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0. Introduction

In the study of many geometric differential equations integrability conditions play
an important role. For some situations they yield obstructions for solvability, and for
the other they provide balancing relation of the problem under consideration among
different regions. Notable examples of integrability conditions include Pohozaev's type
identities for semi-linear problems in the Euclidean space, the Kazdan-Warner condition
for the Nirenberg problem, and the Futaki’s obstruction for Kihler-Einstein metrics.
It has been known for a long time that all these integrability conditions are intimately
related to the symmetry of the underlying manifolds as well as to the canonical dif
ferential operators which reflect this symmetry. In [1] we discuss this issue from the
viewpoint of Lie’s theory of symmetry groups for differential equations and Noether's
theorem on conservation laws. The general setting can be briefly described as follows.

Consider a differential operator F[u] which is the Euler-Lagrange operator for the
Lagrangian £[u] on a manifold with a certain structure. Usually F[u] is canonical in the
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sense that it inherits partially or entirely the symmetry of this structure. One would
like to look for an integrability condition, or a variational identity as called in [1], for
the nonhomogeneous problem

Fi)L boi)

The procedure of generating a variational identity corresponding to each (divergence)
symmetry of Flu] = 0 consists in the following three steps.
(1) Find the Lie symmetry group for the homogeneous equation

This can be done by solving a system of linear PDE’s satisfied by the infinitesimal

generators of the symmetry group. _ .

(2) Determine which infinitesimal symmetry is an infinitesimal variational or divergence
symmetry for the Lagrangian £. This step can be easily carried out by direct
verification.

(3) Put the infinitesimal divergence symmetry into an expression appearing in a erucial
step of the proof of Noether's theorem on conservation laws. After some integra-
tion by parts we obtain a variational identity for solutions of the nonhomogeneous
problem. In general, each infinitesimal diﬂ.r&rgence symmetry produces a variational
identity. .

We have applied this procedure in [1] to derive some variational identities for the
p-Laplacian and the conformal Laplacian on a Riemannian manifold. Some of these
identities are old, but some are new. In a companion paper [2] we treat the same
problem for a class of conformally invariant fourth-order semi-linear equations.

I this note we would like to further illustrate the procedure to the complex Monge-
Ampére equation on a compact Kahler manifold. Consider the equation

52
det (ﬁuﬁ + Eg;g—ﬁ-) 5 exp F'(z,Z, u)det lfgﬂﬁ] (0.1)

which is defined mvariantly on a Kahler manifold (M, g). Here g 5dz% @ dz% is the
Kahler metric in local coordinates and F' is a given function on M x R. Equation (0.1)
was studied by Aubin [3] and Yau [4] independently. Both authors proved the existence
of a solution when 8F/8u > 0. The case F/0u > 0 is much harder and is solved in
[4]. Needless to say, the most important case of (0.1) is

2

Fu =
det (yﬂg + w) = exp(Aiu + 4;5{.;:., z))det (g,3) (0.2)
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whose solvability is equivalent to the existence of a Kdhler-Einstein metric on M. The
signature of A is determined by the signature of the first Chern class of M; itis 1, 0, or
—1 {under a normalization) depending on whether ¢) (M) is negative, zero, or positive.
The above mentioned work of Aubin and Yau solved (0.2) for A = 1 and A = 0, 1
respectively. The case A = —1 is unsolved (except when the dimension is two, see Tian
[5]). In [6] Futaki discovered an obstruction to this case. It turns out that if (0.2) is
solvable, then for all holomorphic vector field £ on M,

. deb
—¢

b F St oy E
Mf g : 0:8)

But then one can produce some ¢ on a Kahler manifold with nontrivial holomorphie
vector fields such that (0.3) cannot hold. Recent progress on the solvability of (0.2) in
the case of positive ¢; (M) can be found in Tian [7].

Using the procedure described above, we shall derive an integrability condition on
the solution of the general equation (0.1}, which, in the special case (0.2), reduces to
(0.3). See Proposition 3.3 for a precise statement.

