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Abstract In thiz note we obtain a new g priovi estimate for the very weak so-
lutions of p-Laplacian type equations with VMO coeflicients when p is close to 2, and
then prove that the very weak solutions of such equations are the usual wealk solutions,
Qur approach is based on the Hodge decomposition and the Lf-estimate for the cor-
responding linear equations. And this also provides a simpler proof for the results in
[1].
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1. Introduction

Let 1 < p < oo. We consider the very weak solutions of the quasilinear equation
div ((ADy - ﬂuj{—“_wi_ﬁlﬂu} =0 in R" (1.1)

where 4 = (Aii(z)nwn 15 2 Symmetric matrix with measurable coefficients satisfying
the uniform ellipticity condition

vIER < A)é - € < ujg)? (1.2)

for all £ € R™ and almost every z € R™ Here v > 1 is a constant and the dot denotes
the standard inner product of R™,

The equation ( 1.1) arises naturally in many different contexts. In the case p = n
the equation (1.1) Plays a key role in the theory of quasiconformal mappings. If 4 is
the identity matrix, then it reduces to the known p-harmonie equation. If p = 2, it is
a linear equation.

We recall the definition of the very weak solution for the equation (1.1).
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Definition 1.1 A function u € W,L‘;{R"],ma:{{l,p =1} <7 < p, i5 colled a very

weak solufion of the equation (1.1) if
G (ADw- Du)* =22 Ay . Dydz =0 (1.3)

for every 1 € CFE(R™).

We are concerned with the question whether the very weak solutions of the equation
(1.1) are the usual weak solutions, that is, whether the very weak solutions belong to the
Sobolev space Hf’llf- Generally speaking, the answer is not true even in the linear case
p =2 (see [2]}). However, there is still some hope when the coefficients in the equation
(1.1) satisfy certain nice condition as well as the uniformly ellipticity condition (1.2).
The case with discontinuous coefficients is much interesting. Therefore, we are keen on
considering the problem with the discontinuous coethcients. A natural weakness of the
case with smooth coefficients is to assume that the coefficients of the matrix A are of
vanishing mean oscillation (VMO).

We say that a locally integrable function f is of bounded mean oscillation (BMO)
if fp|f — feldy is uniformly bounded as B ranges over all balls in R®, here fp =
fefl(yldy = |B|™! [5 fly)dy denotes the integral mean over the ball B. If, in addition,
we require that these averages tend to zero uniformly as the radii tend to zero, we
say that f is of vanishing mean oscillation and denotes f € VMO, see [3]. Uniformly
contimuous functions and W"* functions are of vanishing mean oscillation. In general,
the functions of vanishing mean oscillation need not be continuous.

We state our main result as below,

Theorem 1.2 Suppose that Ay; € VMO, 4,7 = 1,---,n, safisfy the condition
(1.2). For every n,0 < 5 < 1, there 45 g positive number § = &(n,n,v, Ap) < 1 such
that every very weak solulion uw € Wﬁ,‘:, 1+n =71 <p, of the eguation (1.1) iz the usual
weak solution provided that |p — 2| < 6. Namely, u € Wlif and it satisfies the equality
(1.3). Here Ay denotes the VMO modulus of the coefficients A;,1,i=1,---,n.

When p = 2, we have

Corollary 1.3 Suppose that A; € VMO, 4,7 = 1,--- . n, satisfy the condition
(1.2). Then every very weak solution u € Wllf with m > 1 of equation

div{ADu) =10

1.2

lar

is the usual weok solution. Namely, u € and it satisfies

f ADuw - Dipdz = 0
Ru

for every ¥ € CF°(R").

However, the above result is not true even in the linear case if the coefficents
Ai(x),i,7 = 1,---,n are only bounded and measurable since Serrin provided a well-
known counter example more than thirty yvears ago ([2]). In the beginning of nineties,
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Iwaniec, Sbordone and Lewis were engaged in studying the very weak solutions of
p-Laplacian type equations and made great contributions. Motivated by their pioneer-
ing work [4] and [3], many mathematicians such as Giachetti, Leonetti, Schianchi and
Fiorenza, etc have generalized their results to much mare general cases (see [6], [7] and
[8]). However, all their results depend on the hypothesis that the Sobolev exponent
7 of the very weak solution is close to the natural Sobolev exponent p. The novelty
of our result is that » might be far away from p. But now we require the assumption
that p is close to 2. Even so, our problem is highly nonlinear when p #£ 2. It is still a
challenging problem for the arbitrary p > 1.

