J. Partial Diff. Eqs. 14(2001), 31-42
©@International Academic Publishers Vol.14, No.l

e =~

THE BOUNDARY REGULARITY OF PSEUDO-HOLOMORFPHIC
DISKS®

Hu Xinmin
(Department of Mathematics, Zhongshan University, Guangzhou 510275, China)
(Received Oct. 8, 1999)

Abstract In this paper we will prove the continuity, the C*-regularity after de-
forming suitably the domain, and the Hélder continnity, of the weakly pseudo-holomorphic
disk with its boundary in a singular totally-real subvariety with only corners as its sin-
gularites.
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1. Introduction

Since M. Gromov introduced pseudo-holomorphic curves into the symplectic ge-
ometry in 1985 [1], the application of pseudo-holomorphic curves to the symplectic
peometry has become a main tool in the study of symplectic manifolds and achieved
ereat suceess. Pseudo-holomorphic disks play a great role in the study of lagrangian
submanifelds in a symplectic manifold [2-4].

The regularity of pseudo-holomorphic curves at the interior points was established
by several authors [1,5,6] and the boundary regularity was established by Ye[5] with a
slightly different setting and by Sikorav[6] who assumed the continuity of those curves
in the smooth boundary case. M. Gromov suggested to deal with the regularity and the
gradient estimates at the boundary points by making a reflection across the boundary
and reducing this problem to the interior point case. The reflection argument indeed
was carried out by Pansu[7] under the assumptions which require that the boundary
manifold be real analytic and the almost complex structure be integrable near the
boundary manifold.

In many applications one needs the corresponding regularity results for the pseudo-
holomorphic disks with their boundaries in a totally-real subvariety with corners, for
examples, such as in defining Floer homology for the Lagrangian intersections and
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in defining the invariants of Gromov-Witten type [8,9] in above situations, in both
cases one needs the compactness of the moduli spaces of pseudo-holomorphic disks,
s0 one has to deal with the bubblings of a family of weakly pseudo-holomorphic disks
at the corners. We cannot expect C''-regularity at the corners because the pseudo-
holomorphic maps are conformal, but we can change the domain suitably and obtain
the C*-regularity for any positive integer k and discuss the bubblings at the corners
under the C* topology.

Let (M, J) be a closed oriented smooth almost complex manifold of dimension 2n
with a smooth almost complex structure J. On M a Riemannian metric <, > is assumed
and J is compatible with this metric in the sense that J is an isometry. Let L be a
totally-real submanifold which may have corner points as its singular points. Let D?
denote the open unit disk in the complex plane with the standard complex structure.

First we give a formulation of the weakly pseudo-holomorphic disks with the nat-
ural boundary conditions. Let w € W12(D? D% M, L) be smooth away from the
singularities, and X € W12(D?2, 8D%, w*(TM),v*(TL)) N L™ be a vector field along
# with its boundary values tangent to L at the smooth points. It is easy to see that
< fufdr, X >= 1, where v denotes the inward unit vector normal o A2 and X a vec-
tor tangent to L at the smooth point of L. So by differentiating the Cauchy-Riemann
equations, we hawve

2 2
ggi e E:‘ o J[u}— — VyJ [u}@ =0
Integrating this equality by pﬂ.rts gives ii] in following definition.

Definition 1 We call map v € WH2(D?, 8D% M, L) a weakly pseudo-holomorphic

disk with its boundary in L of

L dru = ? + J{u) i_:: 0 (1)
a.e. on D?;
i) du 8¢ du e : e
ffm{é‘s’ AR at}Jr.[fm{?“r(“}E‘ i
(VI (w) e ¢) = 0 2

for any W2 N L vector field ¢ along u with its boundary values tangential to L a.e..
Here that u(8D?) is included in L means the L*-trace of u is included in L, where (s,1)
denotes the coordinate variable on D2,

Beaders may compare the definition of the weakly pseudo-holomorphic disk in this
paper with Ye's definition of weakly pseudo-holomorphic disks, especially the normal
boundary conditions in Ye [5].

MNow we give the exact meaning of the angles at the corner points.

