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Abstract In this paper we study the Cauchy problem for a class of coupled equa-
tions which deseribe the resonant interaction between long wave and short wave, The
global well-posedness of the problem is established in space H 3+k o Hk (ke ZHU{0}),
the first and second components of which correspond to the short and long wave re-
spectively.
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1. Introduction and Main Results

In this note we study Cauchy problem for the following long-short wave equation

iug + Upr = uv + ajulPlu, (fz) ER xR (1.1)
ve = (Jul*)e, (t,z) € R X R, (1.2)
u(0) = wglz), z€R (1.3)
v(0) =4dy(z), z€R (1.4)

where o € R, u(t,z) and v(f,z) represent the envelope of the short wave and the
amplitude of the long wave respectively. The equations (1.1) (1.2) arise in the study
of surface waves with both gravity and capillary modes present and also in plasma
physicsl2. For a = 0, Mal®! studied (1.1)-(1.4) by inverse scattering method under
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suitable smooth conditions on initial functions. Concerning the Cauchy problem (1.1)- .
(1.4) in usual Sobolev spaces for (1, v), Guolt! first proved the global solvability of (1.1)-
(1.4) in space L=(0, T, H™) = L*=(0,T; H™) for all integer . > 2 by means of integral
estimation method and the fixed point theorem when a = (. Recently Tsutsumi &
Hatanol®! proved the following results:

(i) When a =0, uy € H%, vp € L2 N L%, they prove global solvability of (1.1)—(1.4)
in the Space Hi x L2

(ii) When o # 0, p = 3, they proved the global well-posedness in space H Tk o gk

for all integers k& = 1.

One natural problem 1s whether (1.1)—(1.4) generates global flow in the space H i x
L? (or H:t* % HF for all integer k > 1) for general p. Our purpose here is to study the
global well-posedness of (1.1)-(1.4) in the space H 2tk x 7k (k € ZT 1 {0}) for general
p = 2. Our main tools are so called Strichartz type estimates which were established
in [6-8] and contraction mapping principle,

Before we state our results we first introduce several notations. For 1 < p < oo,
we denote by LP(R) usual Lebegue space of complex and real value functions. J_, =
(I — A)™% denotes usnal Bessel pntem..ial, we denote by W5P(R) = J_ LP Bessel
potential space. When s is an integer, W*? is just usual Sobolev space. In particular,
we simplify write W52 = H®. Let D = (=A)Z, then D¢ denotes Riesz potential, we

“denote by W*P(R) = D~°L” Riesz potential space. For a Banach space X and a time
interval I € R, we denote by C(f, X') the space of strong continuous function from
I to X and by LP(I,X) the space of measurable functions u from I to X such that
-}l x € LP{I). For the sake of convenience we usually write L7 LE = L9(I, LF(R)) and
LPr] = LP(R, LY(T)) when this causes no confusion. Different positive constant in the

estimates blows might be denoted by the same letter C and if necessary by C(*, - -, %)
in order o indicate the dependence on the quantities appearing in parentheses.

As is standard practice, we study (1.1)-(1.4) via the corresponding integral equa-

tlons
£
w(t) = S(t)up(z) -[—]E; S(t — 7)(uv + alu|P " u)dr, (1.5)
v(t) = wglx) + f: Oz |ulds (1.6)

where S(t) = exp(itA) is the free propagator which solves free Schridinger equation.
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Naturally, if we put (1.6) into (1.5) it follows

wlt) = S(t)uolz) + fﬂ " S(t — 1) F(u)dr, (1.7)
where !
Flu) = uvglz) +fﬂ 3z |u*dru + alulP~ u (1.8)

This process makes the equations (1.5) (1.6) become a single equation (1.7) of v with
data (up(x), va(x)) which can be solved by a contraction method in the space X (I)

over the time interval I, defined by

Xo(I) = {u € C(I; H1(R))|8:u € L (R; L)),
u € L{(F; LP(R)) N L3(R; L°(1))} (1.9)

with norm

leellco = Mell o 7.3 oy F el ztrizse
i ||u||Lg[It;L<;¢[f;|} =+ HSIHHL?ER;LHI}‘J (1.10)

and for & > 1

Xi(I) = {u € (I; H*(R))|0:Jpu € LE(R; X (1)),
Jyu € Ly(I; L (R)) N Ly (R; L (1)),
Ji-1u € L2(R; (1))} (1.11)

with norm

el = Nkvll ooy gty + ||Jk?||f;;’{f;1’a§ﬂ{R}}
+ (1 + T) 7| Je—rull aqmizeeqry) + | Teullogmizs )

+ [|O0s Tkl eorsr2y K €ZT, P2 % (1.12)
where p = %— is an arbitrary fixed constant, and then we define v(¢, ) by the equation
(1.6).