Our approach is based on the wellknown Hodge decomposition (See [4]) and the
powerful LP-estimate in the linear case (See 9]). Nevertheless, we need modify the
Hodge decomposition to fit our problem. The new feature in our proof is that we only
use the Hodge decomposition once and employ a result of the linear problem. In some
sense, we give a linearization proof for the nonlinear problem (1.1}). Compared with the
tricky proof in [1], our new proof is much shorter and more natural since we require that
the exponent p is quite close to 2. This assumnption somehow suggests that the results
In the linear case may be utilized. On the other hand, we would like to point out that
the trick in [1] works only for p-harmonic operator and does not work for the equation
(1.1) with variable coefficients. Another different case r > p has been discussed in [10].

In the following we use C1,Cy, Cy to denote the constants depending only on the
data 7,n,» and 44, C to denote the generic constants, which may change even in the
same line.

2. A Priori Estimates

In this section we will prove an important o priort estimate and then explain the
ideas to prove Theorem 1.2, which has been clearly presented in [4].

Since the matrix A(z) for almost every © € R" is symmetric and positive defi-
nite, there exists a symmetric, positive definite matrix G(z) such that A(x) = G(z)2
Recalling the condition (1.2), we have, for every £ € R™ and almost every z € R™,

2] < [G(z)e] < v (2.1)
And now, the equation (1.1) reads
- div (|GDulP"24Dw) =0 in R" (2.2)

First we slightly modify the Hodge decompaosition (Theorem 3 in [4]) to suit our
case,

Theorem 2.1 Let the matriz G(x) for almost every = € R™ be defined as above
and £} be o regular domain in R™ (See [ﬂll} Letr > 1and -1 < e < r—1. Then for EvETY
w e WL}'T{HL there erist @ € Wﬂl‘r"{':l“ () and a divergence free H Lri{l+e) g R™)
such that

|G(2) V(@) *Vu(z) = Veols) + H(z) (2.3)
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and
[H |l p1 e = Celf2mv) el [Vl o ey (2.4)

We are going to prove this theorem in next section.
Next we recall a result of the linear problem (See [9]). Let By denote a ball with
radius B > 0 in R™ and f € L9 By, R™),q > 1. Consider the Dirichlet problem

{ div (ADw) = div f

@ € W% (Bpg) (&h

where 4 = A{x) is the matrix defined as above.
Theorem 2.2  The Dirichlet problem (2.5) has o wnigue solution and moreover,
there exists a constant C = C(n,q, v, R, Ag) such that

IVollg.8a = ClifllgBa (2.6)

Here Ay denotes the VMO modulus of the matriz A.

From the proof of Theorem 2.2 in [9], we find that the constant C may 1::1: indeper-
dent of the radius Rif 0 < E < 1.

An examination of [4] reveals that all results in [4] are based on its Theorem 3.1
Tnstead of rewriting all the results in [4], we prove Theorem 2.3 for the equation (2.2)
in details when p is close to 2. This theorem is a counterpart of Theorem 5.1 in [4] in
our case.

With the help of the above theorems, we are ready to prove Theorem 2.3 where a
new a priori estimate is provided.

