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Abstract In this paper we derive a priori estimates in the Campanato space
L38O for solutions of the following parabolic equation

Up — ;ﬂ:i[&,:jl[x,t}urj + agre} + g, Fou = %f,— + fo

where {a;;(2, 1)} are assumed to be measurable and satisfy the ellipticity condition. The
proof is based on accurate DeGiorgi-Nash-Moser’s estimate and a modified Poincare’s
inequality. These estimates are very useful in the study of the regularity of solutions
for some nonlinear problems. As a concrete example, we obtain the classical solvability
for a strongly coupled parabolic system arising from the thermistor problem.
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1. Introduction

Let 2 be a bounded domain in B™ with boundary § = 80 in C*! and Q = 02 x (0, T]
with T == (). Consider the following parabolic equation:

7, d
g — E_EE['ﬂ'ij[JTsﬂuIi + a;u) + bitig, + cu > S:B.i_fi + fo (e

where a;; satisfies the ellipticity condition:
aolé|? < ai&i€; < Aolé]? for £ € R, 0 <ag < A

It is well known that the DeGiorgi-Nash-Moser estimate plays an essential role in the
atudy of solvability for nonlinear parabolic equations. However, this estimate is often
not enough in dealing with regularity of solutions. On the other hand, the theory of the
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Campanato space £5% is powerful for investigating regularity of solutions for elliptic
equations and systems (cf. [1], [2], etc.). In the present work we would like to derive
the £%#(Q)-estimates for weak solutions of the equation (1.1). It will be seen the
results are also very useful in applications. The core of the proof is based on accurate
DeGiorgi-Nash-Moser’s estimates, For elliptic equations, the theory can be found in
[2]. The fundamental difference from the elliptic theory is that Poincare's inequality

f (1 — ugmrjﬁd:{:dt = G'.r"‘;f

] ':;?21

| Vul?dzdi

does not hold for a general function w(z, ) € L2(0,T; H' (1)) (see the notation below).
However, by using the equation and combining (elliptic version) Poincare’s inequality,
we are able to resolve the difficulty. The proof is based on various modifications of
elliptic situation. :

For convenience we introduce some standard notations: a point {2, f) in Q¢ will be
denoted by z. The distance between two points z; = (x1.1;) and 29 = (g, t2) is equal
to

1
max {|zy — za|, |t1 — t2|7 }

For r = 0,
B,(zg) = {z € R" : |z — zo| < r} and Q(20) = Br(zo) x (to — r°, 1]

For a measurable set A C A" x [0, 7] with a finite measure

|
d:-/ d

Al < oo,

In particular, when A = Qv (2),

tUagr = jﬁ 1welz
For p = 0, let (20}

2
[te]2,0,0, = ( sup  p~" f [0 =z, Igdz)
e 20EQ,02p<r Qel20) 20

The space L£**(()) consists of all functions in L?(() such that

[ulaug, < o0

We understand that ¢ N ¢, should be used in the integration whenever (), is not a
subset of Q. £%*(()) is a Banach space with the norm

: " 1
lull2,m0. = {||H||i=|:¢gf] + [ul5,.0, 12
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- We need the following proposition:

Proposition A The space L5V T#H24(Q) and G-““%[@T} , where p € (0,1), are
wsomorphic topologically and algebraically.

If one replaces €} by a subset ¢, (zp), then u(z) is Holder continuous in a neigh-
borhood of z;. It is often useful to note the following proposition. _

Proposition B For 0 < u < n 4+ 2, the norm of £2*(Qr) is equivalent to the

2 0 B8
sup T © f u“dz
20EQ =0 e (za)

The proof of the above propositions can be found in [3], Theorem 2.1 (also see [4]).

following

2. L2#(Qr)-theory for Parabolic Equations
We begin with the interior estimates. In this case we always assume that
o = min{dist (o (29), S7), dist (Qar, X % {t =0} =0

Moreover, in addition to the ellipticity condition the following condition is assumed
throughout the paper:
H(A) The coefficients a;, b;, i =1,2,---,n and ¢ are in L>=(Q7).

