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~ Abstract M. Bertsch and R. Dal Passo [1] considered the equation u, =
(o(u)i({uz))z, where ¢ > 0 and 4 is a strictly increasing function with Ellrg& W(s) =
Pse < oo. They have solved the associated Cauchy problem for an increasing initial
function. Furthermore, they discussed to what extent the solution behaves like the
solution of the first order conservation law uw; = e ((u))z. The condition ¢ > 0 is
essential in their paper. In the present paper, we study the above equation under the
degenerate condition (0) = 0. The solution also possesses some hyperbolic phenomena
like those pointed out in [1].
Key Words  Degenerate parabolic equation; entropy condition.
Classification 35K65.

1. Introduction

We consider the problem
() { ug = (p(u)ip(its) e, z € R,t € (0,00)
u(z,0) = wolz), ze R
where v : Bt — R% is smooth, ¢ € C[0,+00), ©(0) = 0, ¢'(s) > 0 (s > 0) and

1'1_%+ ; ] — 0. ¢ : R = R is a smooth, odd function such that ¥ > 0 in R and
8 wls :

Sl{ﬂm’ﬁb{ﬁ] = Yoo
‘The initial function ug : B — R is bounded, strictly increasing and

_lim _wup(z) =0, im ug(z) = A (1)
up(z) = O(ug(z)) asz —+ —o0 (2)
up(z) = O(A — uglz)) asz — +oo (3)

For the construction of a solution we use a standard parabolic regularization: Let £ > 0
and u. be the unique smooth solution of the problem
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[EL s

{IE} { Uy = ('FE{H}TJ{’E{“I?”E:: re R,1e {U,Cﬂ)

w(z,0) = uge(x), € R

where u. 1s a smooth approximation of ug and

ve(s) = p(s +¢), s€[0,00) (4)
Ye(s) = t(s) +es, seR (5)

We shall show that
ue, »u in L (Rx[0,00)) asi— oo (6)

for some sequence £; —+ () as ¢ — oo, and
u € L®(R x RT) N BV5(R x [0,00))

The main results of this paper can be stated as:

If ug is strictly increasing and satisfies (1)—(3), then

(i) u (defined by (6)) is a solution of Problem L.

(i1) u is not necessary to be continuous, even if uy is continuous.

(iii) tr{we) 15 & continuous function (under the convention that ¢/(o0) = EEII;D P(s) =
Yoo )

(iv) u satisfies an entropy-type condition: if at some point (z,t) € R x R*

ut =u(zt, t) > u =u(z";t)

then

O

(v) The entropy condition is necessary for uniqueness of solutions, i.e., there may

exist solutions which do not satisfy the entropy condition.

(vi) Let C1 < u(z,t) € Cs for (2,8) € D = (zy1,22) % (t1,%2) for some C] < O,
r1 < xg, 0 <t < tp. Moreover, if  is strictly concave in [C], C3], then u, € L. (D).

The most striking results are the points (ii), (iv) and (v) which show the hyperbolic
character of Problem I. These results are, however, expectable. Because the parabol-
icity of equation in Problem I is so weak for w, — oo that the solution may become
discontinuous and behave like the solution of first-order equation us = v (w(u)): (ie.,
the discontinuity satisfies Rankine-Hugoniot condition and the entropy condition).

In order to prove the result which concerns the behaviour of the level curves (“char-
acteristic” ) of u near a shock front, we need a further assumption

W(s) > es~? fors < sp>0 (7)




No.l Hyperbolic Phenomena in a Degenerate Parabolic Equation a7

The proof of the above results is based on the technigue used in [1], by a clever
coordinate transformation which makes full use of the special features on up and (s) (as
s = 07). We concentrate our attention on the transformed elliptic-parabolic equation.
After a detail discussion about the properties of this equation, we get the results of this

paper.

2. Main Conditions and Results

First we list the precise hypotheses on our data and the definition of “solution”.
H,. ¥ € C3(R)NL>®(R), 0 < ' < c; in R for some ¢; > 0, (0) =0, ¢¥(s) = ¥
A8 8 — O0.

