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Abstract The continuous casting Stefan problem is a mathematical model de-
scribing the solidification with convection of a material being cast continuously with
a prescribed wvelocity. We propose a practical piecewise linear finite element schermne
motivated by the characteristic finite element method and derive an error estimate for

the scheme which is of the same convergence order as that proved for Stefan problem
without convection.
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1. Introduction

Let 2 be a cylindrical domain @ =T x (0,L) c R%, d =2 or 3, where 0 < L < +o0
and ' = (0,L1) if d = 2 or T' € R? is a bounded polygonal domain. We write z =
(', z) € R withz' € " and 24 = z. Denote by 'y = PH{'I]L 1Dy = PK{L}, I'p =Tul's
and I'yy = 01" x (0, L) (ef. Fig.1). For 0 < T < 400, we set Qp = Q x (0, 7).

m.l'

Tn

Liguid Solid Ly

Fig.1 The domain 0}
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We consider the following degenerate nonlinear parabolic problem

%-l—b{ﬂ%—ﬂﬂ:ﬂ in  Qr (1.1)
9=pw) i Qr (1.2)

" @=gpfz,t) on Tpx(0,T) (1.3)

—g—i = plx)f + gn(z,t) on D'y = (0,T) (1.4)
u(z,0) =uglz) in @ £ (1.5)

where 8 stands for the temperature, u is the enthalpy, b(t) = 0 is the extraction velocity
of the ingot, and n is the unit outer normal to Q. The mapping 3 : R — R is Lipschitz
continuous and monotone increasing. It is assumed that 3(s) = 0 for any s € [0, A] and
0 <o £ 3(s) < ap for almost every s € R\[0, A], where A > 0 is the latent heat. It is
clear that the inverse mapping H = 87! is a maximal monotone graph in R x R which
is Lipschitz continuous in R\0 and has a jump discontinuity at 0.

The multidimensional two-phase Stefan problem without convection (i.e. when
b = 0) has been studied by many authors. For the existence and uniqueness of the
weak solutions, we refer to[1] and [2]. The convergence of numerical methods for the
enthalpy formulation of Stefan problem has been studied in [3], [4], [5] and [6]. The
error analysis of the finite element schemes has also been considered in the literature
(cf. ez [7], [8], [9], [10], [11] and the references therein). The problem (1.1)-(1.5)
models a popular industrial solidification process with convection in which a material
is cast contimuously with prescribed velocity v = b(t)eq, where ey = (0,---,0,1) € R
(cf. e.g. [12] and [13] for the description of the industrial process and mathematical
modelling). The existence and uniqueness of the problem (1.1)-(1.5) has been studied
in [14] and [15]. Concerning the numerical solutions of the continuous casting problem,
relatively few results are known. It is clear that the problem (1.1)-(1.2) is convection
dominated due to B(s) = 0 for s € [0,A] or, equivalently, the jump discontinuity
of the enthalpy. In [16], a numerical scheme was proposed which is based on the
nonequilibrium phase relaxation proposed in [10] for Stefan problem to smooth the
enthalpy and the characteristic finite element method in [17] to treat the convection
term. The convergence of the scheme has been proved in that paper. However, to our
best knowledge, there has been no mathematical work concerning the error analysis
for the numerical methods solving the continuous casting problem (1.1)-(1.5). In this
paper we will propose and study a new scheme which is motivated by the characteristic
finite element method in [16] to treat the convection term.

Denote by T > 0 the time step and {" = nr for any integer n = 0. Set T = x—bit)rey
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and T = u(%, t). The characteristic finite element method is based on the observation
that (cf. e.g. [17, 16])

Ju™ Gu* ut-T"t
7 [ =
ot + b(t7) dz T

where u® = u(-, "), T = ZF(t"71), and T = w(Z*"1, " ). The equations (1.1)-
(1.2) then can be discretized in time by