For the equation (1.1) along with homogeneous boundary condition and the ini-
tial condition u(z,0) = ug(x), we define a weak solution w(xz,t) as in [5]: u(x.f) £
L2(0,T; H(£})) is said to be a weak solution if it satisfies

/{; [—ude + (aijur, + aiu)dy, |dedt
.:II
= f [(biur, + e+ fo)d — fidy,]dmdt +f d(z, 0)uplz)dz (R
T it

for any test function ¢(x,t) € HY(0,T; H(2)) with ¢(z,t) =0 on Sp and t =T
Let w(x, t) be a weak solution of the following parabolic equation:

¥
(@i (z, u) = O (22)

0
that is

/:[ [—wvy + Gyjwe, ve|dzdt = 0
L

for any v(z,t) € H'(0,T; H}(R2)) with v(z,0) = v(z,T) = 0.

In what follows, a constant which depends only on ||ag|| g, |laillzes + ||bi]lpee +
lellz==, ag, d and the domain @+ will be denoted by ', it may be different from one
line to the next. The following two lernmas are fundamental in order to prove Hélder

continuity. Their proofs can be found in [§] ( Lemma 1 and Lemma 3).
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Lemma 2.1 Let w(z,t) be a non-negative subsolution of (2.2) and zg € G,
Qar(zp) C Qr (r = 0), then

eSS sup w(z,t) < Cﬁ_{i+1}||w||2:.'?r+p{3ﬂ]
Qr[:-a'ﬂ}

where 0 < p < 1 and || - |24 represents the norm of L?(A).

Lemma 2.2 Letw(z,t) be a non-negative weak solution of (2.2) and Qy(zn) C Q.
If E = {z € Q-(z) : w(z,t) = 1} has measure > K|Q:(z0)|, where K € (0,1) 15 a
constant, then

ess inf w(z,t) > C(K) >0
Qryalzo) .

where the constant C(K) depends on K and ||ay;||pse (g, and ag, but not on 7.

With the above results on hand, one can derive

Lemma 2.3 If w(z,t) is o weak solution, then there exist constants &y € (0,1)
and C' such that

T &n
s w— nin w < O 3N E Ajl
max w — Imin w < (8) Il 0, o)

where 0 < p < 7 and Qap(zp) C Qp while &y and C' have the same dependency as C
above.

The proof is almost identical to the case for elliptic equations, see [2] Theorem 2.14
on page 115 (also [7], Theorem 4 with k = 0).

Lemma 2.4 Lef w(z,t) be a weak solution of (2.2). Then for any p € [0, 7],

P Ho
IVwll3 g, () < G(;) 19112, z0 )

Proof To prove the lemma, we need the following fundamental estimate: for a
weak solution w(z, t) of (2.2),

ff (15 — ey o) 2dz < r:fﬁﬂ IVw|?dz (2.3)
1'{3I?.I:| Qarlzo) :

where the constant € is independent of r and .

where g = n + 24q.

The inequality (2.3) is well known as Poincare’s inequality when w is only a function
of z (cf. [1]}. In the present situation, one can use the equation to control the L2(Q,)-
norm of wy (See the proof of Lemma 2.6 for this special case, of course the proof of
Lemma 2.6 is independent of Lemma 2.4). From the inequality (2.3), we only need
to estimate the gradient of w in order to obtain the estimate in the Campanato space
L2H(Qr).

As w(z,t) — wyyr is a weak solution of (2.2), without loss of generality we may
assume that w,, , = 0. We may also assume that zj is the origin and use ), instead of
@r(0). By Lemma 2.3, for z = (x,1) € Q= (0),

[w(z) — w(O)F < Cr="=2"2% 1% ||w|3 o, < Cr =22 Vul ,, (2.4)




No.1 L1 ())-Estimates for Parabolic Equatinns and Applications 35

Let 0 < p < E Introduce a cutoff function g(z,t) as follows:

g(z,t) € CHY(@Q,) and satisfies :
0 < g(z,t) <1, suppgC Qs g(z,t)=1 on Eﬁ'
: Moreaver,

4
I?g" < ¥ Igf-l < P_2

Let v(z,t) = g*(x, t)[w(z) — w(0)]. We can use v(z,t) as a test function in the integral
identity for w(z,f), although w, is not necessary in L?(Q,). Indeed, otherwise, we can
always use the Steklov averaging

