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1. Introduction

Let & € R"(n = 2) be a bounded and simply connected domain with smooth
boundary 8G. g be a smooth map from 8¢ into S™! satisfying W;P{G,S”“] #
. where W}HG,S“‘W = {v € wle(G, 57 1);vlac = g}. Consider the Ginzburg-
Landau-type functional

1 1 .
1, 2 —_— v LR e l-_ .EE }
Ee(u, G) Pfgl u144€PL( [}, p22

which has been well-studied in [1,2] for p=n = 9. For other related papers, we refer
to [3-5].

The functional of the form E.(u, () was introduced in the study of superconduc-
tivity. Similar models are also used in superfluids and XY-magnetism. The minimizer
ue of E:(u,G) represents a complex order parameter and |u.| has physics senses, for
example, in superconductivity, |uEF is proportional to the density of supercoducting
electrons (Le., |ue] =1 corresponds to the Euperturiﬂucting state and |ug| = 0 cor-
responds to the normal state). In superfluids, |u|? is proportional to the density of
superfluid. Thus it is interesting to study the asymptotic behavior of |ug] as € — 0.

Clearly the functional E(u, G) achieves 1ts minimum on W = {v € WHP(G, R"); vlsc
= ¢} by a function u. and there exists a subsequence u., of u. such that

lirl:nm-i-.nEJ=I = Uy, N WP (G, R") (1.1)

Ep—*
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where u, is a map of least p-energy with boundary value g. It is not difficult to prove
that the minimizers u. solve the following Euler equation

~div (|Vulf*Vu) = Eipu[i — |u|?) (1.2)

in the weak sense, and they also satisfy the maximum principle: |u,| <1 a.e. on G.

The general minimizers and one class of them which is named the regularizable
minimizers, will be both concerned with in this paper. It is not obvious that |u,|, the
module of the minimizer of E,(u, @), converges to 1 in C),.(G, ") when p = n, which
is clear as p > n because of (1.1) and the embedding inequality. We shall assert it in
Section 2. In the case p > n, the rate of convergence for V|u.| will be given in Section
3. Section 4, we shall introduce the regularizable minimizers .. The estimates of their
convergent rate which are better than that of general minimizers will be presented in
Section 5.

2. Choc Convergence for |u,|

From (1.1) and the embedding theorem we can say there exists a subsequence wu,,
of u, such that L]:ljn e, | =1 in C(G, R*) when p > n. Since the Limit 1 is unique, we
obtain &

gi_r::l]]u5| =1, inC(G,R™) (2.1)

We always assume p = n in this section. We shall prove the weaker conclusion in this
Case:
Theorem 2.1
gl_lﬁl] luel =1, in Gl (G, B™).

For this purpose, we prove the following proposition at first.

Proposition 2.2 Assume v € W is a¢ weak solution of (1.2). For any p > 0,
denote G*¢ = {z € G,;dist(z,8G) > ep}, then there exists a constant C — Cl(p)
independent of € such that

H?ﬂ"LMH{I;”E} <Ce™l, zege (2.2)

Proof TLet y = ze™! in (1.2) and denote v(y) = w(z),G. = {y = 2}z €
G},G* = {y € G, dist(y, dG:) > p}. Since u is a weak solution, we have

L, 1o 290vs = [ ot e, 6 e i G, m)
Taking ¢ = v(?,( € C’E“{GE,R}, we obtain

‘/:‘3'* |‘FurP§P < Pj;‘ ]vﬂiﬁ—lg.ﬂ'—l'?{”vf E jt;: Iﬂlz[l Y Iﬂlﬂ}(:p
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Setting v € G®, B(y,p/2) C Ge, and ( =1 in By, p/4),¢ = 0in GAB(y, p/2), V(| =
C{p), we have

[ . vepe <o) VoPl¢Pt 4 C(p)
B(y.pf2) B(y,p/2)

Using Halder inequality we can derive [,y [VO[" = C{p). Combining this with the
theorem of [6] yields :

Vol oo <c f L+ [Ve|P <C
” J”L (Bly.p/8)) {F’} H{y,p,n"*l][ I ” '[F*']'

which implies
IV ull Lo Bz ep/any < Clo)e™
The proof of Theorem 2.1 Noticing the weakly low semicontinuity of the func-
tional f |¥u|® and using (1.1) we have hﬂsb_ﬂ, f IV, | > L |Vn|™. Combining
this with
- L Vatn|® = Ee, (tny G) 2 Be (ttey, G
— % leusa!ﬂ 41»,-,_ f = |HEJ:]E:'E

we obtaln

1L|v“&1|“ 4lﬂf|:1—|ﬂsklgjz /‘;L?unw (2.3)