PR et

—AB(*)=0 inf (1.6)
However, note that

Sur—1
&z

7" z) = ulz — olrey 2N g™t T lr

This suggests us to discretize the equations (1.1)-(1.2) in time by

u’t - uﬂ-—'l i bn—l ﬂu”‘_l
T oz

- AB(u™) =0 inQ (1.7)

which eorresponds to an implicit discretization of the diffusion —A8(w) and an explicit
discretization of the convection b(t)8u/8z. We note that a similar scheme was pro-
posed in [9] but for temperature dependent convections. In this paper we will further
approximate (1.7) by piecewise linear finite element method with numerical integration
and thus obtain a method which can be implemented easily on computer. Furthermore
we will derive an error bound which is of the same convergence order as that proved
for Stefan problem without convection in [8] and [9] under the uniqueness condition
introduced in [15] for proving the uniqueness of the weak solutions to (1.1)-(1.5). At
this position we also remark that unlike the characteristic finite element method in [16]
which further discretizes (1.6) by finite elements, the method studied here can be easily
extended to solve general Stefan problem with preseribed convection in [18] and [19]
hecanse the method here does not involve the extension of functions outside the domain
(1 which is usually difficult when the domain is not of cylinder type and the convection
is not in one direction. However, as the method treats the convection explicitly, 1t
studied here might not be suitable for strong convections.

The paper is organized as follows. In Section 2 we state assumptions and notations
and introduce the approximate problem. In Section 3 we first prove some stability
estimates and then use them to obtain the error estimates. The key ingredient 1s a
new sharp boundary estimate for the Green operator (See Lemma 3.2) by using the
uniqueness condition in [15], ie., the free boundary does not touch on the boundary
T'o. In Section 4 we indicate some possible extensions of the results in this paper.
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2. The Finite Element Methmd

We start by stating the hypotheses concerning the data.
(H1) 3 : R —+ R is Lipschitz continuous and monotone increasing; 3(s) = 0 for
s€ [0, and 0 < o < F'(s) < e for a.e. s € R\[0, A

(H2) b € C%[0,T); b = 0.

(H3) ug € L™=(R), 8y := Blug) € C(RN).

(H4) p e C*}Tw); p = 0.

(H5) gy € HY(0,T; CY T x))

(H6) gp € HY(0,T;C*(Tp)); gpl(z,0) = fy(z) on T'p.

(H7) Uniqueness condition: gp(z,t) > 0 on Iy — [0, 7).

In view of (H4)-(H6) we may consider p, gy and gp extended to £ in such a way that
p € ™), gp,gn € HY0,T; C%L(82)). It is proved in [15] that under the hypotheses
(H1)-(H6), the problem (1.1)-(1.5) has weak solutions (u, #) satisfying

6 L0, T HH ()N C(@p), weHY0,T;V")NL®Qr) (2.1)

where V' = {v € H'(2) :v =0 on I'p} and V* is the dual space of V. Moreover, the
weak solution (u,#) is also unique if (HT) is satisfied.

Let {Tn}xr=o be a family of regular triangulations of 2, where h stands for the
mesh-size. Let Vy, be the standard piecewise linear finite element space defined over
the tri:iugula,tiun Ty and ‘[;'h = Vp M V. Denote by (-,-), {-,-} the inner products on
L2(£)) and L*(T'y), respectively. Let I1, be the local linear interpolant operator, then
mtroduce the following quadrature formulae

{ 1 :II-'r Hh{ :Id“{:: { ! } = Hl: :Id'ﬂ-
0, %)) HETf ox ©, X th nlpx

for any piecewise uniformly continuous functions ¢ and y. It is well-known that (See
e.g. [5] and [9])

lelizimy < (w9 < Clloliagy Yo € Vi (2.2)
(e x0e] £ Cllellpzmyllxllczy Ve, x € Vi 12.3)
{0 X3el < Cllellmroylixllae Ve, x € Vi (2.4)
I(e: %) = (2, xJel < Chllellzimyllxlarmy Yo, x € Va (2.5)
e, x) — (o, x)al < Chllell g oylixllae Ve, x € Vi (2.6)

where ' is a positive constant independent of k.
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Now we denote by al-,-) the following inner product in V'
a(w,v) = (Vw, Vv) + (pw,v} Yw, vV (2.7)
and introduce the Green operator G : V* — V defined by
a(G,v) = (ih,v) YzeV, Y& il (2.8)
where now (-,-) stands for the duality pairing between V* and V. It is easy to show

that for any ¥ € L*(§) we have G € H2(§) and 1GY [ g2y = Cll#ll L2y We also
introduce the discrete Green operator Gy : V" — v r defined by

a(Guibp,v) = a(Gp,v) Yo €Vy, PEVT (2.9)