1 L4k
iz ) = E./; v(z, T)dr

to approximate v(x,¢) and then take the limit. Now

f ~ wipdzdf = ﬂ;} r [w(z) — w(0)]v,dzdt + /]@ : w(0)vydzdt
= ff@ : [w(z) — w(0)*ggdzdt + % fB f a*lw(z) — w(0)]2dz
+ [ wO)gw(e) - w(O)do
=5+ 1+ I3 :
'B;rr (2.4) and the construction of g, one has
1] < Crm 20020572 V|32, 4| @20l < G(f)”“nvw”itmw}

where pp = n + 24y.
Similarly,

P Ho '
1Ll < C(2) " IVullia,,)

To estimate I3, we use Lemma 2.1 and (2.4) to obtain

s

|| < [[w(0)llz=(8,(0)) - 1w = w(0)]| Lo (mycap) - Co" < C(2) " IV lZ2 g,

‘ ff wusdzdt
On the other hand,

/L ; i W, Vr, dredt

= f[g Qi W, {gzwmj + 299z, [w — w(0)]}dxdt

T
It follows that

o2
= G(;) ||'i?w||i:mb} (2.5)
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2 ? /] 9°|Vw|*dzdt — C'max [w — w(0)[* ff | g|2dzdt
Q2r Q2p Q.

Combining the above inequality with (2.4)-(2.5), we have
i

T
When i < p < 2r, clearly we always have

i ’
ff@ IVuwldadt < 4 (2)" T3, )

This completes the proof.
Lemma 2.5 Let @ = B.(0) and the functions fo(z,t) € L¥(Q7) and filx, t) £
L2 (Qr) (2=1,2,--- n). Let u(zx,t) be a weak solution of the following equation:
o )
= g laglE, fug ) = —Ji +
fheﬂ Ty 3?; {'ﬂ _'i'{$ ]'L!' J} {_}mi ft fﬂ

o FERN Y i : s
IVul3q, < G[(;J IVul s, + 72 0l30, + 3 Ifil e,

i=1
where gy = n + 24p.
Proof Let h(z,t) € L*(0,T; H}(B,(0)) solve the equation

hy — {{Iijh-z,-]n:j = {ft'}it-‘e + fo

in the weak sense with h(x,0) = 0. Then it is easy to see that the following energy
inequality holds:

A hidx+ﬂq hidzdt < || foll 2o lPllz2o,) +

Tt
W fill 2eg el 20,
=1

1

By e-Cauchy’s inequality and Peincare’s inequality (note that h(z,t) vanishes on the
boundary of B,(0) % (0,r%)), we obtain

A hidz + szr h2dzdt < G[""'E”ﬁ:l“‘iz[{gd + g ||fi||ii*[grj.
Now let w(z, f) = u(z,t) — h(z,t) on Qr. Then w(z,t) satisfies
[[g : [—wug + agjuy, vy, Jdedt =0
for any v(z,t) € H(0,T; H}(£))) with v(z,T) = v(x,0) = 0. Lemma 2.4 implies

1 2 2y Ho 2
IVeliiag, < C(5) " IVulia,,
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Hence,

Full2200,) < 201VwlF2(q,) + I VRIE2(g,)
I o)
£ 2o
< 6(£)" IVuliaqu) + 2VhlZaq,)

< 0(2)"IIvuliisg,, +C [fgllfullia[qr;. +y ||fa.-11iz{qr_~,]
=]

2
Next lemma is essential in order to apply the embedding theorem later.
Lemma 2.6 [nder the assumption H(A),

f (1 — ug ) 2dz € C1r? f (Vu|?dz + Cypr® f [u? +3 _ﬂ?] dz
" Az ar i=1
+ Oyt f w? + f2)dz (2.6)
Qﬂr
where the constants Cp,Co and Cs depend only on ag, Ag, the L™-norm of a, by, 1 =

2 ---.n, and c.