Ha. ¢ € C*(0,00) N C[0, ca), 9(0) = 0, ¢'(s) > 0 (for s > 0) and 11151 ﬁ = [,
Hs. up & L™(R), ug is strictly increasing in R, lunm g = 0, :.:-lirlr-lm ug = A and

ug(z) = Oluo(z)) asz = —o0

uglz) = O(A — ug(z)) asz— +oo

Ww(uy) € C(R) (where ¥(up(zo)) = theo if ug is discontinuous at zg), (ug) > 0 in R
and ¥{ug(z)) —+ 0 as & = *co.
Since we have to solve the approximate problem I (0 < £ < 1), we should modify
uge. According to Hi, we can choose ug, satisfying the following conditions:
Hy. (i) wpe € C°(R) N W (R), uge > 0 in R. uge = up in LEM{R} as e — 0.
[11] 11111 unEI:J;} = xﬂnh:. up(z), lim uUE (z) = 0.
(1i1) uq[ﬂ; — 1) < wpelz) < uwolz + 1:1 in .
(iv) t-(upe) < ¢ for some ¢ > (.
(v) As z — o0, uh.(z) = O(ug:(z)) uniformly with respect to &; as & — +oc,
wh (x) = O(A — ug:(z)) uniformly with respect to e, and 1 (ug.) — #(uy) in
Cioc(R) as €\, 0.
(vi) 1 (up.) has uniformly positive lower bound in any finite interval.
Definition 2.1 A funetion w € BV, (Rx[0,00))NL=(Rx R*) is called a solution
for Froblem 1 if
(i) For any t = 0, u(.,t) € BWy(R) and there erists a continuous function ah
R % [0,0¢) =+ R such that

Pla,t) = lim (“{m =l ﬂh_ s, t])

e @(“fz +ht) - u{:c:"",t))

h—s0 h
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foranyz € R andt = 0.
(ii) For any x € C'(R % [0, 00)) with compact support

[/;ﬁﬂ_l_(uxa — plu)px,)dzdt = _[inm1ﬂ}“0($]ﬂﬂ$

Definition 2.2 (Definition of the entropy condition) We say that a solution u
of Problem 1 satisfies the entropy condition (E) if at any point (z,t) € R x [0,00) in
which u s discontinuous with respect to

{F{S} < :P[“+:I = Eﬂ(u_}

(s —u7) +ep(u”)

for any s between u™ and ut, where u¥ = u(z+, 1),

Now we are ready to state our main results.

Theorem 2.1 (Existence) Under Hypotheses Hy-Hjy, let u. be the solution for
Problem I, for any £ > 0. Then there exists a sequence £; — 0 as i — oo and there exists
o function u € L®(R x RY) N BVyo(R x [0,00)) such that u., = u in Ll (R % [0, 50))
as i —+ 00, and u 15 a solution of Problem I which satisfies the entropy condition (E).

Theorem 2.2 (Nonuniqueness) Let 1 satisfy Hy. Then there exist functions o
and ug which satisfy hypotheses Hy, Hy such that Problem 1 hag at least one solution
which does not satisfy the entropy condition (E).

Theorem 2.3 (Regularity of solution) Let hypotheses Hy-Hi be satisfied and u
be defined by Theorem 2.1.

(i) if ' £ 0 in R, then u is not necessarily continuous, even if uy € CZ(R).

(ii) if C1 S u < Cp in D = (z1,32) X (t1,t2) where 3y < x5, 0 < #1 < to, and if

w 15 strictly concave in [Ch, Cy]

then w € Cy1(D).

Theorem 2.4 (Behaviour near shock fronts) Under conditions Hy-Hy and 117,
and i be sirictly convez. Let & : (to,t1) — (zo,21) be a continuous function (zg <
z1,0 < tp < t1). If the solution u of Problem I defined by Theorem 2.1 satisfies

(i) u is discontinuous at the points (£(t),t), t € (fo,t1) :ut(t) —u™ () = 6 > 0 for
t € (to,t1), where u=(t) = u(£=(2), 1).