It is known that
1[G = Grlwllgmeay < CR*™ICY 2y £ CA* " WllLage), ™ =01 (2.10)
We will also use the L*-projection operator Fy : L2(0)) = Vi, defined by
(P, v)p = (w,v) Yo € Vi, w € L*(R) (2.11)

It is easy to show that (cf. e.g. [9])

|lw — Phw|y- < Chllwll ey w € L*(%) (2.12)

for some constant & > 0 independent of A.

As indicated in Section 1 we will use a difference scheme in time to discretize the
problem (1.1)-(1.5) which combines an implicit discretization of the diffusion —AB(u)
and an explicit approximation of the convection b(t)du/8z. Let 7 = T/N be the time
step (N integer) and set {* = n7, I" = (£, t%] and fw™ = (w" — w1 fr for any
given family {w™}_,. We also set w" = w(,1") and {[w]]“ = (L)) f : w(-, t)dt for any
continuous (respectively, integrable) function in time defined in Q. :

Now we are able to introduce the fully discrete scheme.

Problem (Ph,) Foranyl <n < N, find (I, &%) € V, x ¥y such that =
Py, OF = T,B(U™), O — T4g%, € V 5 and

(@U™ o)y~ (577107, ZE2) + (VO", Vi) + (0" +gRpn =0 Von € V
(2.13)
Note that since @, € T:'m we have (b*~LU™ Y, By f0z) = (BrlU™L Bipn 2], Tt s
clear that (2.13) is a system of nonlinear algebraic equations associated with a contin-
uous and uniformly monotone operator, thus foreach 1 <n < N, (2.13) has a unique
solution. For computing the discrete solutions we can use the nonlinear Gauss-Seidel
method as in the case of solving Stefan problem without convection (See [9], [8]).
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3. The Error Estimates

In this section we derive the error estimates for discrete Problem (Pp ). Throughout
we will always denote by € the generic constants independent of h, 7. The first step is
the following stability estimate for the discrete problem.

Lemma 3.1 Under the assumptions (H1)-(H6) we have

mag.:v ||Un||1.?{m = E ""”On”fil(ﬂ} C (3.1)

; [a] %
Proof We take pp = 7(O™ — Ilpg}) € V1 in (2.13) and sum it over n from 1 to
i, for a generic ng < N to obtain that :

mn i o ﬂ 1
3 (U™, 6" ~Thagh)y = 37 (110", (O ~ Tagh)

g My
+ > T(VOM, V(0" —IIxgB)) + > (p@" + gf, @™ — Tagh), = 0
i=1 n=1 [32)

Let J be the dimension of Vh,, {:ﬂj}uT 1 the nodes mf the triangulation Ty on Q\'p,
and {*e,lt.'j}‘;r ; the mrrﬁpnndmg canonical basis of V.r,, Denote by my; = (i, )s,
1 < 1,7 < J, then it is clear that mi; =0, ¥i # 3,1 <4, < J. From (H1) we know
that 3(s) = ai1(s — A) for s 2 0 and 5(s) € a5 for 5 < 0. Thus using (H1), (H3) (2.2)
and (2.3) we have

N e )
S r@Ut, 00 =S | Smywr - U;-‘}E};]
n=l n=l1 L

J=

=Z Zmﬂ k! ﬁ{D“JdE]
= 3 Emﬂf ﬁ{f}ﬂ-’f]

Ty

= S| [ s~ [ b0

[jr:l.r_'. Un.:,.