This note consists of three sections. In Section 1 we consider the Hodge decomposi-
tion for a holomorphic vector field. The decomposition formula provides a term needed
in the group analysis of the complex Monge-Ampére operatar in Section 2. In Section
3 we shall derive the integrability condition for (0.1).
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1. A Hodge Decomposition

Let M be a compact Kahler manifold of dimension m. In complex local coordinates,
its Kahler metric is of the form

ds® = gﬂﬁdzﬁﬁdﬂg, a,f=1,---,m

and the corresponding Kahler form is

T 3
) = ?gﬁﬁdza ANdz

let. h(M) be the complex Lie algebra of all holomorphic vector fields on M. For any
(1,0)-tvpe vector field

i
“T 5
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in h(M) we associate to it a I-form of (0, 1)-type by
o= gﬂﬁcf‘:’dzﬁ = ﬂEdzE

According to the Hodge decomposition theorem (See, e.g. Lichnerowicz [8]) for each

I-form of ((.1)-type o there exist two 1-form p and Ha ﬂf the same type, Ho being
harmonic, such that

a=Ap+ Ha (1.1)
The Kahler condition dw = 0 is equivalent to

0945 _ 99a3
837 ﬂgﬁ

Therefore, if @ is also holomerphic,

ey ;':'lg =S g i —
T ,I3 = o8 ro =t ) pie
dio= 577 —B 32T A def = (—Esﬁ £ t+9,5 E:}ﬁ) gt dalta=

Le., e is d"-closed. Applying d” to both sides of (1.1), we have
2d"6"d"p = 2d"(8"d" + d"8")p = d"Ap =d"a — d"Ha = 0
Therefore
dd"p =10

Putting this into (1.1) yields
a=dp+ He (1.2)

where p = 26"y is a complex-valued function. Thus we have proved, for any holo-
morphic vector field £ of (1,0)-type, (1.2) holds for its associated form a where pis
a function and He is harmonic. A similar statement holds for fields of (0,1)-type. In
particular, when £ is a real holomorphic vector field, i.e.,

3 :
‘E:'E ‘gﬂﬁﬂr {1:: &, a=1.-.m
we have the following decomposition
a=do+ Ha (1.3)

where v is the associated 1-form gaﬁ.fﬂdzﬁ—l—gﬁﬁfﬁdzﬂ, o = 2Re (p) and He is harmonic

(p is associated to {;“‘% via (1.2).)
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2. Symmetries for the Monge-Ampére Equation

Let M be an n-dimensional Riemannian manifold with a Riemannian metric gijdz'®
dz?. A one-parameter gr{:-up of transformations on M x R is of the form

Lt

=E"(m,u,5}; § =], e (2.1)
u=P(z,u,c) (2.2]

satisfying « = X(z,u,0) and v = ®(z,u,0). Its infinitesimal transformation, 1.e.,
the vector field on M x R generating the one-paremeter group, can be obtained by
differentiating the relations (2.1) and (2.2). Denoting by

d

v = £z, u} d +{,5{5' T-!i]au

we have

: : 4,
£z, u) = Eﬂg EZDE*{m,u., g) and f(x, u) = e E:D@{z,u?.ﬁ}

Given a function u(z) in M, under the transformation group it goes over to a new
function %(x) as follows. Since, for ¢ sufficiently close to 0,

¥ = Bz, ulr), &) (2.3)

15 invertible in z, we may use (2.2) to define (%) where now the x in @ is replaced
N
by  using (2.3). By covariant differentiating @ we obtain o )-tens:::r fields @ ; at 7.

The following formula, obtained in [1], describes the infinitesimal change of u s(z) to
u r(x) along the group action.

d - =~ k k
E W 't.rfm_..._.iih.{le = (¢ — £ ﬂkjl:_;li---jp; + & W gy oneine

N
T |:1'5-.5"1'“.1']'-'-"5 o u.k_fn"'ji.v]‘fk A z F}km”ﬁjr"i"';fnr‘fm (2.4)

where I'};’s are the Christofel symbols of the metric 9ij-
When one deals with complex manifold M with a Kihler metric g ﬁdz ® dz”
(e, =1,---,m), the formula (2 4] is still valid if we let 2% = 2% and z2%™ = 72 for

a=1,---,m. Notice that in this case the infinitesimal transformation is given by

v =£%(z, u)

b a K,
—— a —_—
5.e TE7 (@) 5ea T (7 u) T
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A one-parameter group of transformations on M is called a symmetry of a differ-