Definition 2 Let M be a smooth almost complex manifold with o smooth almost
complex structure J(-) and L be a totally-real subvaricty with respect to J(-). The angle
ot p € L 1s said fo be a if the followings hold:
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1) L—{p} nearp consists of two smooth totally-real submanifolds Ly, Lz of M which
can be extended smoothly across p to be totally-real submanifolds near p;
2) there exits o coordinale system (D% W) near p of M so that

I(p) = D,‘:I:’[Llj = {{:‘-'..'11“-,3:,1} <z <dd= 11---,?1.]- i o O
T (Lg) = {(x) + izitane, - -, Tn +izatana) @ (x1,--,3,) € U(Ly)}

for some & > 0.

3 (TP Ty =%

We call such o coordinate system o canonical one.

Remark In this definition, it is restrictive for L at the corner points to form
an angle o, however, since our aim is to apply the results in this paper to symplectic
manifolds, it should be reasonable to require the angle at the corner points as given
in above definition because we can deform L to form the angle as required near the
corner points by using diffeomorphisms on M, then choose the tamed almost complex
structure.

Now our main theorems are

Theorem 1 The weakly pseudo-holomorphic disks defined above are continuous
on D2,

Theorem 2 Let w be a weakly pseudo-holomorphic disk in (M, L), and x € ap2.
If u(x) is o singular point of L, and the angle ot u(x) of L is ?, here m,l are two
coprime positive integers., Then under suitable coordinate charts {Dﬁ'} (0), ), (D", ®)

around x and u(z) the map (z) = u(z') is smooth on D{':{;a{ﬂ} for small § > 0, where
D denotes the open unit ball in B*™ and DF(0) = {z € C: |z| < 7,Im(z) 2 0 for a

real number 7 > 0,2 € EIH{D] ={z=recC:0<r<dand0 <8< %}-

As a corollary of Theorem 2, we have

Theorem 3 The weakly pseudo-holomorphic disks defined above are locally Haolder
continwous on D?.

We will give some applications of these results to discussing the Gromov’s compact-
ness of the moduli space of the weakly pseudo-holomorphic disks in a furthercoming
paper.

In this paper DT, DT, D:,I; ; denote open subsets in the complex plane, and we take
all constants ¢; > 0.

2. The Proofs of the Main Theorems

The interior regularity results follow from the regularity theory for the standard
elliptic systems. So we only discuss the boundary regularity, and for the contimuity
we will follow the discussion of free boundary problems, especially the Jost’s argument
[10]. First we assume M is closed for simplicity in the following, otherwise we assume
the Riemannian metric on M has bounded geometry.
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It 15 well-known that the continuity of a minimal surface follows the famous mono-
tonicity lemma, so we just give the staternent of this lemma and outline its proof, we
refer the details to Jost’s paper [10].

Lemma 1 Let u € WH5(D? M) be a weakly pseudo-holomorphic disk with its
boundary in L, and q € M. Then there exist p(g) > 0 and constant Cy such that

a(p1) i e (ﬂz}

:u.‘:"l}

1 £

for 0 < p1 < pp < plg). Where olp) = (14 C1p)e*® and I(g,p) = ffill-!mllg'
D

o (@{EL@}

Fu
Proof First, we define a cutoff function as follows:

Let 1 : R' — R! be a smooth function satisfying
; : 1 :
i) wt)=0,ift > L) =1ift < 5 and (1) € [0, 1];
i) w/(t) < 0.
Case i) If p{g) = dig, L) > 0, then we define the test vector field as

(dfu{?q}) bl

), where ¥(-) is defined below.

v(z) = eXPy 14

where 0 < p < p(g).
Case il) If ¢ € L and p(q) = d(q, L—{singular points of L}) = 0, then we define

the test vector field as i
o) e (Wj L0(2)

where T(z) = E:{p If ] TLlw(2)) = Prytut)hutz) D:{PT;[u{z}}Lq and 0 < p < p(q).
this case exp_; } » the inverse exp map in L with the induced metric from M is well-
defined near g and wr(u(z)) is the projection of u(z) to L along the shortest geodesic
near ¢, Fr; (u(2))u(;) is the parallel transport from =y (u(z)) to u(z) along the shortest
geodesic between these two points in M near g.