M min ([] i ay (€ — A]dfjf crlcfdlf) - i;mijJEL’;?
: i

L]
I
—

I
- i
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mqrd

lzmjﬂUn l i

F=1
> C|lU™ |32y — C

where U7 = U"(z;) and OF = O"x;), L= j < J,1<n < N Now using the
summation by parts formula

T T
Z ﬂﬂEbﬂ = bn—l] — ﬂﬂut'nu e ﬂﬂbﬂ T Z bﬂ—'l[ﬂﬂ 7 ﬂ‘ﬂ‘r—l] (33]
n=1 ‘ n=1

and (H6) we can easily obtain that

T

> 7(8U", 0" — Mrgh)y = CllU™ N Z2¢0y = GZ || U™ 1“&{9} (3.4)

n=1

By using (H6) and Young's inequality we get

by ] a
bﬂ—l A=l * ran _ TT.o™ )
S (o gen - Mugh)
ﬂ-l] ; G’ TE() T
<7 Z T||'E"ﬂ||§fl{m + ‘;Ir‘ Z T||U™ 1”%!@} +C (3.5)
n=1 fi=1

where 1 > 0 will be specified later.
By applying Poincaré inequality and (H6) we obtain that

Tp
> r(ver,vi{e" - nhﬂa}} =C ET“Dn“Hi[ﬂJ C (3.6)
n=1 n=l1

The last term can be treated by using (H4)-(H6), (2.4) and the trace theorem to get

i

e
> 7(pO" — g}, 0" ~TIagh), = —1 3 7”10y = C (3.7)
. =l n=1
Now the desired estimate (3.1) follows by substituting (3.4)-(3.7) into (3.2), choosing
1 appropriately small and using Gronwall inequality. O
Let € = [[u]]® = U™ and e = [[#]]" = ©", 1 < » < N. Recall that [[u]]” =
(1/7) f ul(-, t)dt and [[f]]" = (1/7) f (-, t1dt. The following lemma is the key ingre-
dient to derive the error estimates for Problem (P ;).
Lemma 3.2  Under the assumptions (H1)-(H7) we have

8 2

—Gel

1 . - C 2
> <2 [ 166) = B ydt] + TSl 1SnSN (39

L3(Tp)



GG Chen Zhiming and Jiang Lishang Vol .11

where 11 > 0 is an arbitrary constant.

Proof By (H7) we know that 8 = 3(u) > 0 on Ty x [0,T]. But 8 € C(Q4), thus
there exist two positive constants p and § such that §(u) > p > 0 in the strip £2; x [0, T,
where f}; = {(z',2) e : 2' € [,0 < 2 < §}. From (H1) it is easy to check that

2 TN
r= sl < (o +3)160) = Bla)] = 716(r) = A(o) @9
for any r, s € R such that 5(r) > p > 0. For example, for any s € [0, A],

r—s] <lr—A+A< ﬂiliﬁfr) —ﬁm|+§p

< 1801+ 5180 = (- + 2 )8 - A(s) (3.10)
where we have used the fact that r > A since 5(r) = p > 0. From (3.9) we now get
7] < = f e — U™|dt < X f (Bl AU [t b aves in O (3.11)
Let w = Gej;. Then from the definition (2.8) we know that
—Aw=e¢g] inf} (3.12)
w=0 onlp, g—i +pw=0 only (3.13)

Let ¢ € C5°(R) be the cut-off function such that {(z) = 1 in (—4/2,4/2), ¢(z) = 0
outside (—4,4), and 0 < ¢ < 1 in R. Define @ = (w, then it is easy to check that i
satisfies the relations:

— A=Al -w—-V( Vw+de], infl (3.14)
w=0 onlp, %—k;ﬂtﬁ:ﬂ' on [y (3.15)

where we have used (3.12)-(3.13) and the fact that 8(/8n = 0 on Ty, since ¢ depends
only on 2. From (3.14)-(3.15) we have

1@l 2y < CIAC- wllpziny + CIVE - V|l zin) + U”CEEHLE[R}

< Cllw|l grapey + GHEE”.L“[ﬂa]

; ! | 1
< Cleilly- +0—=| [ 180 = AU repce]

where we have used (3.11) and the fact that [|Gelllmn) < Clled|ly -, which can be
easily proved from [3.12} -(3.13). Hence, by trace theorem, we obtain

H a(¢w) |1

lL2(ro) H L*(T)
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C
< nll w2y + E!lfl‘w”irl[m

1 C
<2 [ 166) = BOMBamyie] + Shez.

This completes the proof. O
Now we are in the position to prove the main result of the paper. We set

