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Abstract This paper studies the initial-houndary value problem of GBBM equa-

tions
uy — Ay = div fu) {a)
wiz. 0) = uplz) (b)
t |an=10 (]

in arbitrary dimensions, 1 € R™. Suppose that fis) € ¢V oand |f'(s)] € C1+]sl7). 0 2
= ifn>3,0<y<oifn=2 up () ﬁr’ﬂ"'"’[ﬂ]ﬂi-i’&'”[ﬂ] (2 < p < oo}, then
R ;

wT > 0 there exists a unique global W 29 eolution 1w € WL (0, T War(Q)N Wy P (),

<o the known results are generalized and improved essentially.
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1. Introduction

There are already many results [1 — 7] on the existence and uniqueness of global

<olutions of the initial-boundary value problem for GBBM equations

U — .ﬂ'i'_f,g = div f{ﬂ-} ; {1]
u(z,0) = uglz) . (2)
u |lan=0 (3)

where @ ¢ R" is a smooth bounded domain. In [5-7] Chen Yunmel, Goldstein and
Guo Boling et al. all studied global W2 solutions of the problem (1)-(3) respectively,




Gd Liu Yacheng and Wan Weiming Vol.12

the results obtained by them are as follows: Assume that J9 is sufficiently smooth,
fis) € C2, f'(0) = 0 and satisfies the hypothesis

2 :
(H) F() SCU+IsM), 07 < —==ifn>3,0<y<ooifn=2

TUi—
wglx) € WP NW22(Q) HWUI-‘F{E.'E]I, then there exists a unique solution u € C'([0, oo);
WP N W[}'Pl:ﬂ}]l, where max -[11 g} < p < oo, Clearly the condition % < p, which
is necessary if one uses the methods of [5-7|, is very harsh. For example, according to
this condition for the most important case p = 2 the values of n only can ben < 3. So
these results are no satisfactory. However up to now for the case n > 2p the existence
of global W#P solution of the problem (1)-(3) is still open.

In this paper by using completely different method from [1-7] we study the problem
(1)-(3) in arbitrary dimensions. We only assume that 80 is sufficiently smooth, f(s) €
" and satisfies (H), ug(z) € WP () r“l'ﬁfﬂl‘-‘p (£2), then for any T > 0 we obtain a unique
global solution u € WH(0,T; W22(2) N W’S’p{ﬂﬂ: where 2 < p < oo. So we have
cseneralized and improved the known results essentially.

In this paper we always assume 2 C R® be a sufficiently smooth bounded domain,
| - Il denotes LP(£2) norm, || -l = || - ||z, || - llx.p denotes WEP(Q) norm and (u,v) =

f wlm)u(z)dz; O, Ci, M, M; and E; all denote the constants independent of w,
£l

2. Global W22 Solutions

Let {w;(x)} be a system of eigenfunctions of the problem Aw; + Aw; = 0 in (Q,
1wy |an= 0 construct approximate solutions of the problem (1)-(3) as follows

U (T, 1= i ajm(tjw;(z), m=1,2-- (4]
J=1

According to Galerkin method oy () satisfies

(e, Ws) = (A, ws) = (div f{tig ), ws) (5]
ﬂjm{uj=ﬂjm, 5, J=1L2,---,m {GJ

Lemma 1  Assume that f(5) € C, ug(z) € WE}'E{HJ, and choose a4y, such that

Tign L2, 0) 1ﬂ wp{x), then we have
[l + |Vl = [lum (0} + [Vun(0)|? < By (0 <t < o) (7)

Proof Multiplying (5) by asm(t) and summing it for s we obtain

%[Hum]]2 + [Fuml?] = =2(f (), divu,)
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=y f div PlusydzLolf | Flun)ds =0
0 i

where Fu] = / fis)ds, it follows (7).
0

Lemma 2  Assume that f(s) € C' and satisfies (H), ug(z) € WEEI[Q}HWULE{Q),
and choose ajm, such that uy,(z,0) Lo ug(xz), then ¥T > 0 we have

IFuml? + | Aun|* < B: (0<t<T) (8)

Proof Multiplying (5) by Asasm(f) and summing it for s, from (H), Lemma 1
and Sobolev embedding theorem it follows that

el : :
E[”?“?HHE -+ ||&16m||2,'= = _El:d]""" f{ﬂmje Iﬁ'U:m.]'