Now we are in position to state our results:

Theorem 1 (i) Let 3 < p < 5, (ug(z), volz)) € H? x L2, there ezists T > 0 and
a unigue pairs of functions (u,v) € C([-T, T];H%} x C([-T,T); L?) satisfying (1.5)
(1.6) with u € Xo([-T, T]).
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(ii) If a = 0, the solutions which were obtained in (i) can be extended to infinity,
that is (u,v) € G’{R;H%j x C(R; L?) with u € Xo([~=T,T)) for any T >0 and

lu(t)llzz = luo(z)llgz forteR (1.13)

Theorem 2 (i) Let 2 < p < oo, (ug(z),ve(x)) € H2TL x HY, (1.5) (1.6) have a
unique pairs of solutions (u,v) € C(R; H%‘Ll} x C(R; H') such thet u € X{([-T,T))
for any T > 0, (1.13) and

2a
o+ 1

B(t) = [ (vOOf + sl + =) ) ds = B(0), (1.14)

/ (v(t) + 2Im(u(t)ug(t))dz = f (vi(z) + 2Im(up(z)upe(x))dz  (1.15)
24 R

(i) Let p = 21 + 1, (ug(z),vo(z)) € Hi ¥ x HE, Lk € Z*. Then (1.5) (1.6). have a
unique pairs of solutions (u,v) € C’{R;Hé“"k} x C(R; H*) such that w € X;([-T,T))
for any T > 0.

Remark 3  From Theorem 2 we easily show that (1.1)-(1.4) generate nonlinear
How W(t) on H E+3 % HF (k € Z7) under composition, in other words, the mapping
(up(z), volz)) = Wt (ug(z), ve(z)) is well-defined from A < HE C{R,; H'E""é'} :H:
C(R; H®), But Theorem 1 implies that (1.1)-(1.4) generate nonlinear flow W{(t) on
H# x L? under the composition only in the case ¢ = 0. When a # 0, we only prove
that (1.1)—{1.4) is local posedness in Xy, hence it is also the open problem that whether |
(1.1)-(1.4) generate global flow in Hz x L2,

Hemark 4 Whena =0o0ra+# 0 and p =3, Theorem 1 and Theorem 2 imply
the results in [4, 5]. On the other hand, here we give some simple and uniform methods
of estimation which suit to some similar problems.

As a direct result of the global posedness in Theorem 1 and Theorem 2 and the
process of their proof, we also have |

Remark 5  Under the conditions of Theorem 1 and Theorem 2, for any T > 0 and
(uplz), volz)) € Hé 2 x HE (k€ ZF U {0}) there exists £ > 0 such that the mapping
(uo(z), volz)) = W(t)(uo(x),vo(z)) is Lipschitz continuous from B¥(ug(x), vp(z)) =
{(o,%) € HE x B llp — wo(@)l] 30s < &9 ~ w(@)lgs < €} to Xp([=T,T]) x
L(|-T, T]; H*)}.

Qur plan in this paper is the following. In Section 2 we give some basic preliminary
estimates. Section 3 is devoted to proving the local version of Theorem 1 and Theorem
2. In Section 4 we complete the proof of Theorem 1 and Theorem 2. For simplicity
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we restrict ourselves to positive time. For any » with 1 < r < oo, we denote by r’ the

exponent dual to 7.