ential equation
Fz,u(z),ui(z),---) =0

if 1(%) solves the same equation whenever w(xz) is a solution. The infinitesimal criterion
for symmetry can be obtained by differentiating the equation F(Z, (%), (%), --) =
and then putting £ = 0. Thus, using (2.4) we have

ap OF & oF
Rttt - 25
Sttt RS ug 5 &

on Flz,u(z);u(z), ) =0
When it comes to determining the symmetry group for the Monge-Ampere equation

det I:gug + u.ﬂ!..@-}
det (g -::E}

M) = =0 onM (2.6)

one can, in principle, use the equation (2.5) and the prolongation formula (2.4). How-
ever, things become simpler because of the Kahler condition which implies that all

mixed Christofel symbols vanish, and therefore u 5 = u, . Bo (2.5) and (2.4) simply
become ;
2B . 8gm 08 ( 1 ) B bos
et det (g 7 + u B a2
det [Qﬂﬁ]e ot Art \ det (Q&E} {E’a.ﬂ af 7+ T {gn,ﬂ} olu]  (2.7)

for some A = Az, u, i, ui;), where

aE
8288z

b5 = (B(e, u(z)) — £5(z, u(@))ux(2)) + €5 (e, u(e)uz(z)  (2.8)

{::"TE is the (e, @)-cofactor of {ET.:;E — uﬂﬁ].}
Proposition 2.1  Let M be 'a compact Kahler manifold. The symmetry group of .
the homogeneous Monge-Ampére equation (2.6) is generated by vector fields

d d
P + (e —o(z)) 5=
where £ € h{M) is real, c € R and o s determined from £ wvia (1.3).
Proof Writing (2.8) out we get

W=kl

tﬁﬂE — :ﬁfﬂ:g ‘l— Eﬁ'ﬂ&ﬂﬁ.‘ + {I{J‘uﬁuﬂ- ‘t— d’uuuﬂ-uﬁ + ﬁf’uuﬂ_ﬁ
= {523 ok Eﬁa“ﬁ 6 iﬁﬂu =+ ‘Eﬁuuﬂuﬁ + éi“aﬁ}uk

- (€5 + Elualuyg — (65 + &Gup)uka
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Put this expression into (2.7) and compare the coefficients of the derivatives of u.
Notice that now (2.7) holds as an algebraic equation in z,u and its derivatives. First
of all, it is easy to see that A must be independent of u;;. Then a comparison with the
coefficients of the higher order derivatives of u shows that £ must be independent of wu,
i.e., £ = £(x) and it is holomorphic. Also ¢y, = 0. Let’s write

¢z, u) = Alz)u + Blz)
Now (2.7) is simplified to _

agr:r.i‘?

xff
T ﬁ:

So A; =0, 1.e., A(z) is constant. By using the identity

) = A M, [u]

c“ﬁl[g?g +u,5) = det (9,5 + u, 50y

the above equation further reduces to

Cn_ﬂ?

; dg_
el R o £ e o "I" S
det (g,7) (B = 49,5+ €925 + &m0 i f- ) gl

Therefore 5 .
; Y08 =Yg
B.g— A0yp +&J0.,5+Egva + €5 +€T =2 =0
for @, 8= 1,---,m. Now,
aﬁﬂm a.f':" 5‘5"1
'H — —
Sadyg +¢7 877 Bz +{9p0 ey =9, (:ﬂ'ﬂ+£r )
=.5Va6" = Vo 22 + (Ha)g (by (1.2))
...E?,nf_; at, = VYo 5‘3:-‘5 3 ¥ L.
o +d(Ha) 5= pog
820928 T PaB

where Ho = {Hﬂ]ﬂ—dzﬁ and d'(Ha) = d'(Ha) zdz™ A dz? = 0. Similarly,

=008
az7r = Pop

ETQ_-& +*£T

Therefore
(B+o),g—Ag,53=0

which implies 4 = 0 and, by using the compactness of M,

B = —g + constant
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The proof of the proposition is completed.
Remark  General references on Lie symmetry groups include Olver [9] and
Ovsiannikov [10]. g

;-An: Integrablht}r Cc:nndlt-mn

Consider the following Mﬂnge*ﬁmpere equation on a mmpa{:t Kihler: manifold
(M, g,3d2% ® dzP), a,B=1,-+-,m

