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Abstract In this article we prove that the following NLS it = toe —glulP o, g >
0,z ¢ > 0 with either Thirichlet or Robin boundary condition at @ = 0 is well-posed.
LP+! decay estimates, blow-up theorem and numerical results are also given.
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1. Introduction

Boundary value problems for important evolution equations often are called forced
problems. Often these problems have significant physical implications. For example,
in ionospheric modification experiments, one directs a radio frequency wave at the
jonosphere. At the reflection point of the wave, a sufficient level of electron plasma
waves is excited to make the nonlinear behavior important [1,2]. This may be described
by the NLS equation with the eubic nonlinear term and a nonlinear boundary condition

{ iqﬁ = *?1::': :|: Elqliq, Ert = R+
qlz,0) = h(z),q(0,t) = g{t)

where Rh(z) decays for large ¢ and the given functions h(z), g(t) have appropriate
smoothness, and satisfy the necessary compatibility conditions. For (1.1), global ex-
istence, well-posedness and blow-up result were established when h € H 20,00),Q €
C?[0, 0o [3,4].

In this paper, we study the following NLS with a general nonlinear term — glulP u
forp> 1,9 >0

(1.1)

{im = upp — glulP~lu, x,1€ R* (1.2)

u(z, ) = h(zx)
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with either Dirichlet boundary condition «(0,t) = @Q(f} or Robin boundary condi-
tion ux(0,%) + cu(0,t) = R(t), where o is real. Under the assumption that h ¢
H?*[0,00),Q or R € C?[0,00), there exists a unique global classical solution u &€
C1([0, 00}, LE[0, o)) M CO([0, o0), HE[0, oo))[3]. Let P(t) = u.(0,t), the following three
identities can be easily verified (in the case of Robin boundary condition, P is replaced
by B — a)):

8, fn lul?dz = —2Im(PQ) (1.3)
d -/-m (|u 1% + -zi|u|p+l) dr = —2RePq) (1.4)
Jo = p+1 : '
and
9 f " winds = —QQ +i|P| — i—3_|gp+t (1.5)
i 0 ] P+ 1 '

In the following, we prove well-posedness for the above problem with either bound-
ary condition, give L' decay estimates via a pseudoconformal identity and present
blow-up result.

2. Well-Posedness Results

Consider {1.2) for 0 < ¢ < T and assume that for some M > 0, 1@l 207 < M or
| Bl 1] < M, depending on the type of boundary condition. Also we assume that
|&]] weR+y = M. For the Dirichlet boundary value problem, assume that u, v solve (1.2)
- with boundary-initial data (Q, up) and (@, vg) both lying in C’E[D,T] x HY(R*) = X.
By global existence theorem, there exists a constant A > 0 that only depends on A
and T such that [lul|g g+ < Afor ¢ € [0,7] thus ||ulle < collw' )13 lullZ < A. Clearly,
the map f: X — ¥ = YL [0,T))nC H?, [0, T via(Q, ug) — u is well-defined. Let
z=(Q,up) 21 = (G, v0) € X, ||zl x = max{||Qllc2po.r: | Bll2.2} < M, ||zl x < M and

w=Au=v—u,Az=2—z2=[AQ,wy) = (D1 — Q,v0 — up) (2.1)

Since v = w + u satisfies (1.2) as well, one has i{wy, + ) = Wer + vz — glw +
ulPT (1w +u) where w satisfies the following variable-coefficient, initial-value, boundary-
value problem:

{ Wy = Wer — glw + ulPH w + ) + wpe — Ty = W + Glw, ) (2.9)

w((,t) = AQ,wo = vp — up
Let AP =P — P =u,(0,f) — u;(0,¢). From (2.2) one has

10 |w|? = fwed + fwd, = 2Im(wea® + TG (w, t)) (2.3)
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Thus
Fata) t o
f lw|?dz =|[wgll? + EIm] (j (Wee® + G (w, t))dodr
0 [ 0