2. Preliminary Estimates

In this section we collect some basic estimates related to Suhrijciingef free propagator
S(t) and give some further estimates in Xy which are required in the sequence.
Lemma 2.1 [6 — 9] 5(t) satisfies the fﬁ!!mm’nﬂ estimates
1

; : el L
(1) For any (g,v) with 0 < R e o
1S(E)ellpar; < Cllwlir (2.1)
: 2 1
(ii) For any (g;,r;) with 0 £ — = L = l, 7 =1,2 and for any time interval

A 4 2 '.'f‘j el
T e R with 0 € I, the operafor G defined by

t
Gf(t,z) = f S(t — 7) f(r,z)dr (2.2)
0
satisfics the estimates
IGf gz < CIANL & = (2-3)
-'* T

where O ts independent of I.
Lemma 2.2 [6, 8, 10] (i) S(¢) satisfies the following estimates

1S @llzerz < CI(- 82 %0l 2, (2.4)
ISOlaze < CQ+TVIdele P25 6> 3 25)
1S@elzsre < I(-A)spllLe (2.6)

(ii) For any time interval I = [T, T] € R, the operator G defined by (2.2) in

Lemma 2.1 satisfies the estimates

(= 82)3G Il 012 < CllFll ez (2.7)
18:Gf ez = Cll sz ' (2.8)

and . ;
(1+T)°IGfllzare < CllJsfllziez P25 82 5 (2.9)

s, e i
where C is independent of I and p = 7 an arbitrary constant.
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As a direct result of Lemma 2.1 and Lemma 2.2 we have

Corollary 2.3 Iet up(z) € H;‘J’k, Jfk{fj is defined as (1.9) and (1.10), then
15 () up ()| x, < Clluo()ll 4 (2.10)

Lemma 2.4 For any time interval [ — [-T,T] C R, let f(z,t) € LILinLliz,

then the operator Gf defined by (2.2) in Lemma 2.1 satisfies the estimates

IGflx, < Clldefllzers + CllTefll 2 (2.11)
where C' is independent of T.

Proof As a direct result of Lemma 2.1 and Lemma 2.9 we have

0.7, [ St

= Cll e fllzs 2z, (2.12)
e

=
i fﬂ S(t = 7)F (2, 7)dr

< Cll Sl ya, (2.13)
LiLse

| Rt

la+m)2s, [ 8t-nsm)

SOIRfllgge, k21 (2.14)
L=} bex

x

Due to the concept of equivalent norm, it follows

ftﬂ{t — )z r)dr
0

F

it O

i
.rkfu S(t = 7)f(z, 7)dr

L2 op Cr“ﬂ%ﬂc f:S{f = 7)f(z, 7)dr

E

L:
< Clifllzyzs + CllJef gy (2.15)

by Lemma 2.1 and Lemma 2.2 A last we consider

5 [ 65t =) )i

LiFeco

S{t]S{—t}kaﬂtS(i — 7)f(z,7)dr

Lirge

<C

D;%S{—t}Jk /; S(t — 7)fl(z, T)dr

LELz

L L
F] 3

<c|

i ¥
DEJy '/ﬂ_ S(t — 1) f(z, 7)dr

ka;sw — iz T)dr

LPLy LiTL:

< CliJefllzsrs + CllJefll s (2.16)

by Lemma 2.1, Lemma 2.2 and the

interpolation theorem. Collecting ['2.12]—{2.15}
implies (2.11).
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3. Local Posedness

This section is devoted to proving the local version of Theorem 1 and Theorem 2.
Throughout this section we put I = [0, T] with T > 0 for simplicity. For wo(z) € HE(R)
and uw € X, with k € ZT U {0}, we define

4 :
F(u) = uwg(z) —i—f O |ulfdru + a|ulP'u = Fy + F; + Fs (3.1)
0
In view ﬁf Lemma 2.1-Lemma 2.4 we have

IGF(u)llx, < CllJkF(u)llprz + CllIF(u)ll 2 (3.2)

—

where € is independent of I. In order to prove the local posedness precisely, we first
do a series of nonlinear estimates in Xp.
Lemma 3.1  Let vp(x) € L*(R) and u,u € Xp(I), 3 £ p < 5. Then we have

E ‘ ﬁ S— oo
IF(u)llgirz < CT 4 |lvo(e)ll oz llullxe + CT|lullx, + CT ™7 ||ull%, (3.3)
1 ; ; T=
IF @)z < CTHIva(@)l 2l o + CTlullk, + CT ™ ully, (34

1) — F(@) ll gz < CTR lvo(@)ll 2l — llx + CT4 (lullk, + E1%,)

