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Abstract In this paper, we first search for the Hamiltonian structure of LCZ
hierarchy by use of a trace identity. Then we determine a higher-order constraint
condition between the potentials and the eigenfunctions of the LTCY spectral problem,
and under this constraint condition, the Lax pairs of LCZ hierarchy are all nonlinearized
into the finite-dimensional integrable Hamiltonian systems in Liouville sense,
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1. Introduction

It is well known that finding new finite-dimensional completely intesrable Hamilto-
nian systems in Liouville sense is very important [1]. Cao [2] devoloped an approach
to produce the finite-dimensional integrable svstems for AKNS hierarchy by the non-
linearization of Lax pair of evolution equations under certain constraints between the
potentials and the eigenfunctions. Recently, on the basis of Cac’s work, Zeng-Li [3]
proposed the so-called higher-order symmetric constraint to get the finite-dimensional
integrable Hamiltonian systems. According to this approach, many finite-dimensional
integrable Hamiltonian systems are obtained [4-6].

For the following LCZ spectral problem

B —iA+T g+T
;I)I_( G—r :!E.l—f.r')@ (1)

Qiao 7], Mu [8] et al. presented respectively the commutator representation and a com-
plete integrable Hamiltonian system in the Liouville sense under Bargmann constraint
condition. In this paper, the Hamiltonian structure of the LCZ hierarchy is given by
using a trace identity, and the so-called higher-order constraint condition between the
potentials and the eigenfunctions is obtained by the Hamiltonian structure. Under this
constraint, a completely integrable Hamiltonian system is obtained.
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The layout of this paper is as follows. In Section 2, we will give the LOCZ integrable
hierarchy by zero-curvature representation and search for its Hamiltonian structure by
use of a trace identity. Then, in Section 3, we determine a higher-order constraint
between the potentials and the eigenfunctions of LCZ spectral problem. and under this
constraint, the Lax pair of LCZ hierarchy are all nonlinearized into Anite-dimensional
integrable Hamiltonian systems in Liouville sense.

2. LCZ Hierarchy and Its Hamiltonian Structure

We consider LCZ spectral problem

B; = Ulu,)®, Ulu, ) = (_:‘_t 5 f;_:) (2)

where © = (q,r)" is the potential function, A is the spectral parameter, —i% = 1. In
order to derive LCZ hierarchy of evelution equation by using zero-curvature equation,
we first solve the following adjoint representation equation of (2)

Ve = [ V] (3)

Let us choose

a b == @ b
V i e Ll,.- }L_m. 1-'; :( I I )
(¢ 2= e

m=(0 Crm
o oo Lo )

and on setting a = Z BmA~ T, b o= Z b A, ¢ = Z CrmA” T, from (3) we can
m=0 m=0 =0

obtain the following recursion relations to determine s B W

'

E?{]=ﬂ|}=|:|
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: : b
Cmg) = EI:'? ~ T)@m — Ty — iiaﬂm~. m = 0

in which we choose ay = 1 and assume that amy|y_g = brafu=0 = cmlu=0 =0 (m = 1),
which means to select constants of integration to be zero when m > 1. In this way, the
recursion relations (4) uniquely determine a series of polynomial functions with respect
L0 2, Uy, Uz, -+ . By using (4), for example, we can work out

brjzﬂﬂ=ﬂj {I|}=l

by =ilg+r), ea=ilg—r), a=0

1
2

1 1
be =r(g+r) — iiq +r)mea=rig—r)+ i{q - gy Q3 = (ff - r?}
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E}:g=E-|:q +7)(g" —dr2}+ [q+r} +ir{g+7)c + ifI'I'T]'
cs = (g =Yg = 3r%) = 5la = rirs — irlg — e — +lg )

a3z = i - ff? Tz %':"]"ﬂ'.?" — qry)

Let us now associate with LOCZ spectral problem (2) the following auxiliary problem

By, = VIRID =V (g, 2) P

1
ol _H’n. e 'Eﬂ} — fin 0 [:'j}
e} oe n—rn 2 -, ?
V"—va}t i i a2
m= i —E“’n o 1f::rl::' -+ ﬂn)
then by use of (4), zero-curvature equation [, — Vi"l + [, V™| = 0 (n = 0) becomes
1
Oy = E{bn i Cu}m: n >0
: (6)
Bty = _EI:E'?'N — by + ":;'1]1': n=0
and thus (§) is easily written as
1
: (q) Ea 0 ( by + €n ) 1J( B, ) )
Iy, = = = —
b T i ﬂ % ll’i} Elﬂ-n = bﬂ_ "l‘ 'ﬂﬂ Eg- Eﬂ-n Tt bn o |?”, :
2
where 5 0 .
:
J=1 e [ '
()= i
which is a symplectic operator, and further making use of the recursion relations (4),
wir llave i ;
b T+ Cp n—1 T Cn—1
=L i
( 20 — by + Cn) (Eﬂft—] = 'rJn—l ks Ifﬂ—l) {J]
where L is a recursion operator
1 (] —d+ 2 g g |
L=- i ao-l =gl =11 10
( —20714q8 - & —Ed‘]rﬁ'—ﬁr)1 110)

which with J satisfies JL = —{JL)* = L*J. Then substituting (9) into (7), we lead to
isospectral LCZ hierarchy

