90
with dist{zg, :[‘.::;;.) = dist(xg, &), we know that there exists y; € Q¢ N () for the cube
[} with @, N @ # 0, and we have

HQk) < dist(Qr, 89Q) < Crdist(yk, 89Q) < Colyr — zg| < eal(@Q)

So there exists a cube ¢ with the center z7; and the radius C'I{2), such that @, < Q"
If 2o & (©2)°, we can assume that zg & 90 (otherwise we obtain it with the same as
the case zg € 99Q), and we have I(Qk) ~ |yr — yil, where y, € 89 with |y — 33| =
dist(yx, d2), and then

e — vi| < lue — zql < e — 24| + 2 — gl < 2UQ)

As the same previous case, there exists a cube ' with the center 275 and the radius
C'I(Q), such that @ € Q'.

The proof of the claim is completed. And we can prove the case Bg as the case
Ag. The part “=" of Theorem 2 is proved.
“=" Let

flz) = E-:"-I‘-’?-I*PZAHEH +Z}LIIIC[-[[[ in D'(0)
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(1) We know that the sum } Arag and 3 Arrrarrr belong to hE(52).

(2) For the sum 3 Ajrapp, We can prove it with the methods of the “refelection”.
The detail is as the following:

Because @ € I1, ie. 1{Q) < dist(Q, Q) < 4l{Q), let x5 € 6 with dist(zg, dl) =
xq — x|, then |zg — x| = 1{Q). we construct a cube @' with the center zy and the
radius CI(Q) such that @ C @', and then I{Q) ~ I((}'). Because §} € ER(n), there
exists a cube ., with @, C (Q)° N Q' and (Q.) = c(Q). Now we construct functions
aplz).

19 For every number N € IV and N > 0, there exists a series of functions {¢.} C
C2°(B(0,1)) such that for all @ and § with ||, |8] < N([4]), we have e P (Y = Bog,
where f, g =0if a3 5, or =1 if o= 3.

MNow let W = [n(1/p — 1)}, and we define the function

ﬂ-&#{ﬂ:} = EIQ{-T} g Zb&q'.l&{{.'li — TQ. J;”[QED

which satisfies fa:;{:r:jﬂrﬁdx = 0,0 < |8 € N. We can take b, = [ag(zr)(x -
ro, ) 2de/(1(Q.))*T™. Then Suppa, C @' and

o < laglle + 3 [balligellzz < Cllagllz2 < CIQI27H7

oQ

< C|Q|4*~ 7. So, we have an atomic decomposition

1.e., we have

9] .
Fizr) = Zj-.,rﬂ} + Z)‘.j’j’j’ﬂj[[ + ZE;;E}'}' in D'()

where a77's are the function ag’s with respect to (p, II)-atoms.

The proof of Theorem 2 1s completed.

In order to prove Theorem 3, we firstly introduce the spaces Ag(a, §2) in [7].

Let € be a bounded Lipschitz domain in B®, & > 0, and P[a] denotes the set of all
palynomial with degrees < [a] , where [a] denotes the integer part of c. Now we define
a normed space as follows:

Moo, ) i= {f € L. ()t | Fllagiam < 00}

where ‘= sup inf =l f — gldx
| F Nl ag (e ermef’[alwl QLi" q|
| + sup |QI™ [ |fldz + [1fllsm (@) < 0
Qell &

When the domain §3 is Lipschitz and 0 < p < 1, we have the dual theorem
(RE())* = Agler, ), (a/n = 1/p — 1)([7]). With the same proof of [7], we have the
following dual theorem:

Lemma 6 Let € ER(n),0 <p <1, then (RE(2))* = Ag(e, Q) (e/n=1/p-1).

Lemma 7 LetQ € ER(n),n/(n+1) <p <1 and afn=1/p—1, then Ao(a,Q2) =
C&(Q). Moreover, we have (hE(Q))* = C§(£2).

R
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Proof of Lemma 7

Step 1: C§(Q) C Agle, ). Forany f € C&(0),z € 2, let 2’ € 80, s.t. dist(z, 82) =
|z — x'|, then if fo denotes |Q]~? f,;, f(x)dz, we have

10 |£(2)] < I£(=) = f(@)] < Clal®,

2 [|fllqay < oo

3°  sup |¢:9|“"'*“‘"1f |f = foldz < C,
QCh ]

4% If Q C 0 is l-cube, we have

Q=7 f@ F(@)ldz < |QI™*/z - o'|* < €

this can be obtained by |z — 2’| ~ I(@). By following the previous 1° — 4° it is easy to
prove Agle, £2) C CF(0Q).