Case iii) If ¢ is a singular point of L, as we have assumed that in small neighbor-
hood B(q, p(g)) of g in M there are no other singular points of I for some olg) = 0.
Here B(q, p) denotes the geodesic ball centered at ¢ with radius p. We assume L is a
topological manifold and L is part of the union of two smooth totally-real manifolds,
say Ly and Ly, which intersect at ¢ with angle #

In this case we define the test vector field as

o) = v (LD gy

where

Wiz) =— EEP:,:L} 4

d* (ulz). L1) | ~1
d?(u(z), L) + d2(u(z), La) Fﬂ:{ﬁ{':]]‘.ﬂ{z)[Expn{u(zjj § = EXPy rafulz)) q
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d*(u(z), Ly) 1 =
d2(u(z), L) + d?(u(z), La) Prs (2 sl Py u2)) Py () 9

-+

where exp H:.ea-*-:pt mifulz)) denote the inverse exponential maps of M at u{z) and of
L; at mi(u(z)) respectively, and Py (yi.))u(z) denotes the parallel transport along the
shortest peodesic in the geodesic balls and m;(u(z)) denotes the projection of u(z) to
I; along the shortest geodesic in the geodesic balls.

In iii} v{z) is not well-defined at those points which are mappr:"d ko the singular
points of L, but we can assume that v(z) is well-defined almost everywhere on B(g, p)
along the boundary of the disk near u(z) € Ly N La, otherwise we can define the test
vector field as in the boundaryless case.

We only consider the case iii), and all other cases can be easily done similarly.
We follow the arpument used by Jost [10] to establish the monotonicity formula for the
weakly pseudo-holomorphie disks near the corners. Once we have defined the test vector
feld along w(z), we just need the estimates from the standard Jacobi field estimates
and the conformality of the weakly pseudo-holomorphic to prove above monotonicity
formula.

By the standard Jacobi field estimates in Jost [10], we have that

!Scxp_[] 0 4 Ei'u“ du ||
= — || < cad?(uls, = 3
0t g, || S d’lulst).0) | 5 (3)
IEJTE‘3'1.13"_.:l nd  du Ju
i, < 3 i p
ot =+ at e LEE‘{ I::JJ:‘!'l:'!""':lI:I:l "?:I Gt {1}
The above estimates also hold for exp; ! for i = 1,2. And from Jost [10] we have
ﬂP L 1wl s s
[T (ulsthulst) i <esdlalsd) 4;'}[ ! (5)
I ds
a Ui S i s,
[P MLcterntet] < gygtus, 4,0 H% (©
And from the Gauss lemma, we have
& d®(uls,t), L1) 1 c';‘u
< ¢4 (7)
8s d*(u(s,t), L1) + d?(u(s,t), L1) d{u(s t),q)

where ¢g, ¢3, ¢4 are constants depending only on the geometry of M defined by the given

metric on M.
By (3) and (4), we have

—1 T
HFJ{PH{I:U{H::I}Q E ﬂe:"-p;'ll_[:-{ﬂ':ﬁ,t:]}q
ds ds

< cxd?(

(8)
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From (8), we have

< egd*(u(s, 1), q) (9)

R |
G 4 W H (ulst)) 4

And by the identity ||exp " . ¢|| = d(uls,t), q), we have

TERY
lv(2)ll £ crd{u(s, 1), q) (10)
By the conformality of u we have the following inequality
Ju u
(52 expl 0 + (50 0P o @) < 34%(uls,8), @)l dul? (11)

From (2) and (3)-(11), we have

[ et <= 3 [ oty (FL2RL) 2 giugs, 0,0
1

~ao [[ Nawppryr (R22:2) . 2 d*u(s,),)
+eq [ Haul (FH2D) aags,0,)

Recall the definiton of I{g, p) and I'(q,p) = —}%[[”dﬂ“gﬁ?i - d{u(s, 1), q), here all
constants ¢; > 0 depend only on the geometry of M and L, hence

21(p) — pI'(p) < colpI(p) + p*I'(p)) (12)

Now integrating (12) gives

ﬂ'{pl I{ ::I{: ‘:".(.I{:'E} I[.ﬂz] {13}
o 2

for any 0 < p1 < p2 < p(q).