-l:r bn 4-‘::'1 =1 f}' .
— = , = 11
e (T)zq E“J (Eﬂﬂ _bn+'ﬂ::s.) & (—T') A L}

in which J and L are given in (8) and (10).
Example Forn=1andn =2, (11} is respectively reduced to the following two

0.

systems:
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i3
q _E"".u + ger + T2
R

5 Tz + drrye — i

here when g = r, the second equation is the famous Bergurs equation

and

i
ge + 52T — 2qq: =0

Now we proceed to search for the Hamiltenian structure of LCZ hierarchy of evo-
hition equation (11) which may be established by applying the so-called trace identity
[9]. As is usual, we first need the following quantities which are easy to calculate

{V %ii)=—zm._ <E%§—>=b+c, <V,%~i_f->=2rr.—b—|—c

in which (-, -} stands for the Kiling-Cartan form of matrices: (A, B} = tr AB. Then by
use of the trace identity [9]

Ay o Al
s _.:ll._'ll_ o iy
ﬁq<v af‘ (v, c?r;r J
Eﬂ[f
F et *r_ FiTE
i {I 5:".} & }L <I >
m which ¥ i1s a constant, we arrive at
y e,
B s .?*."“—}f‘{b )
ﬂsl ]
B T ki LR KT (D s
23{5,_,. AT % AT(2a—b-+c)

5= [ o

Noticing o = Z W R Z P el Z ey A, after comparing the coeffi-
e ={] mm={} =0}

cients of A7 on two sides of (12), we obtain

S
~2i= = (buoy + Gy }(—n+1+7), n1
dg :
5 (13)
=22 = (2an = byt +eaa) (- 147), 21

To fix the constant v, we simply set n = 2 in (13), then lead to the constant + = (0,
thus [13) gives rise to an important formula,

5Hﬁ+l

q Hyii = S e AN e iy (14]
OH e
| 20n —bn ton =24 :

b+ Cp = 21—

Ar

which shows that the LCZ hierarchy (11) possesses the following Hamiltonian structure

SE.
-:.;,m:—ur( b + €n ):JLﬂ—L<q)=J'H6”THn2ﬂ (15)

200 — by + 0n -7 1

T
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where J, L are given in (8) and (10). Therefore by Propositon 3 of [9], we conclude that
the {Hy} are conserved densities for the whole LCZ hierarchy of evolution equation
(13) and they are in involutive in pairs.

3. LCZ Finite-Dimensional Hamiltonian Systems

For distinct A;, 7 =1,2,---, N, we consider the systems

. : —thi+r g4
Pjz = Ulu, 45) 05 Ulw, Aj) = ( g iy ) e
By, = pin]hh A )@, i=1,2,:+,N (17)
n l T
Z iTym }L_Tj.t B i['i’n - Cn) — Cn Z Elm,}'.;?’_m
.I-"-I:III":Ili'n'.I'-: .-'1"'|_:|} — =0 = 2 =il l
Z Cm ’}‘I.E TTR . Z -!’:'.m;'-.:;t mo_ EHJIL - Cp :| + 2y
=1 m=0

in which w = (g,7)", €; = (¢1j.42;)7. 7 = 1.2, -+, N. If we assume that w, um,-: -
tend to zero as [x| tends to oo, A; are the discrete eigenvalue for which eigenfunctions
{$15. 2507 vanish as x| — oo, then we have [7] for every A; (§=1.2,---,N)

0.4
5':}' I:¢'E_; mlj
(18)
dA; l Fif ot
N . - . DA
where B = Ez[q.';;jq;gjrjrr,_ and if &; satisfies (16), then we can show that m
" I
dhi b XanT. . . s
—, —;-"-) oiven by {18) satisfies
Ly A
328 coadiins des gat 8 (19)
TR T T S

: : : _ _ _ 53, | .
mwhich L is the recursion operator given by (10). therefore Ei belongs to the invariant
1
space of the recursion operator L.
By [3], we have for a given

§Hy o AN }
| = 20)
r‘.T'Er. Z el Ju 20)

which is invariant with respect to the action of integrable Hamiltonian flows (15). This
property shows that (16), (17), (20) are compatible, thus (20) gives an infinite constraint

) : £ 1
which 1s compatible with (16), (17) (we choose F‘j = —a]
4y

- L : ‘ : ;
ﬂi:z_iz( ‘?r”%f—?ﬁsz)=_E(ﬁ‘l’2r‘f’?}‘{‘i’lf‘1’1}) (21)
du (d15 - day) 4\ (B, + Dy, Ty + By)
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where @1 = (¢11, 12, -, 1w )T, T2 = (Par, dan, -, dan ), -, -} denotes the standard
inner product in BV, :
For k =2, (21) gives an explicit expression of u in terms of A; and ©;

du —r 4 \ (D) + &, By + o)

and by substituting (22) into (16), we can reduce a completely intergrable finite-
dimensional Hamiltonian system [8].