Caupa(nt) = UMY, Ol )=07() forte(t" L7, 1<n<N
Theorem 1 Under the assumptions (H1)-(H7) we have
2 2 h?
Proof Recall that el = [[u]]*—U™ and €} = [[#]]"—©". We multiply (1.1) by Ge}}

]
and integrate over £2 x I™, then take @y = 7Ghrel € Vi in (2.13), take the difference
and finally sum over n from 1 to ng, for a generic ngp < N. We easily obtain

TED Tig
Yo (" —U™),GeR) + 3 r([[f]" — 67, &) =: (I) + (1I)
n=1 n=1
7 T
=3 78U, [Gn - Gle) + > _ 7[(8U™, Grel)y, = (8U™, Grey)] |
n=1 n=»X
- 1 ft—Llrrn—1 & t e n—lrrn-—1 d e
+;f([[bu]] R ¢ Tﬁacﬂ) —I—ET(E: U ,E[G—Gh]e“)
TEdy
+ > 7[lgh, Grel)y — {[lon]]*, Geg)]
n=1
LT
+ Y T[(pO", Grel)y — (PO", Grey)]
n=1
T
+ 3 r[(TTIagh, VGael) — (V{lgp]]", VGeD)]
n=1
)
+ Y 7l(pllagh, Grey) — (pllgp])”, Geg}] =: (L) + - +(X) (3.17)
n=1
Now we estimate separately the terms (I), ---, (X). We will concentrate on the new

terms (V) and (VI). The other terms are more or less standard and can be treated by
the same methods as that for Stefan problem (cf. e.g. [9]). Here we will not give the
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details. The first two terms can be estimated as in [9] as follows:
2 . 2
(D + (D) = Cllelly+ +C ) llef —ef Iy
n=1
0
4 GZ] 15(u) = BU™) |2yt — Ch + 7), (3.18)
By using Lemma 3.1 and (2.1} we can obtain that
en- C b :
I+ [(IV)] < nlleg - +nZ||e her o= (3.19)

To proceed further, we split (V) as follows:

g

W}=ZT([[mn“—l.—g:“—‘[[ulI’*‘ __,.;-E) f [h”‘ ", 56l -

n=1

Tig ;
+ 3 7 (b”‘ el %Geﬂ_l) =: (V)14 + (V)3

1i=1

It follows easily from (H2) and (2.1) that

T
V), < C ) wllpul)™™ = o™ [l 2 all Gelll gy

=1

i 9 G ;
<ny 7lledlly. + =7
n=l] 1

o
(V)| £C ) T[]l z2gonllehs-— €57 -

n=1

b Le] i 2 C
=1 Z W iRl | Sy
n=1 f

(3.21)

(3.22)

To estimate (V)3, note first that —AGel~! = ! ae. in 2 from the definition (2.8)

of the operator 7. Thus we have

n—1 E n—]) ( n—1 d n.--)
(eu = Gel AGe™, =—Ge

= (?Geﬁ" ,E—?Cﬂ” 1) —f (%Ge;_l) (;GEE_I)&?H
r Z

2

'E' Ti=1
EGEH

A n12
2[ VGe? dm-+-j;n
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_LLi E 1-.rp5 e
=%Lﬂ{{i .:;i'.;;‘——frr ——Gﬁﬂl c;
-3/ lee |i§zda
where in the third iIIE{lllalit}’ we have used the fact that n = egorn = —eg on ['p and

the boundary condition #Ge™ ™1 /dn 4+ pGel~" = 0 on 'y; and in the forth equality we
have used the boundary condition Ge?~! = 0 on T'p and the fact that Ger~l e H*(Q)
thus Ge~! € C(Q1) by the embedding theorem. Now by using Lemma 3.2 and the

trace theorem we obtain that
nn ; = I:::r TE ! ;
Vs S0 [ 186~ AUt + = D7l . (3:24)
=1 n=1