Nl = Ellxo + CT T ((lull," + 115G Dl — @llx (3.5)
IF(u) = F(@) ll a2 < CT2 [lvo(@)ll zzllu — Fllx, + CT(llull, + 15]5%,)

Nl = o + CT T (lullfe,” + I e — @llx, (3.6)

Proof We first estimate (3.3) and (3.4), by noting that Hélder inequality, 1t fol-
lows

||F1[“)|1L;L§ ’“E_[ﬂ ||”B{E}|ngliﬂﬂLgﬂdTET%H"-’E{E}HLEHHHL;iLgn (3.7)
IR razs < [ o)l - lulzzde < leo(@llzzullizeg
< T Jwo ()| 2 lull e 2 ' (3.8)

t
1Fallez < | [ (wam+ T

rp S 2N Cluelzgltelizgllzizg
it

a
< 2T ||uz| oo 2 H“||L§L*;’||“||L;’Lg°

< 2T Nuzll poop2 llull ooz llull oo (3.9)
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12 (w)llzire < 2M(luellpzllull gzl e < 20(lesll gz lllze 2l 1
= 2||’*5-5$||L~=~=-L*||*h£|| 2 = 28| uell peo .2 ”quﬂ'Li (3.10)
15 (u)l s 2 Eﬂf ||ﬂ-|| ||'?~¢||L='IL <aT'7 ”u”L-’.ImH””LWLE (3.11)

At last, we come to estimate || F3{u)|| LLLYs

I1Fs(e)lzazz < el )l gyzz < @ [ Nl ol

< alfulfgg ([ ol Pm] (3.12)

noting that 3 < p < 5 and Minkowski inequality, we have

(R o)) < ([ (o) ™)

T Ao T
< (fn ual 2" el Pdﬁ) ST ”ﬂ”r*rm”“”z,mm (3.13)

Putting (3.12) together with (3.13) yields

Lﬂ '!-_'-.11

Collecting (3.7)-(3.14), we obtain (3.3), (3.4). In the e:-:a{:tfy same way as leading to
(3.3) and (3.4), we easily obtain (3.5) and (3.6).
Lemma 3.2 [Let 2 <p < oo, vg(z) € H'(R), u,@ € X(I). Then

I FW)llgre < CTH vo(@) pyllulx, + CT? ullk, + CTllull%, (3.15)
[T F (wll e < GT%—’E!UE{E}||H;||H||A:1 +CT|ull%, +0T3(1 + T |ull, (3.16)
I171(F(u) = F@)llgazz < CT o)l llu - Gllx, + CTH(lull, + 11, )

Nlu = allx, + CT (el + 1% ) lw = 1l x, (3.17)
I1(F () = F@) g1z < O3 oo(@)ll sl — @lx, + CT(lullk, + 161%,)

N = @llx, + OT +T0)(ulf + a5 e —alx,  (3.18)

where p is the same as in (1.12).
Proof  We first estimate nonlinear term corresponding to Fj(u), putting (3.7)
together with

< _
10 Fa(w) gz < [ (100 @)lg Il + o)l ca ol e )
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< 273 |lwo ()| | 1 ull 8 s (3.19)
implies
I Pr@)llpiza < €T lvo(=) | llullx, (3.20)

in exactly similar way as leading to (3.20) we have

| Fr(w)llpy e < CT 3 llwo(@) s llullx, (3.21)

by (3.8). We now consider the estimates which correspond to F5. It follows

8= Fa(u)liLLz
< H f;{umﬂ + PUrtiy + Ullepr ) dTU + E‘ _[L{u.mﬁ + il ) dT U
0 Npir2 0 L1L2
< 20 (lmel el 2 + sl )l g + Al ollualiz)uall sy (3:22)
182 Fa(u)]l g2
< 2l (lusell allullz + lusll2o)ull gz + Al pliuall2)ualiy e (3:29)
In view of the technique of the proof in (3.9) and (3.10) we easily obtain
Wi Fa(u)lpipz = 4T%”JWfﬂ:HL?LE_”JIHHL?}LE”Jlu“Lngﬂ (3.24)
11 ()l s 2 < 4TI True oo 2l Tl F oo 2 (3.25)
On the other hand, || Ji Fz(u) [irz can be estimated as
182 Fa(u)ll 2 2
< 2|/ (lluaell oo 2 lull 2 p2 lullzge) 2 + 2l Nuall 2 e luall oo rzllellzee Ml g
+ 4| (el poo p2llell oo p2 el 22 )l 23
< OT? [zl poo 2 10l oo 2 I Irull o2 + CT# |lugll ooz | Trul Fgo 2 (3.24)°

by the following inequality
1
lull gz < sup flullzpe = CllJrullgzzz < CT7||J1ullpger2
el G