Now the proof of Theorem 1 follows from the monotonicity formula and we omit
its proof and refer readers to Jost [10] since it is well-known that the continuity of a
minimal surface follows from monotonicity formula.

Let p > 2 be an integer, let DY be the upper part of D? and 8D denote (—1,1).

Lemma 2 There erists a continuous linear operatfor

R:IMDT.C™ = B (ph.Cc™)

such that 8¢ R = id. Here HYP(D;C™) = {u € WI#(D+;,C™) : wulsp+ C B C
R + iR" = C™}. § denotes the standard Cauchy-Riemann operator.
Proof First we define operator

(Pg)lz Eu 1 ,/]_J;H

i g }3] d¢dé (14)
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for g € L#(D*;C™) and z € D*.
Note that the second term of the right-hand side of (14) is holomorphic in the

generalized sense and d(Pg)(z) = g(z) in LRI €T,
We prove that the second term of (14)

1 E:
(hg)(z) = 52 ffm_ g(_(fld{d{
maps LP( DT, C") to W'l‘?’{ﬂ"" e 2.

Vs (i seraead)” (i ] |€—13|¢"!Ed‘f)% (15)

L. & :
where — + = = 1,p > 0,¢ > 0 integers.
q

B
Because g < 2, the second factor in the right-hand side of (15) is bounded above by

(G=m0)

Hence Qg is in IP{DT; C™).
i) E’[Ej
9:(@19)(2) = " 2ami f./;:w - z)? Tkt

We estimate L
1 =% q
(-[fm i El?‘?d{d&)
for 1 < g <2, zED"’

Now let G, Gp denote the half-disks centered at Rez of radius —Im:—: and 2p with

p = 1 respectively.

S o s T

2
=g f 1; T],;, crdr < 72297 (Tmz)* ™™ (16)
. ff € - |Eqr et < (ma™ ff e
= (Imz) ™% ﬂ—ﬂ?-— = g{lmzji_gq (17)

Because 1 < g < 2,

.00 < o= ([ lot@)1Fagag (i [ |£——‘:~|3—gd£d§>% (18)

where % + é = 1. By (16), (17) and (18) we have

am IBleg[z]Iszdﬁ)% < C(@)lgllz»
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for some constant C{q) which depends only on g.

For the proof of the first term of the right-hand side of (14) it is in Wir(D+, C™).
We refer it to Sectiom 9 in Chapter 1 [11].

It is easy to see that Pg|ap+ C H™.

Now we assume the angles at the corner points are all rational in the rest of thus
paper.

Lemma 3  Let u be o weakly pseudo-holomorphic disk in (M, L). Then the sel

S={ze D? : u(z) is a singular point of L}

i3 finite.

Proof Since it is well-known that there is no cluster point of 5§ in the interior part
of 1% and in the smooth boundary case, this follows from the discussion of Sikorav([6],
and since we have proved the continuity of the pseudo-holomorphic disks, we only deal
with the corner case.

Let z € 8D? and u(z) be a singular point of L.

Now we choose the canonical coordinate charts near z and u(z) we still denote the
map obtained from u under these coordinate transformations by u. Furthermore we
assume that the almost complex structure J{-) is obtained from J(-) on M by pushing
forward to D?" satisfying J(0) = i, the standard complex structure on R*™ = C™. With
these understood, the corresponding Cauchy-Riemann equation can be rewritten as

du+ q(z)0u =0

i % a
where ¢(z) = (i + J(u(2)))"1(i - J(u(z))) and & = %(% —im). We note that
g(0) =0 and g € WM(DT)n C° [(F) since we have proven that u is continuous on
D2,
Now we define a map A : WLP(D*) — LP.p > 2 simply by setting

A(z)w(z) = —q(z) 0w

Ten ||A[z]w(z}||”w;-} < ||‘i'[3m;,m|:5;r] ‘ Ei’w“wi.p{gjj = Slﬂ“'w”wl.nw;j (19)
for & = 0.
Now let p > 2 we define

HY? = {w e WP(D*;C") : Im(w|sp+) = 0}

with the norm |lw||gre = |w|lwre(p+y + lw(0)||. Then H'? is a Banach space.