Mglu] = rfl[:mu} | . (3.1)

where f is a given smooth function in M x R. The Monge-Ampére operator M y[u]

can be written as
M, lu] = det {-:'FE + "i.?ﬁuj

where Viu = VVgu = g®73%u/8z78z". By expanding the determinant we have

det (dgu + Viu)

IVt e h AVala
—14ve -I—l N tueaVioin + 1
% Sz Viu  V3iu m+m’

B L TR i )

Setting

-u::. Tk _ 1 ] -+ 0L

.'31 5 j;1 By
where Ef;‘ 5“ is the Kronecker tensor, we have

Mu] =1+ Zs'*l AT AR TR LT
k=1

It is well-known (See, e.g. Aubin [11]) that M,[u] has a variational structure;
namely, it is the Euler-Lagrange operator of the functional

Jw) = [ u,7)d
W = [ L(@u,u5)dv,
where the Lagrange L is given by
1
Liu] = Lz, u,u,5) = [ uMjlsulds
) 3ty : i

(See Lemma 3.1 below for a precise description of the first variation of J.)
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We are going to follow the steps sketched in the introduction to derive an integra-
bility condition for solution of (3.1). The first step, which is the determination of the
symmetries group for the homogeneous Monge-Ampére equation, has been carried in
the last section. The next step is to verify which infinitesimal symmetry is in fact vari-
ational or divergence symmetry for J. Following a crucial step in the proof of Noether's
theorem on conservation laws we examine the EXPression

) u(Lfu]) + Lfu]div,e = % L[ + fuldivyg

_'? FQQ

f;’ Va(LEY) + Vg(LET) (3.2)

where () = ¢ — £%u, — £%ug, and v is any infinitesimal symmetry of M [u] = 0.
According to Proposition 2.1 we can choose v to be

£ (0) s +E7(0) 5 som + (=0) 2

where £, i = 1,---,2m, is a real holomorphic vector field on M and o is determined
by £ from (1.3).
Lemma 3.1 For any function 5 on M,

aL E?L

(R VT V)

E
= ‘E’m( m &kvﬂluv .vg:u)
Proof
aL gL

i 1
- S

d 1 ; T ey, =
=E¢=Uf0{u+tﬁ} 1‘|"§E&1 ‘1.':? H‘]’fl}} ?,ﬁ? Ifuq—tﬂjs dsg
_li.. {u—l—tj el 7 VI (g 4 ¢ ]“'?Ek(uﬁ-f}
T 1 e V! 7 7 1

|
-3
T
F

g
kk+l Say- ﬂi?ﬁl vk)
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Uy s«g;l TSNV Sy Vi
k

= nM[u +‘~?ﬁ1( Zk AT A T -vg:ﬂ)

_?ﬂl(

k
— k+ 1 Cartiey ViUV Vgl )

as claimed.
Lemma 3.2 We h-rwe for (} = —a — £%u, — f“ﬂm
aL aL
Tﬂ D{Q Q""_' "1" dl?g[L(‘EJ
ﬂ!ﬁ

1 o
= -0+ Vg, (u Bpwrs el kB N Sy, .vﬁ:u)

_?m( k 210V w2 vﬁk) (3.3)

Proof For simplicity we shall first consider the (1.0})-type part of £ and establish
(33) for & = (€1++,€™,0-+-0) and Q = —p — E%q.

V= TnQ J4 Q—--Pdwﬂ(L:f]

r:rﬂ

1 yeoB(s)

det (g e

= (= g = (Va5 = €7Vattrg) || 305

1 1
+({—p—&Tu,) g Mg[s.u]ds + ?ﬁfﬂfn uMg[sulds

; e uc“ﬁ{s}
+ £%% f Molsulds +=£TVoy = | ——==tis
'-'E o 3 y[ ] E T a8 0 det {gaﬁ}
1 ’HC&E[H}
ot 7l i - v = e T} i o P
—[ﬂ l: pﬂﬂs = {T-'F.-_‘.:IE ]g-]rﬂ vﬂ‘f EQ'W_; ar Su’rﬂ}}d t {gaﬁj ds
1 FEE : '
- pf M [sulds + ?aﬁﬂf uM,[sulds
0 0 .
where we have used the fact Vau, 5 = V,u 7 on a Kahler manifold.
Now, by the Hodge decomposition (1.2)
dp 8%p
—? i — ? T H by — — ff H —_ = S
ot “(ﬂzﬁ 2 &}‘S ) dzxpzf g ﬂ)?‘ﬁ Pap