] L L i oo
=lwgl2 = Elmf APAGT + 21111] f W& (w, t)dedT
0 0 J0

<|lwoll3 + 2 (f; |ﬂQ[T]IEdT)% ([; |5F{T]|2df) A
+ f: f:j 29 (|2 w] + w + ufP T (w + w)el)dedr (2.4)

We note that sup |w(x, t)| < sup(|u(z, )] + [v(z,t)]) £ 2Afor 0 < E < T,0 £ = < oo by
boundedness of w,v in H! norm. The proof of global existence [3] demonstrated that

(_ﬂ;‘ if’[rﬂzdf)i <+ HEL for some ¢ > 0, thus

I=

(/ t laP(r}Fdff < [ / PR + EEP{rlli}dr] :

< ﬁ([:m{ﬂlﬂdr)l" +v2 ([ﬂt |p{f;.|ﬁdT)

< va(lels 5y, Bsle)

= 22 + |lvells + ||Juxllz < & (2.5)

k|

Also,
[ ] o 4
f[. wf2dz <[lwoll? + 2vTeoll AQ| cpo.ry
t o
+f f 2g(WH fuw] + (20| (w + w)w|)dzdr
0 +0

t e
<Jlwol2 + coll AQll oz + & [ﬂ fﬂ |2 dzrdr (2.6)

By Gronwall’s lemma,

fm lw|?dz < (Jlwolls + 'i?ﬂ“ﬂ@ﬂr:[n,r]}ﬂa < (Jlwolls + cuﬂﬁQ”C[U,T]}EET (2.7)
0

Therefore

[=]

sup ([ wfdz)” < of(unlf + ol AQlctor)e™

D<tET
1 1 3
< mo (ol ol + el Q)

L 1 1
< mo (VEwoll + Al n) < mlasdf, (@8
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which implies that sup [jv —ull2 € mllz — 2|}, where Xo = C[0,T] % L*(R*) for
0<t<T

some m > 0. Let ¥5 = CY(L%,[0,7]). The norm of uw on ¥3 is sup ({luell2 + llull2)-
Dt

A change of variables viaw = W + AQ(t)e™ leads to the following equation W =
Woe+G(W, £) with W (z,0) = wo(x) - AQ(0)e™* = Wy(x), Wo(0) = wp(0)—4Q(0) = 0.
Since Q@ € CE(R1),8,G(W,t) is continuous in L}(0,00). By [4], one has jﬁf Nt -
s)G(W, 5)ds € D(A), where 4 = ~D2 with D(A) = {W, Wz € LA R*); W(0) = 0}
and N(f) = exp{At} being a strongly continuous contraction semigroup in L%, The
equation iW; = W, + G(W,1) is converted to an intergral equation

W(t) = N(t)Wp + fﬂt N(t = 5)G(W, s)ds = N(t)Wo + f: N(s)G(t — s)ds (2.9

Again, we have |lwlh2 <€ |lulhz + lolhz = 21 and JJullee < llullee + llollee < 22,
hence ||w||1,2 and [|w]|e are also bounded. Meanwhile, 1AQN 2o = Nl +
1Qllc20,7) < 2M. Since Wy € D(A), one has (N({)Wp} = N(f)AWy. By (2.9), we
have

Welt) = (N(t)Wy) + N(t)G(W,0) + j: NG (W, 1 — s)ds
= N(t)(—iD2Wy) + N(t)G(W,0) + Lt Nt — a)G (W, s)ds (2.10)

and ||G(W,0)|l2 € e1]|AQllcrpo,1) + 2l Wollz. Since N(t) is a contraction semigroup on
L2, one has ||N(t)(=iDZWo)|l2 < c3llWol|2,2 which implies that

IG(W, 0)l2 < colllAQll o7y + [[Wollz,2) (2.11)

and
G (W, 8)||2 < call AQllcepo.m + esllW |2 + 1Will2) (2.12)