In the following, we consider the integrable systems associated with the higher-order
symmetric constraints. As an example, we obtain a higher-order constraint from (21)

for K =13

dH; 1 ( Ty — 2qr ) i ({{"[:-214:]}2} — (B, ,;];,1::,)
bu 2 \=gr—g*+3r2) 4\ (D 4 Dy, By + Dy)

that 1s

( T';:—'E'Q_f?" ) __1({':1’2@2}_{‘1"1@1}) (23}
~gr —q> +3r% ) 2\ {Dy 4 Do, By + Dy)
in which we used Hy = %:::-.3 = %?.3 = %z,‘rlr - %(qmr — gry ). Obviously, (23) can not give

the explicit constraint of w in terms of A; and @, therefore we can not make use of the
approach of substituting the explicit constraint into (16) to construct the integrable
system associated with the higher-order constraint (23). But because the propertics of
(20) ensure that (20) is compatible with (16), (17}, we consider the following systems
by combining (23) with (16)

( Fo— 20T ) _ _l ({fI-‘-g,*I’gﬁ — (P, *I};ﬁ) (24a)
e '!E'? + 3r? 24Dy 4 Dy, Dy - Py
Pip = —tAPy + rdy - Eﬂf g T‘:I‘I"t_:

Py, = (g — )P +1ADs — 7P (241)

Note that the stationary equation system of (24a)

( re — 207 ) -0
—ge— ¢+ 32/

oH dH
e N I e S

ar

can be transformed into

where H = r® — ¢®r, then (24a) reads equivalently

B A

Jr = E + ﬁ{q}L + g, Py + {Pg}
dF 1 1
T = —a—q s E{‘I“E}‘I’E} - E{i"h‘l}]}
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Thus (24) can be evidently expressed as the following Hamiltonian system

aH A H
T T oo P:r. e 25
with the Hamiltﬁnian _funf:tiﬂ-n
il 1 1
H = H — (A2, ®2) +7(01, 82} ~ £{g - r) (@1, ®) + E{@i:ﬁ"&? (26)

in which @ = (11, d12, > B3, @) P = (o1 daa,- -+ daws ), A = diag {1, dg,-- -, An )

In the following we want to show that (23) is a finite-dimensional integrable system in

the Liouville sense and that under the control of (25), systems (17) and (15) for n = 0

are also a hierarchy of Anite-dimensional integrable systems in the Liouville sense.
First under the higher-order constraint condition (23), by use of {19) we have

i n—2 _ fAan=2
( by + n ):EiLﬂ_zaﬂa 1 (.:;1 By, Ba) — (A <E:1._::ru})1 n>2 (27)

Su 2\ (APHE, + By), B + Do)

El!'nl-ﬂ_ s h‘ﬁ. _I'_ l!'.-n

and by substituting (27) into (4), we obtain

Oz + 200 =%T{’ﬂinﬁ2‘1"2= Py — %T{ﬁn_z‘ﬁh@l}

L ;
+ Eq{ﬁ”-i(@l + B2). P+ P2), n>2
Besides, from (16), we have

| ; 1 " A
5(A"720), @o)e =zq((A" Do, Bg) + (A" 7201, &)

+or((AT0y, B) — (AT201,01), m22 (28)
Thus we obtain : ]
o E{;‘L”_?tbl: Do), B> 2
& by = —%{N‘_EIIH,{IJI}: 2.2 (29)
oy = %{.&“_Eflﬁg._ Py}, m2>2

and for n = 0, 1, respectively

ap = L by = ¢y = 05 I=ﬂ':lri'1 =i(g+7),00 =ilg—r1)

We see also that (V2), = [U, V?] since V; = [U/, V] and letting F = %tr V2 =a%+be,

5 1 2 s d 2 A
Fz_(ﬁnvjm_&;(a +be) =0
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o=
Le. I7is a generating function of integrals of motion of (25), after letting F' = E Fo Tl
=0
and noticing {$,P3) = g — %, we obtain the following expressions of F,

fo=1l, =0, =0

: 1 1
3 =3( = 'F.lifi'tfl}l,‘I’Q::l = El:l'}‘ <2 T‘H*D;,@]l:l - E(q SE ?'){‘I’g, ‘i"g}) =i
it