T

as e — 0. From (1.1) we may conclude that as e — 0, [¢|Vue,|" — Jg |Vunl™.
Substituting this into (2.3) yields

o [0 0 (2.4)
as e — 0. For all subsequence u, of u., there exists a subsequence of 1., denoting
itself such that (2.4) is always true. So we derive dlﬂ Jo(1 = Jue?)® — 0, ie., when
g =0,

[ = luel)? <€) (2.5)

For arbitrary K being compact subset of G, there exists £ small enough such that
K © G50 We assume € < £g9. For zp € K, let & = |u.(xg)|. Proposition 2.2 implies

lue(z) — uc(z0)] < Ce™'re, if © € B(wo,7e)

where 7 = (1—a){(NC)™!,C is the constant of Proposition 2.2 and N is a large constant
such that v < p/8. Thus

e (z)] € e+ Cr, if x € B(xo, 7€)

[H{ (1- l?-'LE{EME)E =(1- ]-ll'FN}E{] pasi ﬂ'}“-lrz‘i'l'ﬁﬂ{ﬁfj}_l
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Combining this with (2.5) we obtain (1 — a)"*2 < 0(1). From this we can complete the
proof.

3. The Convergent Rate of |Ju. ||y

Assume u. is the minimizer of E{u,G) in W. We shall show that there exist
constants C) A = 0 such that

Huelllwsa < Ce*, ¥g € (1,p)
Noticing that u, is a minimizer of E.(u, @), we have Jo |[VuplP < lim, g f |V |F <
G
pEe{u.,G) < f |Vupl? by using low semicontinuity of f |Vul’. And (1.1) implies
G e

: 1
f [Vu P — f |Vuy|P as € — 0. Combining these two inequalities we have = f (1-—
r i Er Ja

|*e.-ﬂ_=|2j2 — 0, as £ — 0. Thus the following theorem is only needed.
Theorem 3.1 Ifp > n, then for any q € (1,p), there exist constants C,A > 0,
independent of € such that

f |V |ue|]? = Ce?
7

for e € (0,5} with some small n > 0.
Proof From (2.1) we can set u = hw,h = |u|,w = uju|™! in (1.2) as € € (0,1)
small enough. Then h, w satisfy

|19 @Vh + hvuw))ve = & [T
G P Ja

Vi € WI-P{G,R“}TMHQ =0. Fix f € (0,p/2) and set 5 = {z € G;|h(zx)| > 1—c} b=
max(h,1 — 7). Since hlag = 1, taking ¢ = wh(l — h), we have

/ "2 (W Th + hVw)V(wh(l - h)) = f RE(1 — K2)(1 = R)
G e Jg
Noticing that |w| =1 and 2wVw = V{|w|?} = 0, we obtain

-1-/ h*(1 - R (1—h) + f P2 g2

eP fo 5

< f VDR 201 - F) + f oP-DI2 TR — ) (3.1)
s [

 Since u; is the minimizer of E, (u, G), we have E(us, G) € Ec(uy,G) = g;fG |Vuy|P <
C', namely

[vur<c (3.2)
O

L(l — |uel?)* < Ce? (3.3)
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where C is a constant independent of 2. (3.1) implies [ w@=A2R|VR? < CeP by using
(3.2) and the facts |Vul* = |Vh|?* + h?|Vw|?. Sinice h=~honSandh>1/2fore>0
small enough, we have

jS VAP < Ce? (3.4)

On the other hand, from the defination of § and (3.3), we have Cmes(GYS)e%? <
Jensl1 - |u|?)? € Ce?, namely mes(G\S5) = CeP~20 using (3.2) again we obtain that
for any g € (1,p)

q/p
[ IVhl7 < mes(G = $)'70" ( /[ [?MP) < Cer2P)1-a/p)
NS e,
The above and (3.4) imply the conclusion of Theorem J.1.

4. The Regularizable Minimizers .

The minimizers might be un-unique, one of which, denoted by i., can be obtained
as the limit of a subsequence u7* of the minimizers u] of the regularized functionals

1 1
T S 2 PR _ Jarl232
Eﬂu,G]—pL{l?M + 7} —|—45? L{] Wl 729

on W as 7 — 0, namely
Theorem 4.1 Assume ul to be minimizers of BT (v, G) in W and p > 1. Then
there exists a subsequence vl of ul and 4, € W such thael

lim wlt = di,, © in WG, R™) (4.1}

=0

where i, is the minimizer of E(u,G) in W.
We call 4, the regularizable minimizer of E;(u, G).
It is not difficult to prove that the minimizer u] is a classical solution of the equation