Now put (2.11) and (2.12) in (2.10) to get

i
[Wellz SIN(E)(—EDZWa)llz + |G(W, 0} |2 + fﬂ N (t = s}Gs(W, 5)]|2ds
<es||Woll22 + (1 ARl crpo,ry + IWall2,2)

| |
+ [ cxllA@lcso + Wil + Wil
t ; £
<colWollzz + EAQIceor + [ IWlads+er [ Wilads (219

By Gronwall's lemma

t
IWillz < ¢ (1AQl 2oy + IWollz2) + [E W lds (2.14)
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Since w = W + AQ(He™,w, = Wi + AQ'(t)e™, (2.14) implies that

£
well2 < [Wellz + 1 8QN oy £ clll&Qllezpr) + llwoll2,2) + E[} [wlleds  (2.15)

By Lemma 3,

v — ully, = sup (llwells + lwll2)
n<t<T

< sup (c(lAQlcoppa) + lwoll2,2)

0<t=T

£ 1 L 1
+ r;fn ml| Azl ds + ml|Azlld,) < éllaz) (2.16)

1
Therefore, there exists a positive constant ¢ such that [Ju — ully, € &lz21 — 2|} To
prove the wcllipnsedneshs, it suffices now to show that there exists M > 0 such that
v — ully, < M|z —zll%, where Y3 = CO(H?,[0,T)). From (2.2) and the fact that w,u
hoth bounded under H! and L* norms, we obtain

lweslle € lwellz + 1GG, B2 < llwlly + collwliz (2.17)

Put (2.8) and (2.16) in (2.17) to get

" . i 2 L
lwzzllz < cllﬂizlli + d|lwlls < ElAaz)k +mllAz]k, € ez (2.18)
The above two estimates show that

1 1 1
v = ullv; = DilET{meHz +llwlls) < Ellazl|E +mliazlE, € MlAzL  (2:19)

We conclude that f : X — Y = Y2 N Y, is continuous at z and have the following
theorem.

Theorem 1 Assume that conditions for global existence theorems in 8] are sat-
isfied, then NLS (1.2) with Dirichlet boundary condition s well-posed.

For the NLS (1.2) with Robin boundary condition, a proof similar to [5] yields the
following theorem.

Theorem 2 Assume that conditions for global existence theorems in 3] are sai-
isfied, then NLS (1.2) with Robin boundary condition is well-posed.

3. Decay Estimates and Blow-up Theorem

Under the assumption that [;° zliuzdz makes sense then a number of interesting
equations and estimates can be obtained. In particular, we are interested in decay
estimates of the solution to the forced NLS with both types of boundary data. Thus
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multiply equation (1.2) by 2zi, and integrate the real parts from 0 to co. The result
can be expressed as

(4 = e 231_'." ) -
j = ERm!f . - EHE[ Elgtaeds — —3= | 28 (julP)dz
D 0 p+1Jo
[ e+ 22 [ s 31)
= — [ — i ;
g o p+1.Jo

The left-hand side of (3.1) can be rewritten as

I =Re Am{ix{utﬁx — T )dr) = Re -/;m[im[ﬂf[uﬁz} — d.(uis))dx)

= &Re fn i uide) 4 e fu " (entiadz) (3.2)
Substitute for i@, from (1.2) to get

I =8&Im []m rupBde + f:c |uz|*dz + g[ﬂm lufPldz + RePQ (3.3)
Write y = Im [§° susfide and combine (3.2) with (3.3) to obtain

; o0 _—_— X ) 5 ﬁ'(?? i 1] e a) T s
y = dlm Tufide = =2 e B = = |ufP™ dx — RePQ  (3.4)
0 0 p+1 Jo

We can obtain a “psendo-conformal” identity and decay estimate for iEullET_i similar
to the one proved in [6]. For the Dirichlet boundary condition, integrate the equation
Hlu|* = =18 (usl — Gzu) in ¢ to obtain

Ca
a.:f x?|u|fdr = —4y (3.5)
1]
Multiply (3.4) by 4t and rewrite it as

e b 4 - = y
8,(4ty) — dy =dty’ = —4tRePQ — 8¢ f e |*dx — Mt L
0 p+1 0

2 ey
= — 4tRePQ — & (:u? f 1ui|2d:n)
i

2 e 1 fa u}
+ 4125, j i =4, f ufPldz (3.6)
0 p+ 1 0

To derive the pseudoconformal identity, one starts with
low — 2itug|® = (zu — 2itug ) (20 + 2iths)