Proof the argument is based on Lemmas 3 and 4 in [8]. We choose a cutoff
function o(z) as follows: ofz) = 1, if |z| < r, a(z) is zero, if |x| = 2r. Moreover,
0 < o(z) <1 is smooth and [Vo(z)| < =

For any s < t € @, we denote by x5 ¢ the characteristic function on [s,t]. For each
t £ (0,7, we define

f uodsz f wodr
ﬂf = r : ug'.lg e Qir[ﬂ
f a(x)dx / olz)dz
QZ:’ Qir{t:]
where Q,(t) = {(z,8) : |z < 7}

We use
dlx,t) = o(z)xps,g(ure — vr,s)

as a test function (otherwise, we use the Steklov averaging to approximate ¢ and then
take the limit), we have

L [—udy + (aijus, + aiu)ds, |dedt = f@ [(bitiz; + cu+ fo)¢ — fidhe,|dowdt
T r
By the definition of uZ, and the choice of ¢(z,t), we have
’
f ugpedr = f f wpoul y —uy Jdz = l[ uads — ucrda:] (Ul — ur,)
Qr s 491 Qrit) 3r(s)
> cor(ugy — “f,af

where cg is a positive constant depending only on 2.
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Using Cauchy-Schwarz’s inequality and the assumption, we have

t
f ]; gty Ty {ug,z - “:3}":{3
t L
< e(uf, — )’ f / Vol?ds + C(e) f f V| 2dz
LS By & Hﬂr

t -
< Cer™(ug, —u,)? + Cle) f Vuldz
& Har

2
where at the final step the facts |t — 5| < r? and |Va] < - are used.
Similarly, we see

i
[ fidede < en(ug, — 2 )2+ CGe) [ s
QT 5 Eg,—

t
f ailigy,dz < er™(uy, — -uf:],:]z + O] f u?dz
QT F BE;*

We again use the fact |t — 5| < r? to have by Cauchy-Schwarz's inequality that

L
f bivg, pdz < er™(ul, — uisji + C(e)r? f Vu’dz
Qo & < DBor

t
cugdz < er™(u], — ufj}?' - G{E}T’Ef f w’dz
G 5 o Bay
t
f foddz < er™(ud, —u?,)? + G(E}f-ﬂf f f2dz
Qv 5 JBg,

We sum up the above estimates and take ¢ to be small enough to conclude

L f T
(uwl, —u, ) <Cr " f Vuldz + Cr—™ f f [u? +3 ff} dz
& B, 5 Ha. i=1

6 s O LRLLE ffﬂ (u?® + f3)dz (2.7)

It is clear that F(h) = f lu — h|*dz takes the minimum at h = ug . 1t follows
A
that

"

< 2] Ju — 'u,;!}idzvi- 2] [uZ, — u?|%dz
Qs Qg

< Or? f@ Vul?dz + 2 f{? [uZ, — u?[Pdz (2.8)
2r r

f lu — up . |2dz < f lu — u,’i’|2riz
(2B Q
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where at the final step we have used (elliptic version) Poincare’s inequality. To estimate
the final term in (2.8), we observe from the definition that

1
Q- Ja.

Using the estimate (2.7) and the fact |Q.| = Cr™*2, we obtain

i
1'.51.

uy Az
2
R

t | t i
< Cr® f Vuldz + Cr? f f !uz + 3 ff
& By 5 By i—1

T

t
dz + Cr? v/; ‘/;} (uw® + f§)dz
Ir
(2.8a)

This completes the proof of Lemma 2.6.

Now we can show

Theorem 1 Let the assumption H{A) hold and let u{z,t) be a weak solution of
Eq.(1.1), then for any 0 < p < pp = n + 24y,

: : i
IVull3 0. <C ”fﬂ”%,[p_z]th + 3£l pop + 120,72 )y

=1

in particular, if 4 > n, then

u(z,t) € C*7(Qr), where o = £ ; &

where C depﬂﬂd& !:Jﬂ.fy o agp, .r‘iu, ||fiiﬂL,m.[qﬂ, ”ﬂ‘i“l}“"’[@r}ﬁ ”"?HLWIZQTJ and €.
Proof We write the integral equality (2.1) into the following form:

[[ [~y + G4t Uy, |dadt = ff Ifov — five, |dadt

e e

for any v(z,t) € H(0,T; H}(By(2)) with v(z,T) = v(z,0) = 0, where
fo = fo—biug, —cu, fi = fi—au