< 201 £ (tarm ) ]| Vatom || St || € M| At

: . 1
here and in following Lemma 3, Theorem 2 and Lemma 4, p = S itn >3, 25 p<
> : bl . ;
seifen = 2o pisaian =l = 5 Integrating with respect to ¢ from 0 to £, by
jal

Gronwall Inequality it follows (8).

Lemma 3  Under the conditions of Lemma 2 we have further
I¥ el + [|[Aumel] £ By (02¢=T) (9)

Proof Multiplying (5) by Jsel,,(t) and summing it for s, from (H) and Lemma

2 we get
”":'?'Mn:tllj;-| T ”ﬂt'”f:n'tt‘.“2 < ﬂfﬂ(um:]11-?“1?“-1'&”3:'“&“”!”1 = J'l'ff?“-ﬁ'i'-t:rr':.l‘,ﬁ

it yields (9},

From Lemmas 1-3 we can obtain the following

Theorem 1 Suppose that f(s) € C! and satisfies (H), up(z) € Wﬂl[ﬂ}ﬂwrf‘?[ﬂ,},
then 9T > 0 problem (1)-(3) has af least one solution u(z,t) € Wrbeelg, T; WH2(R) N
Wy ().

Theorem 2 Under the condifions of Theorem 1, the W*? solution of the problem
(1)-(3) is unique.

Proof Let u and v be any two W?%? solutions, w = u — v, then

wy — My = div f{u) — div f(v) (10)
Multiplying (10) by w and integrating on {2 we obtain

el + 1 90l%) = ~2(f(w) - F(), V)
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T 2
< 2[| Fllgllwllpll Vwll £ M|Vl

where f' = f'{u+8(v —u)), 0 < 0 < 1. Integrating with respect to ¢ from 0 to ¢ we
can obtain

lwl® + IVwl* =0, w=0

3. Global W#*? Solutions (2 < p < o)

Lemma 4 - Assume that f(s) € C' and satisfies (H), u is the global W22 solution
of the problem (1)-(3), then we have further

uy € L0, T; W2 () (11)
Proof First rewrite (3) as follows

(e, ws) — (Dtme, ws) = _{f[“m]'-. Vs ) (57)

Differentiating (5') with respect to £, multiplying the obtained equality by o/, () and

swmming it for s, from Lemma 1 and Lemma 3 we obtain

”“IraH“? A I|1"~_"'Tffmu||? = ||Jrf(“mmqllumt”p”vumit” < My || Vgl

it follows that
”'I"-m..f.!” = ||?’Uamu|| i: Efi (ﬂ E L E T]

50 (11) holds.
From Theorems 7.2 and 7.4 of [8] we can get the following two Lemmas.
Lemma 5  Assume that v(z) € W, () is the unique solution of the equation

—Av = div f(z) (12)

1.

L{?U'Ttp+ﬂ:ﬂ}-?gﬂ}dm=0, Y € Wé'g{ﬂ]

80 € &, f(z) € LP(Q), then v(z) € W, P(Q), ¥2 < p < co.
Lemma 6 Assume thaf v(x) € W,:} ‘2{5".!] i3 the unique solution of the eguation

v — Av = div f(z) (13)

e,

ffw + Vo Vo + flz) - Velde =0, Yo € Wy(R)
0
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flz) € Wmtle(), a0 e €™+ then v(z) € W™2P(Q), ¥m 2 0, 1 <p < co.