ab Chou Kaiseng and Zhu Xiping Vol.11

since

d'(Ha) = d'(He) 5d2° A d2 = 0
Consequently the above expression is equal to

ueB 5} L e (s)
“'ﬂf det (g =) oF) i )o dct[gﬂﬁ]ds-]_f 5 f ylonid

Denote the first term of this expression by I and the rest by II. We have, by Lemma
31

drL HL)

II= - (?‘Ev&ﬁaﬂ : +,ﬂa_—u'

e PMQE"'-*] BV (

i LI
Jiﬂ“i‘l {11 uk?mﬂ?ﬁz -‘Eﬁ:u)

'IE: .3
—_?ﬁi( mﬁ‘ﬁ’. AR ?ﬁiu“'?gf“)

On the other hand,

ds

ﬂ_

1e 30, det{gnﬁ—i-.s{u +ts71p ﬁ}}
1= [
drt t=0 'dEt {g&ﬁ}

=fl“§£ (1 Yt t v e tp)l'___vE:(HjLEﬁei)S;n)dﬁ

Zw’* By PVGIu- - Vi

o) Cg N
—pzsﬁi VUV Vi 4 'a:f_ﬁ,( Zsﬂi L ATALTAY, Vg )

= Vo (PZ EE{'.'.'ﬂi VauVgiu-. Vgt )

Adding Terms I and II together yields (3.3). So we have proved Lemma 3.2 when
£ is of the type (1, 0). A similar identity can be obtained for the (0, 1)- -type part of £.
By putting these two identities together we obtain (3.3).

It follows from Lemma 3.1 and Lemma 3.2 the following basic identity holds

0= QM,lu] + o + div,(L¢ + A) (3.4)

where

= k 1
A=ud cardVEu Valu( v e - s vmo)
k .

k+1




No.1 An Integrability Condition for Monge-Ampére Equations on - - - a7
1
g B vl
me @ VauVgu - Viu (J&;H =i

for any infinitesimal symmetry v = £8/82* + (—¢)8/du and any smooth function w.
When u solves M [u] = 0 and o can be expressed in the form divgﬁ for some vector
B, (3.4) shows that L{ + A — B is a conservation law for the Lagrangian L. On the
other hand, when u is a solution of the nonhomogeneous equation (3.1), (3.4) vields

0= —of(z,u) +divel Fz,u) + & Fy (z,u) + o + div,((L — F)¢ + 4) (3.5)

where F'(z,u) is a primitive function of f(z,%). Recall that

fﬂ'=ﬂ
M

an integration of (3.53) over M gives
f &IF,, (¢, u) f (072 = divyéF(z,) (3.6)

Proposition 3.3 Let £18/8z7, j = 1,---,2m, be a real holomorphic vector field
on M and o is determined by (1.3). Then (3.6) holds for any smooth solution u of
(3.1). In particular, if M is a compact Kahler-Einstein manifold whose Kdihler form
w = (/=1 2w)g zdz% A dz5 represents the first Chern class of M, then

0/3&{ éJF:J '[-T;-u} = ,/,."Lf dngf{f{I,u} 4 F{m:‘u” . (3?}

Proof Let M be a Kahler-Einstein manifold. Let A be the complex vector space
that consists of all complex-valued smooth functions satisfying A, = 2. Then ac-
cording to [8], A is isomorphic to the subalgebra of the all real vector fields of h(M)
through the correspondence

O
53“

d
4 -:: ,E-h:z—
b g ogs Sty
Henceforth, as can be seen from (1.2),
a=d'p with Ap=2p, 2§"a=2§"d"p=Ap=2p

So we have
p=—-Va£°

and

g = =Vaf* — AgtT
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Putting this into (3.6) we get (3.7).
Corollary 3.4 ([6]) Suppose that M is a compact Kihler- Einstein manifold whose
Kahler form represents the first Chern class of M. Then for any solution of the equation

M, [u] = e7vtele)

we have
g1 9% —uro
M Ox?
for any real holomorphic vector field £.
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