Step 2: Ag(a,§2) C CF(92). For any f € Ag(e, ), we should prove the following
two claims:

Claim 1 For every = € 2, we have |f{z)| < ()T

Claim 2 For every x,y € Q, we have |f(z) - f(y)| < Clz — yl=.

If Claim 1 and Claim 2 are true, we can obtain f € CE(1).

Proof of Claim 1 Let (; be a Whitney cube of 2, because f € Aplex, £2), we have
|f.;3}.| = CUQ;)". Tor every = £ {1, there exists (5, such that x € @y, if let Q; = J; /10,
then :

1@ < 19() = oy +1Q)17 [ If1dy < C(2)°

Proof of Claim 2 It has several cases. For every z,y € @, let 25 = (x+y)/2,r =
|z~ .

Case 1 min(d(x),8(y)) > 12|z — y| = 12r. In this case, we have 40z, r), 4Q(y, ),
4Q(xp, 2r) C Q, because [Q[~2/"|Q| I |f = foldz < C, we have (Q = Q(z,7),Q; :=
2-1Q)

@) = fol <X \fa, = fayl € T @)°C < Cr®,
=1 i=l

Jl T
[f(2) = F = 1£(2) = fo@m] + | foter — fownl + [fows — Flu)]
< Cr™ + |f£§l[r,r] - f@[mn,i‘:-}l T J.-F{EEL'.*‘:I 3 f@fﬂ?ﬁri"}l <Cr®

Case 2 2|z —y| < min(§(x),4(y)). In this case, the cube € can be divided by the
number of 2" N cubes (here the number V is big enough), and we can prove it as prove
Case 1.

Case 3 6(x),6(y) < 2|z — y|. In this case, using Claim 1, we have -

|f(2) = f()] < Cé(2)* + Co(w)* < Cla — 9
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Case 4 &(z) < 2z —yl.8(y) > 2z —y| or 8(y) < 2r —y|, &(z) > 2|z — y|, we can
aseume the first case. Let x* € 312, such that S{x) = |z —=2*|, then

ly — 7| <y —al+ |z -2 = |y -2 <3|z —yl = 8(y) < 8lz—y|

So 2o — | < &(y) < 3|z — y|. Using Claim 1, we can easily prove this case.
By following Case 1 to Case 4, Claim 2 13 proved. So Lemma 7 is proved,

2. Inhomogeneous Dirichlet Problem

In this section, we discuss the inhomogeneous Dirichlet problems, 1.e. riven data
f € hP(0), we discuss the second elliptic equation as follows: ;

{Lu:f in £2
w=0 on @

where the operator L is uniformly elliptic as the introduction.
In order to prove Theorem 5, we can introduce another equivalent definition easily
proved as showed in the reference [6] as follows:

[ usdz=(5,6(9), V6@

We know when [ € C5°(€2), the previous equation has a unique solution u € H, (@)
which has a Green formula:

Mﬂ=LGmwﬁw@

If f € h?(Q), do we have the Green formulae? If it has, what's the meaning?

Proof of Theorem 5

When pg < p < 1, we prove Theorem 5 as follows:

19 The space C5°(€2) is dense in the spaces h2((2). The detail belongs to [7]-

90 For every f € C5(€2), the equation (1) has a unique solution u € Hy ().
Moreover, we should show that it has a Green representansion and the inequalities as
follows:

u(z) = -/;_EG[:J:,,y]f(y]ciy and |Jull g gy < Cllfllazia

In fact, because §2 € ER(n) C S = {2 is open set in R™ if exist two numbers
a(0 < e < 1) and rp > 0 such that |B, (o) N Q] = a|Be(zo)| for all g € M O0<r<
1}([8]). For every ¢ € C.(€2), by [6] [8], we know G(¢) € C§(Q) and [|G(@)lceny =
Cll@ll 1.+ 52y, then

l L uddz

So by the dual theorem, we obtain ”“”H;""{m < Ol fllpeiay-

= (£, G(#)}] < Iflre G (@) lcsimy < Clflnzlldlla-20ia)
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3" We should show that for every f € AZ(Q2), the equation (1) has a solution
u € HS‘S (£2) and

HE‘TJ = {G(tn :I'- f}
JJ"I-"“”H;r!r{ﬂ} = Cllgf”n':f[ﬂ}

By 1% we know that for every f € A2(Q),3{f.} C C5=(N), such that fe — f
m AP(S), and the inhomogencous Dirichlet equation Lu = f, has a unique weak
solution u; C H&‘SJ{HJ which satisfies the equation Lu, = fr, moreover, up(z) =
Jo Gz, y) fe(y)dy. If the number & is large enough, we have

fﬁ wdz = (fr, G(9)), ¥ € C (0

So there exists a function uw € & L"r[ﬂ] and a subsequence of {u;;j }, such that U, — U

i

in H&“r (€2) in the weak convergent sense (7 = o0). Letting § — oo, we have
| wdz= .00, Voo @

ell gty < 2C1 Fllazgey

[
If f = ) Ajej, we can easily prove u = G(f), this means
j=1

k
= [} (G Asaq
u(z) kiﬂj; (Aja;)
in the dual sense. Moreover, it is easy to prove that this solution is unique.
When p = 1, we show that he () C LY{D)). In fact, we can easily prove this assertion
by using the atomic decomposition. The rest part can be proved as [6].
Theorem 5 is completed.