= z¥ful?* + 403w, |? + 2izt(Tzu — ua i)
= z*|ul? + 42%|uc|® + 4tInzdu, (3.7)
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Differentiate (3.7) in t, integrate in = and apply (3.6), (1.4) to obtain

a'r._[j |zu — 2itu, | de Eatf $2|1L|1i$+3¢f 4ﬁg|um!2d;ﬂ:+3¢f dtlmui,dz
0 0 0
——ay+0 (40 [ luaPdz) + 0l1t0)
{1

s o 4 S o
= — 4tReP() + 4428, f |1¢3!|Ed:f: — EE——]t] |u|F+l-rI:r:
0 p+1 0

d : " ti (o)
— _ 4tRePO — 8t*ReP Q' — & (;‘ﬁ 1 f [u[p"'lda:)
a..-| ';':l

4 e =]
i gi5 F}tf iiﬂrﬁ_ldi (3.8)
Pl S =

which implies that

o . g p beia
Oy ( f leu — 2itu.|*dx + gt f JufP! .:fm)
0 p+1Jg

o o E (e
— —4{RePQ — 8t*RePQ’ + #}f}lﬁf lu|P T da
2y 0

(3.9)

(3.9) agrees with [6] for p =3 and no P, ) terms. We integrate both sides of (3.9) int
variable to get

8qgt?
p+1

49(5-p) * “Lp :
ot < lonth + 222 [ epulitior + [[IFR.Qr (310

where F = —4tRePQ — 8t2RePQ’. Evidently on [0,T],

[irar< ([ lﬁtrjt?df)% (4 (L TE'Q'E‘iT)% ws(f) Td'mz‘ﬂ) il

If we assume that @ € CHR™),iQ,?Q" € L*(RY), then Q € HYR') and @ €
LPHYRT), Also, if we assume that zh € L:R*), then by standard arguments in
semigroup theory (e.g. [7]), for each solution u, one has zu € L*(RY). Thus suu; €
LYR*) and [;° ruiizdz makes sense. Direct calculations on (1.3)-(1.5) yield

t y
il < 1+ 2 [ 1P(r)QE)ldr (312)

ol < I+ 2 b +2 [ POl (3.13)
= — 2 p £ w41 o 1 i .
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and

[ s [ s+ ([ ;mws)‘}* L [@*Fdaf

A 1ot f m |h(r}ﬁ’{z}|d:¢
p+1 0

1
< (lull + Juell®) + Q1% o= 11Q||§T}

2
(U P d~) 1) 3 (3.14)

Since the constants in (3.14) do not depend on T, it follows that

l:":ul

fu P82t < e (3.15)

for all ¢ > 0 uniformly. In particular, (3.15) holds when ¢ — co. By substituting (3.11)
and (3.15) in (3.10) and using the assumption that tQ,t2Q' € L(R™") we get

B g5 — p}
Bl <o 22522 [l ar
5 . :ﬂ}
£ ?’} f rllllEtLdr f rluliiar (3.16)

4q(5
Clearly % f ||u[|£ﬂd’r is bounded due to global existence theorem. Therefore,

B—p [t
Plulzit < o+ 5 [ rluliir (3:17)
and (H(t) = ﬁz”“”iih
E R —
@) <+ [ LH(Tr 328
1 T

Since F(t) and ° P are continuous on [1,00), Gronwall's lemma implies that

s

= pd“ﬁ") = :’.‘fi{l_EE

T

(3.19)

Hit) < cexp (j;tﬁ

and
lulEl] < et~ 12 (3.20)

for £ = 1. This gives the decay estimate for the solution.