Fo = Z (@man—m + bnCaam)

m=i

Te=2 :

= Z {ﬂmﬂﬂ.—rrb qF Ii!-a'r'.u':n—i-;-:!.:I + 20, + b Cn—1 + Iil}-;-;:_llﬂ'g
m=2

1 n—2 5 . .
=2 D ((A™7201, Bo) (A7 7201, Do) — (A™ 20y, 1 )(A" ™2 By, )

=2

+ (A*2®), By)

¢
BTz

51+ ) (AT, o) — =g — AT, @)
1 . : .
+ E{;‘i“‘“’{@; + ®3), By + Bodg® — 1% — (B, B2)), n>4 (30

in which the polynomial functions Fy, (n > 0) include 2N + 2 dependent variables.
Let us now consider the temporal part (17) of constrained Lax pairs. A direct
calculation gives that systems (17} with (15) for n = 0 are cast into

aFﬁ_F'i‘ '!:.--il.l.i'::|1_'.:' H
= — - . = ——"—- - o1 '::jl
when (. P satisfy the spatial part (25). In fact, from (17) and (29), we have
. 1
{Dlt_“_ == Z [H-;.-Tzf‘!l.n_m'IJ] ,_ I!I};-n{ ?t—m@?] ‘l' [EI:E}“ = I"_.‘-IIE_II — ﬂﬂ}q}|

=il

1, .
:E E {{J"tm'_z'fb; LD ATTTNR, — fA™ _E{Ph @T}L}:ﬂiu_m@-j} + A",
2

m=

1 5 .
-+ 'l{l'}' 5= 'i’"j]."'!un_lfbg - E{.&“"(fﬁ] == ‘I*g].. ‘:IJ'[ <+ q’"?}'—f']

7 )
n )
I:]-}EL“ = Z {mnﬁn_miﬁl - ﬂiﬂﬁn_.mqlﬁ} o [ g5 _['r‘]'i": = 'f.ir.!.:l = E-n]‘I".!'
=0 2
L )
=§ Z [_I:;"L”"'_E‘-Iﬁg,*Ilg};’i”"'mq?l — {;"Lm_zﬂln B ALY A
m=2

1 .
- i':'!:a' = T':IJ"!Lﬂ_L{I"']_ i 1{‘:11‘1—2{{1'}1 4= {J-}E'Jll: "TJJ. =i @'2}@!
_' 'HF]'I+?
= E}(Ijl :

n>1 (33)
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and from (30), (6) and {4), we have

ai;:-j‘-’ =im“—hﬁ;, Dy} -+ %m“ﬂd}h By} — %r-:ﬂ“‘z{fbl + ©2), @1 + 02}
=i{np1 — Bnpt) — r(2a, — by + 04
=L (bt cn)s =ty 2 1 | (34)
Faga 1 n—1 n—1 n—2
5 =5 (A" g, Bg) - -m By, :I:l}+ glA" (D) 4+ P2), By + Do)
=i(Cnsr + Brpr) + 02t = b +20)
%mu” I IR (35)

Similarly, because wo have ¥y, = [V'*”:'_. V], n = 0, we may see with the same argument

1 : : . ; .
that F' = —trV = o + be is also a generating function of intesrals of motion for (31),

Fm =1, n.m = (). Defining the following Poisson bracket [6]

din
{f.g} = <%-§_§>1 _<%§%>1

where (., +); denotes the standard inner product in RY*1 and by use of (31). we find

- APy 0Fyss _<5Fm aFﬂ+?>
{-F:'J'IFH+.E}_< IE*Q >1 I'EJ"F I!EPQ

oy = = (). s i > )
< 50 Q¢n> < P ?,>1 o = m >

and because F,, is the constant when n < 3, then {F;. F,} = 0 for n < 3. Therefore

wie ohtain

that is

(P ol =05 dorimym 0 (36
This shows that polynomial functions F,, n = 0, 1,2, --- constitute an involutive sys-
tems, On the other hand, from (31}, we directly have
aFn-i-E

S.Fn.pg __an 1 n—1I
a'l-If'l l'—i’1=':|;']'=ﬂ = {I:'l: ag oy =ill.g=I 5 I: & @? {I}E}
a‘i't'-lﬁ'l‘:-I ! Ry o EFR—:' E n—1
58, leg=tp=o = t_bl’ Br lamoren = 20 2181
and becanse of the Vandermonde determinant V{Ay, As, -+, Ax) # 0 for NV distinet A;,
i P PN 1
darF, aF, 8F, ar,
= A , 3<n<N+3
VEu= (3%, 0 38, o) SSnSNA

are linearly independent. This shows that (25) and (31) are the finite-dimensional
integrable Hamiltonlan systems in the Liouville sense,
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