—div {’u{p gy = 1L I[l — |ul?) (4.2)

and satisfies the maximum principle: |ul| <1 on G, wherc v = |Vul|* + 7.
Proof First we have ET(ul,G) € El(up,G) < - fgﬂ?uﬁiﬂ +1P2 =Caste€

(0,1). This and |u]| < 1 imply that there exists a suhﬁequeucﬂ ugt of ul and %, €
Whi?(G, R™) such that

ul = 4, in W'F(G, R") (4.3)
u* — i, in C(G,R"), whenp>n (4.4.1)

W — @, in LG, R"),q < nﬂ—i, when 1 <p<n (4.4.2)
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as 7x — 0. By virtue of (4.3) and the weakly low semicontinuity of the functional
fG IVulP, we obtain

v < tim, o [ vaz (45)

We claim %, € W. In fact, (4.4.1) implies this when p > n. And when 1 < P <, it
can be deduced from W being the weak, closed subset of W1#(G, B*) and (4.3). This
means ET(ulk, G) < ET¢ (i, (7} or
Im,, o E™*(u™,G) < lim E7*(i, G) (4.6)
Th—
We can also deduce [o(1 — JuZ*[*)® — [-(1 — |4.]*)? from (4.4) as 7. — 0. This and
(4.6) show

Wi [ (VU2 4 7P/ < lim, [ (93, 4 )pl? = [ Vi
G w0 Jg G

Combining this with (4.5) we obtain [ |[VuT*|P — [, |Vii.|P as 7. — 0, which together
with (4.3) implies Vul* — Vi, in LP(G, R™). Noticing (4.4) we have the conclusion
ugt — @, in WY¥(G, R*) as 7, — 0. This is (4.1).

On the other hand, we know

Egt(uct, G) £ E*(u, G) (4.7)

for all u € W. Noticing the conclusion lim E7*(u*,G) = F(ii, G) which had been

Te—
proved just now we can say Ee(i.,G) < E.(u,G) when 7 — 0 in (4.7), which implies
ity is & minimizer of B (u, 7).

Remark Theorem 2.2 in [3] and the proof of Theorem 2.1 imply that if p = n,
there exists no zero of 4., the regularizable minimizer of E,(u, ), in G when e small
enough. Similarly, we can also derive the same conelusion for w; which is a minimizer
of the regularized functional E7(u, G) when p = n, namely, there exists no zero of ]
in & when £, 7 small enough.

5. The Rate of the Convergence for ||

We start our argument with the following
Proposition 5.1 Suppose p > n. Then

lim || =1, in C(G,R") (5.1)

&, 7=

Proof We have, for r € (0,1), E7 (u,,G) < E7(up,G) = C. Hence
Livur < [avaze oy <c (52
& =

L (1 - [u7]?)? < Ce? (5.3)
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From (5.3) it follows that there exists a subsequence ugk

k — oo, such that

of vl with gx — 0,7 — 0 as

lim julf| =1, ae m G (5.4)
e —s oz

(5.2) combined with [u7| < 1 means that e lwrr(e.rmy = ' which implies that there
exist a function u, € WHP(G, R") and a subsequnce of ult, supposed to be uZt itself,
such that _

lim uff =u,, In C(G, R") (5.5)

e —
Combining (5.5) with (5.4) yields |u.] =1in G and hence klEr;.ﬁ lugk| =1, in C(G, B"™).
Since any subsequence of |ul| contains a uniformly convergent subsequence and the
limit is the same number 1, we may assert (5.1) and complete the proof.
Theorem 5.2 Ifp = n, then for any g € (1,p), there exist constants C.A =0,
independent of £ such that

f V||| < Ce>
i

for £ € (0,n) with some small > 0.

Proof As a minimizer of EJ (u, G)yu = ug satisfies (4.2). Owing to the Remark
in Section 4 and Proposition 5.1 we can set ¥ = haw, h = |u|, w = ulu|"l as e, T € {0,1)
small enough. Then b, w satisty

—div {v{?:'_zz'“l[w?h—k h¥Vw)) = -Ej;pwh{l — k%)
Multiplying this by wh, we have
~div (v~ 2/2Vh)h - div (v EREVw)w = %nu — R4 (5.6)

Fix 4 € (0,p/2) and set S ={zeG;|hlz) >1- B h = max(h, 1 —&”). Multiplying
(5.6) with (1 — h), integrafing over (7 and noticing that h|ag = 1, we have
fG o P22 TRV (R(1 — ) + L 2 PRI R2 7T (w(1 — h))

_.]' 2 2 T
_.E; Gh-fl]."".lri!a][].—'h}

Noticing that jw| =1 and 2wVw = 7 (|w]?) = 0, we obtain
e f RE(1 - k(1 — h) + j p =D TR
el JG 5
< f S22 TwP(1 — R) + f o= T R(2(1 - ) (5.7)
& s