By using (2.10), (2.1} and Lemma 3.2 we also have

70
(VD) < €S 7T Ml a@liG ~ Glelll iy

=1

g
<Ch> ’T||U“_111L?{_n]ﬂ€ﬂ||z,1(n] < Ch (3.25)

n=1
The other four terms can be estimated by using (H5)-(HE), (2.4), (2.6), (2.1) and
Lemma 3.1 to get

|(VID)] 4+ [(VIID] + [(IX)] + ()] < 0 > 7llel 2. + %{r R (326)

n=1
Now substituting (3.18)—(3.26) into (3.17) and choosing 1 > 0 appropriately small, we
can easily obtain

e+ 35 let - 27+ 3 ) 180 = B0y

n=1

ng
<CS Tl R, +G(h+¢+ "') (3.27)
Now the theorem follows from the Gronwall inequality and the following observations:

f 16(1) — BOU™) |2t
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1 1o
= E /;n "H —_ E}ﬂ”%ﬂ'ﬂjdt == Zi'/:rn "ﬁ{Uﬂ} s Hh.ﬁ{UﬂJ”ii{ﬂ}df
n=

1 1o o
=L ./; 18 = B rllZ2()dt — CH2 3 Tl |31

n=1 n=1
1 o
=5 ¥ ff 18 — Oh o [17 2y dt — CR2 (3.28)
n=1]
and
max ||e}||%. = sup |w — up |2 = Cr (3.29)
iy teo,tna]

by using Lemma 3.1 and (2.1) and the following estimate [&]

180x) = B0 220y € CRIVILB(X)Iz2) YXxE Ve (3.30]

This completes the proof. O

4. Some Extensions

One popular method in solving Stefan problem is to smooth the enthalpy first and
then discretize it by using finite element methods (cf. e.g. [7] and [9]). Thus, for e >0,
let H: : R — R be the regularization of the maximal monotone graph H = g-1: .

min(sfe, H(s)) ifs>0
He(s)=4¢ 0 i)
max(s/e, H(s)) if s <0

We can solve the continuous casting problem (1.1)=(1.5) by the following method.

Problem (P.y,) Forany 1 < n < N, find (U™, 8" & V4 x V, such that
U° = Py[H.(60)], U™ = TL[H.(O")], ©" — [ng® € V4 and

=TT — .1- -— a i} Ti Ti y:
(AU ,wn}h—(bﬂ L HEJH‘FB » Vier) +{pO" +g on)y =0 Yoor € Vy (41)

Note that (4.1) can also be easily solved by the nonlinear Gauss-Seidel method. By
modifying the method in Section 3 we can show the following error estimates for Prob-
lem (P, 4. ):

hﬂ
lle — “Eﬁf-’”iﬂm,T;V‘) + (|6 - Et,h.*."”%?[r_?rj = (E +h+14+ —)

T
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which is again of the same convergence order as that proved for Stefan problem without

convection in [9]. Here we have set
e hr(8) = UR),  Oepn(st) = 0O7() forte ek laslsn =

The finite element method with e-regularization of the enthalpy is important for solv-
ing the optimal control problem governed by the continuous casting problem (See [20])
because now the discrete solution operator is Frechet differentiable. Another important
fact is that it often happens in practical situations that the latent heat does not re-
lease at the melting temperature instantly but rather release in a narrow temperature
interval around the melting temperature (See e.g. [12]). This corresponds fo a natural
regularization of the enthalpy. The numerical results of the method in this paper will
be reported in [21] where the continuous casting problem with nonlinear flux including
the practically important Stefan-Boltzman radiation law will be also considered.

We can also extend the method in this paper to study the numerical solutions of
the following general Stefan problem with prescribed convection in [18] and [19]

%‘-: tdiviev—VO)=F in 9x(0,T) (4.2)
6=p) in Qx(0,7) (4.3)

B nlz fion T (0,T) (4.4)

S % — p(2)0+gn(z,t) on Ty x(0,T) (4.5)
u(z,0) =up(z) in £ (4.6)

where 2 — R is a bounded polygonal domain if d = 2 or a bounded polyhedral domain
ifd=3,v:{lx (0,T) =+ RY is the prescribed velocity. In order to obtain the existence
and uniqueness of the weak solutions of (4.2)-(4.6), it is assumed in [18] and [19] that

v.-n>0 onTpx(0,T), v-nzl on Ty x (0,T)

and v = 0 on (Tp N Tx) x (0,T). This problem will be addressed in a separate paper.
Acknowledgement The authors would like to thank R.H. Nochetto and F. Yi
for several interesting discussions.
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