Theorem 3 Assume that zh € L2(R¥),1Q,°Q" € L*(R™) and u is the global

solution to (1.2) with Dirichlet boundary condition. Then fort =1 one has Hu”;ﬂ <

ct—P=I2 for some ¢ > 0.
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Similar result is also available in the case of Robin boundary condition and we omit
the proof here.

Theorem 4 Assume that zh € L} (R'),tR,*R' € L*(R*) and u is the global
solution to (1.2) with Robin boundary condition. Then for t > 1 one has Hu”gﬂ <
ct= =112 for some ¢ > 0.

Finally we address the issue of blow-up of solutions to the forced NLS.
Definition A solution to the forced NLS (1.2) blows up af T if there exisis i, — T

i)
In)| w00 asn— oo

o
oz,

For the cubic NLS with Dirichlet boundary condition, a conjecture for necessary and
sufficient conditon for the solution to blow-up (fg | (t)|%dt = D-::-) was proposed in [8]
and subsequently proved by B. Guo and Y. Wu [9]. It appears that similar conclusion
holds for the forced NLS with higher order of nonlinearity and the same proof goes
through for p > 4 by changing values of the constants in various estimates. Similar
necessary and sufficient condition for blow-up of solution to the Robin boundary value
problem for NLS (1.2) at T has not been examined yet. Here we state the theorem.

such that

Theorem 5 A necessary and sufficient conditon for the solution to the forced NLS
(1.2) to blow up at T is [j |Q'(t)]2dt = oc.

We conclude our discussion on the forced NLS by presenting a numerical result
in the case of g < 0. We feel that there is a significant difference between the pure
initial value problem and forced problem for the NLS. This is caused by the presence
of the inhomogeneous boundary u(0,t) = Q(f) or u.(0,t) + cu(0,f) = R(t) which
destroys Hamiltonian properties and conserved quantities. For the free Schrodinger
equation in R® with the “bad” sign for the nonlinear term, a global solution is available

4 :
provided that p < 1+ —. However, our conjecture is that for the NLS in R™ with
n
inhomogeneous boundary condition, a global existence probably requires that p <1+

i For n = 1, these numbers correspond to p = 5 (free NLS) and p = 3 (forced
NLS), respectively. Therefore, we suspect that for the forced NLS when p > 3,9 < 0,
the solution does not exist for all times. We obtained some numerical results for
the forced NLS when p = 4,5 = —5 on a rectangular domain with a particular set
of initial-boundary data. PDE2D, a general purpose finite element program which
solves systems of nonlinear time-dependent, nonlinear steady-state and linear eigenvalue
partial differential equations, is utilized in the calculation for the 1D situation. This
software has been shown fairly effective in dealing with boundary value problems for
nonlinear evolution equations [10]. Let w = [ + iV, then the corresponding NLS

equation in (1.2} becomes

i 2 22
{Ui VQ;I‘E_EV{U +V }2 (3.21}

Vi = —U., — 5U(U? + V)2
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for 0 < 2 £ 20,¢ > 0. The initial and boundary conditions are set as follows:
21 1
ﬂ'[I'-1 [}:I = T AR
2000 +x) 20 (3.22)
w(0,8) = 14+ %, u(20,t) =0

It appears that the solution with the above initial-boundary data grows explosively
large while remains reasonably stable for p = 3. The numerical outputs for approximate
values of the spacial derivatives for u near the boundary are given by the following table.

T=0.000000E+00
T=1.000000E+00
T=2.000000E4-00
T=3.000000E4-00
T=4.000000E+00
T=5.000000E+00
T'=6.000000E+-00
T=7.000000E+00
T=8.000000E+00
T=9.000000E400
T=1.000000E4+01

Derivative Estimate=~1
Derivative Estimate=—1999
Derivative Estimate=—8994
Derivative Estimate=—27484
Derivative Estimate=—48641
Derivative Estimate=—87273117
Derivative Estimate=—93815767
Derivative Estimate=—102884920
Derivative Estimate=—1148356860
Derivative Estimate=—130093570
Derivative Estimate=—489465100

du(0, t)

Table 1. Numerical Outputs of Re 3
E

forp=4.¢g=-5
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