At last, we come to do the estimates corresponding to F3(u). In virtue of the
concept of equivalent norm, it follows

T 1
A Fslzirg < a [l Olullg + luellzz)dr
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< CT|IullfZ 5 el e 2 (3.26)

9P @llzyzr < a [l (el + ol )
S ﬂ”“”LmLm ] L“L“||Jlu“LfL§
= CT* ”JlullL{-ﬁfi”u” ELfﬁ”Jlu”L?"‘LE (3.27)

by Sobolev imbedding theorem H! — L. Collecting (3.20), (3.21), (3.24), (3.25),
(3.26) and (3.27) yields (3.15) and (3.16) by the definition of X1 in (1.12). In the
exactly same way as leading to (3.15) (3.16) we also have (3.17) and (3.18). Thus this
completes the proof of Lemma 3.2.

As much similar as the proof of (3.24) (3.25) in Lemma 3.2, we have

Lemma 3.3 Letp=2I+1(l€ Z%), k > 2, w(z) € H*(R), u, i € Xp(T). Then

1P ()2 < OT < lvo(@)lmsllullx, + CTHullk, + CTIul,  (3.28)
17 F()llaez < CT 3 |lvo ()l e lluellx, + OThulll, + CTHul?,  (3.29)
e (F () — P@) 313 < CT[lwo(e)ll el — il

T cfr%cnurr.%& +[ll%,) e — @l x,

+ CT([lull + 151l — i, (3.30)
176(F () = F(@) |25 < CT3 |lwo (@)l sl - il x,

+ CT(|lull%, + lal%,) IIH — il x,
+ CT5 (|lull5e + |@B ) e — &) x, (3.31)

We now in position to préve the local version of Theorem 1 and Thenre:n 2. For
ke ZT*U{0} and Q@ > 0, let

Bé.k = {w € Xe(l) | ”w”_:!{k < Q.ﬁ:} (3.32)
For any vy(z) € HF, up(z) € H%'*“k, we define
¥(w) = S(t)ue(z) + f;S{t — 7)F{w)dr (3.33)

where F{w) is defined as (3.1). We shall prove that for appropriate @y and T, the
operator ¥ is a contraction on Bf . In view of (3.2), Lemma 1, Lemma 2 and Lemma
3, we always have

N (w)lix, < Clluo(@) 446 + CR(THlwllk, + lwllx, + llwl,) (3.34)
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1% () — ¥()l1x, < Ce(T)lwlie, + N1, + lvollz + lwll,

+ [ll5, M llw — 1, (3.35)
where & (T") and Ci(T) are positive constants only dependent on k and T' such that
Cp(T)—=0 asT =0

and

CulT) =0 asT — 0

respectively. We now choose ¢} > 0 as that

Qu

Clluo(e)ll ;346 = 5 (3.36)

For fixed @, > 0, we take T = 0 so small that
- 3 m L @k 2
Cr(T)(Qk + @k + Qi) < =~ (3.37)

Then we easily see that W : Bf&:; —h Bak by (3.34), moreover we take T° > 0 so small
such that

Cr(T)(2Q% + 208 + llvollze) < 1 (3.38)
by (3.35), we conclude that ¥ is a contraction on th. Consequently, there exists a
unique function u € Xi(I)} with ¥{u) = u and we define v by (1.6). We prove that
n e C(T; H:f:“}. Note that for s,t € I,

L
f J_pBu’ (T)dT
5

¢ !
L2 = GH( 2 f iﬂEuﬁdT) > lloZusll g

la|<k la] <k L

1
< C|t — s|7|| J_gull pgep2 [l -k Orul| oo 12 (3.39)
by Hélder inequality. So (3.39) implies v € C(I; H %). Thus we complete the proof of

(i) in Theorem 1 and the local version of Theorem 2.