3. Some Other Estimations

In [6] and [8], given f € L* (2)(s > n), the inhomogeneous Dirichlet problem has a
unigue solution u H&’E (£2), moreover, the solution u is Hélder continuous in £2. In this
section, we deduce the number s which satisfies nf2 < s < n/(2 - ap) here ay € (0, 1}
as Theorem 5, then we have the following theorems about the normed estimations:

Theorem 8 LetQe S0 < o < @y, 1/s = 2/n—afn. Given data f € L* (1), then
the wmhomogeneous Dirichlet problem (1) has a unigue solution u € HS 2 f1), moreover,
u € C§(Q), and

u(@) = | G(2,0)f()dy, 2.z €0
lulleg (o) < C(A,n, 9)l| fll oy
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Corollary 9 Let @ € ER(n),n/(n+ag) < p < 1,1/s = 1/p — 2/n, then the
operator G can be exfended from the spaces C§7(S2) to the spaces hE(£), moreover,
there exists a constant C = C(A, a,n, s, d)(d = diam(?)), such that

IG{F M et ey < CllFllnriey

Proof of Theorem 8 By Theorem 3, there are three cases that should be con-
sidered. :
Case 1: @ €1, 1e 4@ C £, we should show that for every f € L(£2), the following
is true

Q! j@ (GF)(x) - (Gf)qldz < CUQ)°

Let f = fi + f2, where fi = fxo-, fo = fxg-(Q* = 2Q), then
19  For the function fi, we have

@ [ en@iz<1ei [ [ 166wl e)lddz
=10 [ Wy [ 16Gy)lds

{2}
=coumar [ If@ra [ -yl

< Ol fllzoeyl @I7YUQ)E = CIRITY T (I fll pocay

20 For the function fo, any z,y € @, if set E; = [2—7'"'1@"-.‘23-{:}} N forj =1, by
[9], we have

Chla) = GRS [ 16(2) - G, I ()2

<COum) [ e aloo(le = oy = 2 )z
(G )

e AR e HO T

< Cl(@Q)™ |zg — 27" f(2)|dz

oo

< CHQ)™ S (HQ)Y™ [ If(2)lds

j=0

o0 1/s
< OUQ)™ P (2PUQN* BT ( | |ftz}|’dz)
=0 £

g 1fs
OGP [y seaal ( fE : |f{zl|’dz)

=0
< CUQ* ™| fll ()
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Case 2: € I, ie I@Q) < dist(Q, 80) < 41{Q).
1% As the proof of Case 1.1%, we can obtain

Q17" [ 16 < CIQE™= |l
2%  Because f2 € S, by [9], we have
G(z,y) < Cdist(x, Q)% |z — y|?~7—%0
So, if x € Q,y € Q\(2Q N ), we have .
Gz, y) < CHQ)Y™ |z — y|* "%

It is easy to prove

Tl ]@ (G2 ldz < CIQP™ Y| £l pecey

Case 3: Qe IIl, ie QCQ, and I(Q) = &, we have
@™ [ 6@z <o | [ 166y

= C(A\, )| Q! L f(a)ldz fn Iz — y[*"dy

< PRI HQ Y2 £l ooy

< C(IQUNRQIYH ™Y fll poyey Q| 22
So, by {(Q) > &y, we can obtain

|Q|_1J;E|fo:2:}|{i:n < OO\ 5,m, ) Fllw(ey (@) /=19

Because 1/s = 2/n — a/n, we obtain s > n/2 and G(f) € L°°(Q) with the Holder
imequality.

Combining with the three cases, Theorem 6 is completed.

Proof of Corollary 9 For every f € C§°(Q2), and ¢ € C5°(02), because Gz, y) =
G(y, %), by Theorem 8, we have

‘ | Gtnsds

S0, we get

= | r6(8)as

< Wl Gldlics (n £ Cllfllazlldllzegay

”G{f“!LaI{Q} < G”f“h?l:ﬁjl

For general f € h¥(02), we can also obtain it by using dense properties.
Finally, the anthors wish to thank his teachers Prof, Wang Shilei and Prof. Chen
Jiechen for their valuable suggestions and helps.
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