Using Lemma 2.5, we have

g % - % ;
IVul32o,y < C [(S) NVull3 g, + Sl 0, + 2 113, (2.9)
i=1
It is clear £2°(Q7) = L*(Q71). By the definition of £%*(Q1) and Proposition B we see
that
P2If315, < ClrP I foll3 syt o, + 7 2l a0, + 2 VulEe,)
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Similarly,
L 2 TL
Sl < Cr*| Uil ug, + lull2 .0,
i=1 i=

Assume that there exists a number p such that
lullz,g, < C*Sy (2.10)

where
Ti
2 2 2
Su = I Foll3 ey r + 22 i3 1 gr + Nl F2go o)
i=1
and C* is a constant depending only on the known data. The existence of such a p i3

obvious (see Lemma 2.6) since
L0, T; HY () = £2(Qr)

Hence we have
IValfsq, < C[((5)" +r)Ivuldq,, +"5.]

By applying the same iteration technique (see Lemma 1.18 in [2]) as the inequality
(2.44) of [2], we have the estimate

p
IVulls,g, = CSu
where 2 < o < .

Lemma 2.6 yields v € £2#+2(Q,) and hence the estimate (2.10) holds for u+2. By
repeating the above process, after a finite number of steps we have the desired estimate
for any p which satisfies 2 < g < pp. Finally, as yp = n + 24y and

u(z,t) € L24(Qr)

Proposition A yields that u(z,t) € C%%(Qr) with a = M ;ﬂ.

Now we are going to derive the global £%#-estimates. Let S = 99 be of class CL.

Theorem 2 Let u(z,t) € L2(0,T:; HY(S2)) be a weak solution of the equation (1.1)
subject to the following inifial and boundary conditions:

u(x,t) = gle,t) on St

u(z,0) = upl{zx] on Q2
Moreover, assume there exists o function ¢(z,t) such that

#(x,t) = g(x,t) on Sy, and ¥(z,0) =up(z) on
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If F(z,t) = (f1,---, fai fo) and ¥ € ﬁm_iﬁ(@r],v'ﬁﬁ’ € L2(Qr)™ then for any 0 <
[F< fip =T+ Elﬁ'ﬂ}

it
IVullz,p0r =€ szt'”?_.p,@r + ||tz 2,00 ] + I foll2,(u—2+ 07

=1

+ Clllel 2 0p-20+,00 + el 2o m100y)

In particuiar, if n < p < up,
u(s,t) € 0% (@)

where a = 5= ¢ (0, dg).

Proof Let w(z,t) = w(x,t) — ¥(z,t) on Qr. Then w(z,t) solves the equation
(2.1) weakly, where f; (1 < i < n) and fy are replaced, respectively, by

fi = fi - aigtps,

and
f; g fﬂ +?¥!'t- _bi'-q.bz:.' _GIPI-I'I
Hence we need only to show the result for homogeneous initial and boundary data. In
this case, as S = 90 is of class ', if Qg is replaced by Q2. N Qr (see [2]), Lemma 2.1
to Lemma 2.5 still hold. Lemma 2.6 also holds with some mild modification (cf. [8],
Lemma 3 and Lemma 4). All of the rest can be carried over if one uses @, N Q7 to

replace Q.. We omit the details here,
Remark If the boundary condition on Sy is replaced by the following;

[ﬁ*iju;:_,- o ﬂ-;‘ﬂ] ':D5|:ﬁ+ if} — El'{&::. 'f':]

where 7i is the outward normal on S, the result of Theorem 2 still holds. Indeed, we
may assume g(xz,f) = 0 (otherwise, we choose a function Gz, ) such that

[ﬂijG;-_j + a3 cos(fi, x;) = g(x, 1)

and set v(z,t) = u(z,t) — G(z,t)). As S € €', in a neighborhood Q, of zg € Sp, we
can introduce a transformation to flat the lateral boundary and then extend all of the
coefficients as well as the inhomogeneous terms in (1.1) into Q¥ (the image of Q) by
a simple reflection. Then the desired result follows from the interior estimate.

3. Applications

To illustrate some applications of the preceding theory, we consider the following
strongly coupled parabolic system:

P — V[e(u)Vy] =0, (z,t) € Qr (3.1)
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us — V[k(u)Viu] = o(u)| Vo2, (z,f) € Qr (3.2)
Wz ) = g(x,t), wulz,t)=f(z,t) on Sr [3.3)
iz, 0) = golz), u(z,0) =up(zx) on O (3.4)

where 0 < oy < ofu) < oy and 0 < &y < k{u) < k.