Define =
@m{ﬁ,ﬂ}:HI*PwﬂLPKR"

w — (Gw, w(0))
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Then @ is a bounded subjective linear map by Lemma 2, now we define a perturbation

of & by setting .
. HLP — [A(DT;C") x A"
& = (dw + Alz)w, Bw) -

Since u is continuous, by (19) 3| D is onto when & > 0 is small encugh.
Hence we have n complex vectors ni,t = 1,--+, 7, which are the solutions of the
following systems 5
olz) + Alz)nlz) =0
Imn{z) =0, z€ aDy
n(0) =&

on DF and where e; = (0,---,0,1,0,---,0) whose components are zero except the i-th
one.

et © be the matrix whose columns consist of nts. By the construction, ® has the
following properties e

i) © is continuous on Dy ;

ii) © is an isomorphism if § 15 qufficiently small;

i) @|—s,) is @ real matrix;

iv) 00 + A(z)@ =0.

Let u(z) = ©(z)£(z), then we have ¢ = 0 and £ satisfies the same boundary
conditions as w(z) does due to iii) and £ is continuous, 5o ¢ has only finitely many zeros
on D;. Hence # maps only finitely many points on D:s'_ to the same corner point of L.
Because we assume that L has only finitely many corners, the lemma is proved.

Tomma d FDebwe Wii(Dr bt .C™ R") (i (F) and p > 2. Then

lullyrsoty < Cunllldullzegpry + Nl oo+ (20)
holds for some constant C1y independent of u. Consequently, we have

uﬂﬂwlmipﬂﬂj} < Ci2 (HEHHLF{DH.JJ;'} =4 ““"L:r{ﬂﬂﬂflj (21]

holds for some constant Cha independent of v and 0 < & < 1.
Proof We assume that Ju € L¥ and u € LP, otherwise the inequality (20) is
trivial. By Lemma 2 we have w € W'¥ (D*,8D%;C™, R") such that

dw = du
and |lwllwieip+y S GLU“E“”LP{Eﬂ
for some constant Cyp independent of u.

Now ¢ = u — w is continuous on D+ and 8d = 0, so ¢ is smooth on D+ and

éllwrrip+y = CralléllLecp+)

for some constant Cpy independent of ¢. Therefore
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luflwregpey < Call|Oull pagpey + el opo+y)

for some constant C); (we still denote it by ;) independent of u. The proof of (21)
easily follows from (20).
Now we give the proof of Theorem 2. Since the regularity of the weakly pseudo-

holomorphic disk has been established in the smooth case by Sikarov [6], we only deal
with the corner case.

Let u be a weakly pseudo-holomorphic disk in (M, L) and z € 8D% and u(z;) be a
corner point of L and assume the ang_le at wlzg) of L 15 =7 By Lemma 3 we can choose

a canonical coordinate charts (D7, ¢) and (D?", ®) around zp and w(zp) respectively
such that » maps no other point in D7 to the singular point of L except (.

Let i(z) = u(z')

where z € Dﬂ.ﬁ = {z eC: |z £6,0< Arg(z) < %}, then @ is J-holomorphic on r

D;:i; 5 Since we can obtain the C™-regularity of u away from those points which are
mapped to the singular points of L, we assume this fact.

E— 1)
First we extend @ by reflection inductively to Ek (5= {z e C: |zl <46, F% <
Arg(z) < T} 11 off S BT
And we set i(s,1) = 4(z) = (fiy + ifipa1, -, n + fioyn)
where z =5+ it € Dl g Now for s+ it € DE—.E;ﬁ we define
2mar 2w . 2
thr}":‘ﬁ':u -'F'} ={?-11f.$lr: fj COS T T ﬁ*n-l-l{Sr: Er} sin i Es i{ul('ﬁ'lr:- f';] = i
- T . 2w L . dmw
— finge1(8, ') cos E itn(s', ') cos E 4 fign (s ) sin E
s g . 2mT 2mw
+ (i[5, ]smT — iig,(s’, ') cos 7 I}
2 27 2 2
where s = scos _;_r + tsin —; t' = scos TW + t sin TT It is easy to calculate that