4. The Global Posedness

In this section we come to prove the global posedness of (1.5) (1.6) in space Xj. We
begin with the conservation laws. By direct calculation and making use of the equation
(1.1) (1.2} we get
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Lemma 4.1  Let (1, v} be o smooth solution of (1.5), (1.6). Then

fnm(t:mn?dm:fﬂhm[mnzdm (4.1)

;_fllu(a,:;)w“)dx +E0)  (42)

B(t) = [ (ol DNult,2)? +|ualt, ) +
[ 02(t,2) + 2m(ult, 2)usE2))de = [ (vh(z) + 2Im(uo(@)una(@))dz (43)
24 R

We now in position to prove Theorems. In essence, the proof of (ii) of Theorem 1 is
exactly the same as [3], so we only prove Theorem 2. We first consider the case k = 1.
From Lemma 4.1 the local solution u(t, x) obtained in Section 3 satisfies

lu(t 2)llggorz < lluo(z)llga, ¢ € [0,7] (4.4)
lhu(t, #)llgeerz < My, t€[0,T] (4.5)
In view of (3.19)-(3.21), (3.24)" and (3.25)~(3.27) we have by (4.4) and (4.5)
lullx, < Clluoa)l 3 + C(T +T3)|vo (=) g lullx,
+ O + THluldn lullx, + C(T + T+ TH2) % ullx,
< Clluo(@)l 3 + (T + T+ TH) ullx, (46)

which implies the (i) of Theorem 2 by local posedness results in Section 3.

Now we come to prove (ii) of Theorem 2. It is easy to show for £k > 1

| Tesr Fu(w)llpzz < CT oo (@) o lull .. (4.7)
1T FL(w)llzyrz < CT oo(@) | o |l (4.8)
[ TerrFe(u)lippz < t?T"ﬂ||u"'J::+L'i“‘f:||,1;-;_-=LJ:.§||Jﬁr%”LgﬂLg||JJF:'“”,L*gL;F*'-ﬂ

+CT4 (T | L3 I Jerrull pee p2 || S| LiLz

+ CT1 | Tyl poo g2 | it o 2 1k 1001 4 o (4.9)
1Tkt 1Fo(u)llpas € CTTksrtallpe 2|l Jeullien 2

+ CT|| Jiuzll oo 2 | Jiull o rz | Tesrull oo g (4.10)

and :
[ Terr Falu)ll g1z = GT”JJ:u“Efg-}L;||Jsz+1'i_fr||LfﬂL§ (4.11)
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Jrs1 Fa(u)llpagz. Inview of (3.27) we only consider

At last, we consider the estimate of

2i+1
B Bl <C Y I &%u (4.12)
© e =kl =1 LiLg

When k > 2. there is at almost one |a;| > k (1 <4 £ 27 +1). No loss of generality we

assume |ogj41| = k, therefore

27—2

|85 By (u)llpipz < C i [T 1782 ull poe 121827 ull L2 g0

oy oo =k+1 i=1

i 4 l”agi_r ’U-”L;Lf'“ ”5;:11'1"'_[““.{-3 'II-‘E
I = 2 ‘
< CT3 || Jeul| ¥ Fa Ikl By poo 1 T 1yull o 2 (4.13)

and when k£ =1

12F5 (W)l gz < ClNO3w - el llpyps + I08ul®  [u® Dlpypp =h + 12 (414)

Note that
T -2 ! i =
I < CT# || hullpeys lullps oo | F2ull g 2 (4.15)
B < C [ lullfs el Oulsdz
L f
< CT7||Jyul ilgai;'ﬁuﬂx,; oo |Gz ull ps oo | Oz ull oo 12 (4.16)
Collecting (4.7)-(4.16) with (3.27) we have
i S
”u”.}ﬁ;m = 'Ilul:]”ff"]z"‘k"'t o3 G{I 2 ‘I'T"}”TJU”Hkr-ii”ﬂl.!IIJHl

+ C(T5 + T}]]u”‘}k el %a

+O(T? + D)llull ullxe,, p=20+1 (4.17)

which together with (ii) of Theorem 2 implies (ii) of Theorem 2.
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