Theorem 2.3 Let0D <5 <1and0 < R <1. Suppose that w € Wy L' (Bg),1+5 <
r < p, 45 o very weak solution of the nonhomogeneous equation

div (|G(g + Yw)P~2A(g + Vuw)) = div h (2.7)

where g € L™(Bp, R") and h € LT/\r=1)(Bg, R™) are the wector functions and the
matrices A = A(z) and G = G(z) are defined as above. Then there emist positive
numbers § = 8(n,n, v, | Alla) € n and C = C(n,n, v, [|Allg) such that

I19wllr,5, < Cllglas + IRI7E0 5.) (2.8)

provided that
p—-2l<é (2.9)

Before proving Theorem 2.3, we point out that all the constants involved in Theorem
9.1 and Theorem 2.2 are independent of the radius R. This fact is clear by rescaling,
Proof of Theorem 2.3 First we restrict p such that

1+%i1+ﬂ£¥£p£2+g (2.10)
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Hence - 54
< ]

14

n -
i o :

By using Theorem 2.1 with ¢ = p ~ 2, we obtain ¢ € W2"/®"(Bp) and H ¢
L™/P=1(Br R") such that

|GV *Vw = Ve+ H (2.12)
and
NH s p(p—13 < Calp — 2|[| V|2 (2.13)

Here C) = C(n,n,v) is determined by the formula in [4] and the inequality (2.11).
It follows from (2.7) that

div []G{?w][ﬁf'zfl[?w]] = div (|G(Vw)[P2A(Vw) — |G(g + Vw)P~2A(g + Vw) + h).
In view of (2.12), it follows that
div(AVy) = div(GF — AH + &)
where _
F =|G(Vw)P*G(Vuw) - |Glg + Vu)P~2G(g + V)
Invoking Theroem 2.2 with g = r/(p — 1) we have
I¥ellrip—1) < Calll Fll-pip—1y + I Wl pp—1y + Bl pp-1y) fE.ldjl.

Here Cy = C(n,n,v,||4|l) is determined by the estimate in [9] and the inequality
(2.11). First we estimate IE || pp—1y-

When p > 2, we observe

P2 = [nlF=2n] < CUEP2 + |nP=2)|¢ — ]

and obtain

|F| < C(IVwlP~ + [Vw + g[F~?)|g] < C(|Fw]P~2 + g~ 2)]g]
By Holder inequality and Young’s inequality we estimate
IFNlrsip-1y € C3lllIVo*~ gl pep—1) + Mgl v pip—13)
< Ca(IVwl2?llgll- + llglE~)
p—2 2y P =

< P P
= (3 —e] ”?er + Cﬁp iy ”EIHT
< Galp - 2|[|Vw|2™ + pCsllgl2 (2.15)

When 1 < p {.2,_ we note

16172 ~ |n|P=29) < €| — p|P~?
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and obtain
|F| £ Clg~!

Therefore,
IF s pip—1) < Callgll2™’ (2.16)

Using (2.12), (2.13), (2.14) together with (2.15) or (2.16), we have
NGV wlP*Vwll 1y <NVl o1y + 1 Hllrfrp-1)
SCo|F |l pip-1y + (Co + D H s prp—1y + Callbll pp—1y
<(C2 + 1){C1 + Cs)lp - 2|IVwl2™" + pCaCaflgl|2~
+ Collhllr -1y (2.17)

Recalling {2.1) and (2.10) we have
IGVw =2V wllypry 2 Coll Va2 (2.18)

where Cp = C'in, v).
Combining (2.17) with {2.18), we obtain (2.8) provided that

Co
(Cz + 1)(C1 + C3)

lp—2| <

This completes the proof of Theorem 2.3.

Based on this crucial theorem, Theorem 1.2 will follows. Roughly speaking, we first
let v = v =145 > 1. Next we localize the equation (1.1) to obtain another equation
for the localized solution w = pfu € Hﬂ]l’”{BR} with g = p/(p — 1), where g = p(z) is
a cutoff function in any pair (B, Br) (See [4,10]). Then we apply the estimate (2.8)
to deduce a weak Reverse Holder inequality

Lfr U i/ 1/1
{ J‘Fﬂl") - (f |qu) e (f |vur)
Bnl‘fi R Br Er

where & = max{l,p — 1,nr/(n+7)} < r. Now Using the Gehring’s Lemma (See [11])
we know that there exists a constant £ > 0 such that u € Hﬂz’:z, where r4+ = r; + &.
And we note that ¢ depends only on the data n,n,v, Ay, not on r. If rg > p, we
have done. If v < p, we set r = ry and do the same procedure again to get another
ra=T1-+& =71+ 2. S0 we improve the Sobolev exponent of the solution of u by 2e.
After finitely many steps, we eventually improve its Sobolov exponent to p. Therefore,
we finish the proof of Theorem 1.2. We refer readers to [4] for details.
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3. The Proof of Theorem 2.1

Theorem 2.1 is the direct conclusion of Theorem 3.1 and Corollary 3.2. We just
need to choose the following operator T° to be the operator Hy defined in Section 2 of

[4].