Rewrite (13) as following equivalent integral equation
= (I — A)~'div f(z) (14)

then in Lemma 6 the equation (13) can be replaced by the equation [14).
Let w(x, t) be the unique W*? solution of the problem (1)-(3), then u satisfies

= (I — &) Hdiv f () (15)
Ay = div [grad (I — A) " div f(u)] (16)

il j
U= Uy -:-f (I — &) div f (u)dr (17}

Remark By Theorem 1, Lemma 4, we have w, € L¥=(0, T} W) n (0. T);
1 E2(61)), so for any fixed ¢ € (0,T]. (15)-(17) all have meaning.

Theorem 3 Suppose that f(s } e O and satisfies (H), ug(z) € W22 N
'E-If"]"”l:"-'i']l (2 < p < oo), then ¥T > 0 problem (1)-(3) has a unique solution u(z,t} €
WS (0, T WP N W, Pa)).

Proof  Since up(z) € WP(2) N Wul'p[ﬂ] c W) n H-*,-} “(0)), by Theorem
1. Theorem 2 and the remark, ¥T = 0 the problem (1)={3] has a unique sclution
wlx.t) € W20, T; WH*(R)n W W, Q{Dj Look upon f(i:) as a known function, then
for any fixed £ € (0, 7], ue(..t) € Hfz () ’ﬂfVl *(£2) is the unique solution of the linear
mtesral equation (15) and linear differential equation (16).

Step 1 By Sobolev embeding theorem u € Wkesin T Wha(Q) n LT (L), where
2n 2n

e Eif'r.!,}'i'liq{miff.u:E‘?Eqﬂ-.‘:ﬂif?tzlg‘livﬂ hIlif
TE = T — &
w4, 2 < rcoofn=14 2<r <ocifins3
Clearly the following inequality holds
fesh (I S
“..””}H;_:'l < Collf (w)ll, |T“”r.u + || £ “]”,nj i e (18}
BLs AL i
] % A . } ,
(i) 7 < 3, choose ry = o0, 1 = — 5 if n.= 3, q; be an arbitrarily large positive
number if n = 2, g = oc if n =1, then we have P = and
I:"f":i'”'i'Lllv'“f”-en < I”E“:'”im = (4 (19)
2n : . -
(i1} n = 4, choose q; = . 71 be an arbitrarily large positive number, then (19)
7i—
LA o e A
also holds, where f; = ————=—, 4 is an arbitrarily small positive number.

Thi—
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2n nin— 2 :
(iii) > 4, choose q = oL %, then again || /()| [[Vuly, < C1.
; e 27 . 2n(n — 2] S
In view of 7, e < — %0 by (H), || f(u)lls, £ E’g,__wh{ﬂ'e S e o 50
Thus for all n we always have f(u) € L0, T; WP {Q)), where §; = oo if n = 1,
: 2n—=1d) . :
7, = an arbitrarily large positive number if n = 2, p; = r%;v_wg—:l, d=0ifn =
Al — 2 :
3. 4 is an arbitrarily small positive number if n = 4, §) = [ ) if n =

nZ — 2(n + 2)
4. So by (15) and Lemma 6 u, € L®0.T;W=M(0)). And by (16) and Lemma

oty & B0, T, W[:‘ﬁll[ﬂ}}, so ;€ L0, T; WP () N ‘[-*If'ﬂl"le (€2)). From (17) u €
Wl=<(n, T, WP Q) N W'ul‘p’(ﬂ]]._ m = min{f,,p}. So when 7, = p, in particular,
when n < 2, we obtain u € WL2°(0, T; W2P(Q) N W, *(Q2)). Therefore in the following
we only need consider the case n > 3 and p; < p.

Step 2  Assumen > Jdand pp =7, <p.