. By using (5.2), (5.7) and the facts |Vul? = |‘?hh?+h2|‘?w|2, we have [5 o2 2R |TR|E <
Ce? Since h=hon Sand h > 1/2 for & > 0 small enough, we derive

fs (VAP < Ce® (5.8)
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On the other hand, from the defination of § and (5.3), we obtain

Cmes(G\S)e2 < f (1 - |ul®)? < CeP (5.9)
e\s
namely mes(G\S5) < CeP~P. Using (5.2) again we obtain that for any g ¢ (1,p)
q/p )
[ [VA]? < mes(G\§)1-9/7 U |‘°:?h,|”) < CelP-28)1-a/p) (5.10)
SIS G'_

The above and (5.8), Theorem 4.1 imply the conclusion of Theorem 5.2.
Theorem 5.3 Assume p > 2, then there exists o constant O independent of &,

such that i

S [a-lp<c (5.11)

Proof First taking the inner product of both the sides of (4.2) with % and inte-
grating over {7, we have

; 1
- /G div (v 22y )y = o ff (1 — Jul?)

Integrating by parts, using (5.2) and the Hélder inequality we obtain

1! ay
E—p/‘r|u|2[1—fu]3] E-[U{P_‘!:'f2|?ufi+f o P22 |y
& & a7

% ac T ac 86

<C+C [ o (5.12)
i

where n denotes the unit outward normal to 8.

To estimate [;, v"?% we choose a smooth vector field v = (v1.09, -, 1) such that
v|ag = n. Taking the inner product of both the sides of (4.2) with v+ Vu and integrating
over (7 we have

5 e (o(P—2)/2 , 5 A — lu|*V - E
‘de ( Vu)(v - Vu) = fﬂ:{i lu| )z - V]|u|*)
Integrating by parts and noticing |u|se = |g] = 1 and
L[i — Ju|}) (- V]u|?) = —%/{;‘F{l — |uf?)? v = %L{I — |u|*)?div

we obtain

—-f p P22y |2 —I—f o@=2 gy, Vv - Vu)
4G G

= ﬁ];{l — |uf?)2div (5.13)
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From the smoothness of v and (5.2) (5.3) we have

1
= fﬂu — Ju2)2|divy] £ C (5.14)

f W= D2Gy T (v Vu) £ E-'f pP=2)2 |G y)? + ]—f pP=212y . Ty
G G 2JG
< C+ lf v V(P2
DJG
< C+ lf div (voP!?) — L f vP 2 div v
PJG PtG

£C+5f yP/ (5.15)
p Jac

and

f lf__l-i"-"-'|I2 — f 1-'[}:“2:"".?“%52 + 1:El't|z _|_ 'T}

g g
< f JE2D2 2 ¢ [ D2 (5.16)
G e

where g; denotes the derivative of g with respect to the tagent vector t to 8G. Com-
bining (5.13)-(5.16) we obtain

f 2 ec [ D2y oy E[ 2
3G N ac P JaG

and derive

f WP < C (5.17)
&G
by using the Young inequality. Substituting (5.17) into (5.12) yields

1

= [uPa-rsc

P Jg

which together with (5.3) and Theorem 4.1 implies (5.11).
Remark Noticing that i, is a minimizer of E., (u,G), we have

L1Vl < lime o [ Ve P < pBeu1 G) < [vwP (318
by using low semicontinuity of [ |Vulf and Theorem 4 in [4], which also implies that
f Vit [P — f |V, P (5.19)
G G
a3 £, — 0. Substituting (5.19) into (5.18) we obtain

1 . .
E’g fg“ - |u;k[E]E —0, as g—0 (5.20)
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For any subsequence 4, . 0f i, we can find a subsequence of @., denoted itself such
that (5.20) is always true. Thus we have

1 .
= (=10l =0, 25 -0 (5.21)
o

In the following we shall show that (5.11) implies (5.21) when p > n.
We know that

=1 o GlG, 1) (5.22)

ke,

as ep — 0 since E. (i, ) € E.(u,, G) < C and the embedding theorem. Noticing that
for any subsequence i, of ii., we can find a subsequence of i, . denoted itself such that
(5.22) is true, and the limit is always the number 1. This leads to

liie] =1, in C(G,R") (5.23)
as £ — (). Thus we have
. 1 o 22 : - 2 1 f ~ 2
S o < i s — |4
lim = L{l |e|")” < lim Sgpll |1l ] Idgp Gil | | )

< Climsup|l = |@]*] =0
e—+0

by using (5.11) (5.23).
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