Let 1 < vy < rg. If f(z) € L"(R"™) for some r € (r1,7;), then we define

S @) i

SEAC ( 17l

In view of (2.1}, we have

HE

< max{plr/m=D12 -rjrayy F @) (3.1)

If1lE
Theorem 3.1 Lel T : L* — L* be a bounded linear operator for all s £ fri, o).
For every v € (r1,re) and rfra =1 <2 < v/r; — 1, the estimate

1TS*(f) = ST )lrpqrrey < Crlelll £

holds for each f & LT, where

|(5°F)(2)| < max{r™*/2, 1512}

_ 2r(re — 71 ) max{pA7/m-1N2 u':l_Tfrﬂfﬁ} sup ||T

(r=ri)(ra —r) ry sy

c

Corollary 3.2 Under the hypotheses stated above, if moreover Tf = 0, then

ITUGHE F)lleparey € CrlelllFI1EFe

For the convenience of the readers and the completeness of this paper, we give a
complete proof of Theorem 3.1, which is basically a copy of the proof of Theorem 4 in
[4].

Proof of Theorem 3.1

Denote ( \( }

it g B
s 2
ﬁ' TE[TE R ?"1} {3 :I

By using (3.1) we easily prove that
HTSE{f] 3 SEI:TJF}”II.-'[I+.;} = ”TSEI:f]Hr;'IZ1+-£] + ||‘5'E[Tf}“r,-"fl--ﬁ}
< max{pl7/r1-1H? r""lil_T.'IFHNE}[”T”rI.IrI:l-I-EJ”f”?' + |71 |L.f i)
< 2max{p M Sy sup 1Tl il < Crellf]

T mESTy

if || = rp. So we only need to consider the case |¢| < 7p.
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Let g = r/{r—1) be the conjugate number of r. For each complex number w = u-+iv

in the strip

T ——

o T_H_E_; (3-3)
define

Gl W o
Fuf)o) = (O 1), (Quadie) = ('ﬁi’) oz) (3.4
Denote
P and . |
T Ly L R

Recalling (2.1) and (3.3), we have
(B ) < NFITTHGHT £l < max{pl/mi—1/2 (1=r/ra)f2 | g||=ru| ¢ L+ru

and
|Qugl = llgl|g*lg]*

So Ry : LT(RY) — L™= (RN) and Qy : LY(RY) — L= (RN} satisfy
1R fllr < max{pA/m=1/2 3, 0=rfra)f2y) ey 1Quwgllg. = llgllq (3.5)

Then we observe that
sw) = [ (TRuf)&) ~ (ReTf)(2))  Qug(a)ia (3.6)

15 a holomorphic on the strip defiend in (3.3). Using Hélder inequality and (3.4) we
have

1¢(w)] < | TRwf — RuT Sl | Quwtlle,
< max {2 Q2 Pl T gl
< 2max {2 =02 sup Tl

TLEEST)

Since ¢(0) = 0, we use Schwarz’s lemma in the disk {w; |w| < p}, where p is defined
in (3.2} to obtain

1wl

[$(w)] < 2= max{pC/m=1/2 S=rfrd2y sup 7)1 gl
” T EFETE
In particular, since |z] < rp, we have
£
¢ o Celelll £ll«llgllq
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Noting that 5(f) = R7(f) and [Qegll/(r—1-c) = llglly, we find

ITS() = S @l s = sup. S (@RuD@) — (RuTF)(&)) - Bugla)da

glla=

= sup

"5'"-?=1 Ly

6 (2)| < clelisi

Therefore, we complete the proof of Theorem 3.1,
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