The above system can be used as a model for an incompressible, unidirectional fow
with a temperature-dependent viscosity (cf [9]). It is also a special case for Maxwell's
system with the effect of temperature (cf. [10]). Other applications can be found in
[11] and [12], where the derivative of ¢ with respect to ¢ is assumed to be zero. There
are two major difficulties for the system. The first one is that the system is coupled in
the coefficient of the leading term. The second is that the growth order with respect
to the gradient of the solution is critical. Therefore, the general regularity theory is
not applicable {cf. [8], [13], [14], etc.). We start with the following definition of a weak
solution.

Definition A pair of functions (u(z,t),9(x,t)) defined on Qf is said to be a weak
solution to the problem (3.1)-(3.4) of

V(1) — g(=,1) € L2(0,T; HY(Q);  ulz,t) — f(x,t) € L0, T; Hy (42))
and (u, ) satisfy

ffiaT[—Tﬁw + o(u) Vi Vwldzdt = fﬂ w(z, 0)1o(z)dz

ff;..ﬁ‘“wﬁ k(u) VuVuw]dedt = ff% o (1) | V| 2dzdt + fn wlz, 0)ug(z)dz

where w(x,t) € HY(0,T; H}(Q)) is arbitrary with e B i= 0.

It has been shown in [9] that under suitable assumption on the known data, the
problem (3.1)-(3.4) has at least one weak solution. By applying the L2 estimate, we
can show that a weak solution is also classical.

Theorem 3 There exists a o € (0,1) such that

ue CPH8(Qr), ¢ e CHOIE(Qy)

Moreover, if ug(z),o(z) € C***1*%2(0) and g(z,t), f(z,1) € C*relt(8y), and sat-
isfy the consistency conditions on § x {t = 0}:

uplz) = f(z,0)

Polz) = g(z,0)

felz,0) — V[k(uo) Vuo] = o(uo)|Vol|*
g¢(z,0) = Vo (ug) Vijy]
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—

then, u(z,t) € C***1*2 (Qr) and y(z,1) € CTHel+3 (@),
Proof To show the local regularity, we first note that for any region (¢} with
dist (@, S7) = 0, by Lemma 2.4

Vip(z, £) € L2(Q)

where 11 = n + 4 for some § € (0, 1).
Let U(z,t) = u + E'I,'flz. Now we rewrite the equation (3.2) as follows:

Ui — AU = V|[(o(u) - 1) V]

By the maximum principle, we know that ¢ is uniformly bounded. Clearly, by Propo-
sition B, any function in L*(Qr) is a multiplier for LE(Qr) if 0 < p < n+ 2. Hence
it follows that

filz,t) = (o(u) = l}ﬂ’ﬁ'&zi = EE'#{QJ
fori=1,2,.--,n. It follows by Theorem 1 that

Vu € L24(Q)

where 0 < p < n+ & for some 4 € (0,1).
By using the same technique as Lemma 2.6, one can easily obtain u € £2214(()
for 0 < p < py. Proposition A yields

u(z,t) € C*%(Qr)
Asu e C“'%{QT}, we apply the result obtained in [15] to have
$la,t) € O+ F (Qr)
Thus, by W3 (Q)-estimate (cf. [5]), we have
u(z,t) € C1+ % (Qr)

Finally, applying the Schauder theory, we obtain the desired regularity. By the same
procedure, we can apply the global £2#-estimates to obtain

u(z,t) € C*HOME(@L):  w(2,8) € CHE+5 (D))

As an immediate consequence, we have

Corollary  The solution of (3.1)-(3.4) is unigue.

Remark In practice, the electric potential Wiz, t) is often assumed to be time-
ndependent (cf. [11], [12], etc.}). In this case the equation (3.1) is reduced into

—Vo(u) V] = 0
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Using the £**-estimates for elliptic equations (ef. [2]) and Theorem 1, we have the
same regularity. This result was obtained recently for n = 2 and some partial answer
for n > 2 in [11].
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