giﬁ +i§i =(5(ﬂ1 ;‘:;ﬁﬂ+1:| cos 2 ;‘ D _ ol ;;iﬂnﬂ} cog 2 ;|' 1)m
% i(ﬂ{ul ;;’uﬂﬂj i 2(m ;— ) I,E:":"{ul —a;un_ﬂ} s 2(m ;I— 1]1#)F
- B(unaﬁs’min} RE 2(m ;E— Lymad iﬁ‘{ﬂﬂ {;]-t’mgn} s M
i (5(%3—3“132;1} i 2(m -;- Dm I_B{u a—ﬂmgn} sin 2(m ;—1] )]
=7 (s, 1) (ms —El[m?- Lix + i 8in gont A ;_ l}ﬁ)
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where dul(z) = f(z) for z € Df,t-,&' Then # satisfies the following system:

e fs.9) (5,8) € D
TR 4 e, R — 2lm+1 2
f(s’1t“}~(cns(—m%-ﬂ+isin—(-ﬂ-}j—m1.) s+it € D,

Inductively, we extend & and f to the maps defined unﬁ_ respectively as above, we still

denote them by 4 and f. Since we have assumed the smoothness of & on D15 =10},

we have
Bii(s,t) = f for s+ite DY

In particular, we have #(s,0) € R® C R™ +iR* = L". Since # is continuous on ET;F,
by Lemma 4, we have

lilly ooy < Cullfllzoory + 1l Lagop))

for & small enough and some constant Ciy independent of & and f. By the definitions
of & and f, we have

”.ﬁ’“w'l?[ﬂ‘l‘ g = Gll(”f”[,?{j}"" 5 T ”“”mmﬂ }] '::EE}

By Lemma 5, & € W*?(Dy, ;) for any integer k > 0. Hence 4 15 smooth.

Lemma 5 Let p > 2 be a positive integer and v € W 2l[.D‘l L G N C‘U{D 4]
satisfy the following boundary conditions ot the corner

Hl[n,ﬁ] ER+ and ‘IJ!.|{ 5,0] CH_._ et T

and J(-) is & smooth almost complez structure on C* with J(0) = 1 and u 13 Smﬂath
away from 0. Then

lelwrno, , ) < Crallidrullze + llullze)

. i)
for some 0 < & < § and some constant Cy3. where S = 5 ( i + J{u)— ) ;
Proof By (20), we have

||HIEW1 P{D Wigq 1'|ID+ :I e Gl"]‘ (lau”LP[ﬂ I-'!g .I".-D]_ I8 j 2 ||t|!'||Lp|:ﬂ 14l II'I'DJ. [Eg})

for 0 < 6 < 6; < &. Note that % can be assumed to be smooth in D“él'\DI 6y DO
we have

(- T

leell ooy ey V1 sy ) {GH(”&I“”L”(F’H \D ) ¥ L2(D 15 \DT 1, )
]

ol prot,, A0t )
{_:Cld(”léjuﬁLP{DtE:EIHﬂI!i-ﬁE} + 1 - J{u}}||£‘mwti:hﬁ"ﬂ:"iﬁﬂj
l i

gt

+ el i
LF{'D]. 06y ‘I'rﬂ]_ I 52} LP{DI M6y 'II"EI s :I)‘




42 Hu Xinmin Vol.14

where Cyy4 is independent of © and since % is continuous on DEI; g and J{0) = ¢, we can
choose §) sufficiently small so that

bt | =

J..J;lﬁi

Chq - = J(2)] <
14 - [f2 (E:ldlm (”; ) =
Mow, let §5 tend to zero, so

o (o1,

) < 2C1a([10rullze + [lull »)

The proof of Theorem 3: Since i(z) = u(z') is smooth by Theorem 2 and ¢(z) = 21
15 Holder continuous on D;', Theorem 3 follows. Here the Holder component can be
precisely expressed in terms of the corresponding angles.
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