First it follows from u € WU (0, T; WPL(Q)) that w € W0, T, Wle(q) N

LT()), where 2 € ¢ £ HP; fpp<n2<g<ooitp=m2=g=occifp >n;
T — P
2 << ”fg} if o0 <n,2<r<ocif2p =n,2<r<ocif 2p > 0
e j|'|_

Consider the following inequality

1 1 1

llli ] {G ! 1 '1"?1 -1-+ .'T !_J.:.a """l"'""':— 2':]

| f(red 1z, < Collf (dllrallVullg + [1F(x)lz, Vel TPty (20

(i) 2py > n, choosere = ooy g2 = ;an; if p1 < n. go be an arbitrarily large positive
T

number if p; = n, g2 = o0 if py > n, then we have T, = g2 and

1 (@)l I Vully; = Cio || f(u)ll5, £ Co (21)
L ; : =t
(ii) 2p; = n, choose g = n? pl} = n, 12 be an arbitrarily large positive number,
— M
then (21) also holds.
TP __mnin —2)

(iii) 2y < n, choose g2 = , then || f (@)llr: | Vulle £ Ch,

mo— Py z 2(n — 2m) =

BPL 1F (s, < Cs follows.

< :-
n—2 n—12m
So for all cases we always have f(u) € L=(0,T; WhP:(Q)), where p, = co if p; > m,
pi(n — 4]
L Has 1)
and py < n, d is an arbitrarily small positive number if 2p) = n, 5, =

and from 7y

i, can be an arbitrarily large positive numberifp; = n, p2 = A =0if2p > n
pin(n — 2) ¢
n? —(n+2)m
991 < 7. So from (15)-(17) and Lemma 5-Leémma 6 we obtain u, € L0, T; W2P2(2)N
H"[}'E“[El]l:l, w € Whe2(0, T; WP () N LL-'quP?{ﬂ_}}: pa = min{F,,p}. Thus if 7, = p, in

particular if py > n, then 1 € W10, T: W2P(Q) N WiP(Q). If Py < p, we again
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obtain 7y by a similar way. And so on and so forth we can obtain By, Pa, - - -, satisfying
p., = ocif p > Py > n, P4y can bean arbitrarily large positive number if p > pp = n.
For these two cases we again obtain w € W0, T; W PN W[:‘p (€)).

It . < min{p,n}, then

g T e Pl [ e (22)
FL = = 1 e
P+l n— P an arbitrarily small positive number, if 2p; = n
or (n - 2)p
o ) TUTL — &P : iy i R
Pl = 00 T £ 205, itpns. el (23

g =2 Clearly ppoq > Py

(1) If 2Py = 4 = n, then 2§, > n, ¥k 2 1, s0 we have (22), ¥k = 0. Note that

e o == = = —
P = Pe. 1= el D1

biE

Lol oty = T\
S A o ]
f"j.lc:_FL Py 1"'p1Pn}2(I_l)

henee there exists a kg such that P, _; < min{p,n} and p,, = min{p.n}. If p < n, then
P, = pandu € Wi, T; WP Q) n Wul'p[ﬂ}}:_ If p > n, then Py, ., = oc or an arbi-
travily large positive number, S0 P41 = min{Py, 1.0} =P 1 € W heo(, T; W2P(8) N
WP (R)).

(2) Py =4 <mn

(i) 2P, < n,vk = 1, then (23) holds, ¥k = 0, and again we have

Pi1 nn-2) _ _na-2) Pict s "t (ﬁ. )“
= 5 | — - - = = ' L —
P & — (A 2)P e = (n+ 2)Pr-1 Pr_1 - 2

. mn s
w0 there must exists a kg such that §,,_; < mm {p) E} = p, and P, = P thereby

w € Who(0, T3 WP (Q) n W,y P().
(ii) There exists a kg such that 2p, _; < n, 2Py, = n and Py, < min{p,n}, then

?ji+1: zn{n_zj_r ';"":"D1l:-'”:kﬂ"'1
P n? = (n+2)7

Pt Bod o s
J =Dk

Note that 5
:rjku"l'i n—4 ﬂ.{ﬂ o 2] i i Piy

L = ==
P Tei= Pkn ﬂ? = {ﬂ' + E}Pﬁm—l Pku—l

S — e o e




70 Liu Yacheng and Wan Weiming Vol.12

so for all & > 1 again we have s 2
Pﬁi+1 ~ j'-"'.l.:
Pl Pr—1

The other proof is similar fo that of (1).
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