(ii) u is continuous at the points (x,t) € (zg,z1) X (to, t1) for = 5 E(1).

Then £ € Who(ty, ¢1) with

EI“] i3 —-'Il.'f.lmq}{u_ki e I;E?-'{ﬂ_}

for ae. te (g, 1)

and for a.e. t € (fg, 1)
TJ.;;I::I:L t}
Ur(z,t)

— —&'(t) asx— £(L)
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3. The Transformation of Equation

We shall use the technique in [1] to transform (I} to an elliptic-parabolic problem.
In order to determine the boundary value of the transformed problem, we should first
prove the following lemma.

Lemma 3.1 Let Hi-Hs be satisfied and K C R % [0,00) be compact. u; is the
solution of Problem 1. (g € (0,1]). Then there exist constants a and b which do not
depend on £ such that

D<o <ulzit)]<bh (8)

for any (x,t) € K and e € (0,1].

Proof of Lemma 3.1 Since K is compact in R x [0,00), we can take z) € R
such that for any (z,t) € K :x = 71 + 1.

We define

(z—zq)*

u(z,t) = B[1 — E—ﬂ*—z::f—’]

where [ and o are constants to be determined later.
After a straightforward calculation, we get

 (pelaels))e = - 02T gy g
f 4{55'_551::'2 200 —-niz—:;"—j—}ﬁ
+[PE?|'I:JE|SQZW s¢sﬁ+1

By H—H; and (4)-(5), we can choose the positive constants § and « so small that for

all £
w — (g (u )y <0  forx>my,t >0

u(x,t) < ug(z) for z > 7
u(z,,t) =0 for t >0
1
. \ — = ] 3 ¥ <
In fact we can choose 3 = ug(zy — 1) with § < ug.(z1) and choose o < A
where
M = max{p(s),0 <s < A+1} (9)

Since ue = 0, from the Maximum Principle we find that u.(z,t) = u(z, ). So we choose
a = min{u(z, t), (z,t) € K}

The proof of the upper bound is similar.
Let £ = 0 and u. be the unique bounded, classical solution of Problem I.. Since
ug. = 0 in R, it follows from Maximum Principle that

wer >0 in Rx R (10)
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Thus for any t € [0, 00), ligl 1 (x,t) exists and by the proof of Lemma 3.1 we can
! oy o oL B

get the following corollary:

Corollary 3.2 Let u. be the solution of I (¢ € (0,1]). Then for any £ > 0,
Ilﬁlmuf(m,t} =10, zl{]fmﬂs{m’tj =k _ -

Proof In fact, by the proof of Lemma 3.1, for any (zg,t) € B x R™ there exists
a constant « such that

o [r—rﬂf
u.(z,t) > uglwg — 1)(1 —e™® ¥ ) forxz >z, €€ (0,1]

Let & — +oo then

lim wue(z,t) = uo(zg — 1)

T =< e 0

By (8) and Hs, we get

mﬂglmigg{m,tj = IHT{:!:I uglz)=A

Similarly,

;::EI—[:E}:: the (0, £) = mﬂtzlm ug(z) =0

Inequality (10) puarantees the following coordinate transformation (z,t) — (y,1)
by
y = ue(z,1)

The conclusion of Corollary 3.2 implies 0 < y < A.
We define
Ue(, ) = Peltez(z,t)) for0<y< A, t>0 (11)

Since, by Hy u), — 0 as |x| — oo, it follows from a standard barrier argument that
Uer (T, t) = 0 as x| =2 oc, t>0

and thus that
ve(y, t) =0 asy ™0, andy A

We derive the equation for v from I, and (11):
W = #’;.[ﬂfz]'[“E:}E{Eﬂe{ﬂsjt’]yy

Define

= 1 1
el — "'fu ‘%E’L(?ﬁ?s_l{:?]}['!ﬁ.;l{.ﬂﬂgds =~ ) forv >0 (12)

We find that i

A oy
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and hence v.(y,t) satisfies the equation c.(v.): = (wve)yy,. Let

woe (i) = ce (e (g, () (14)

then
c=(v)t = (we(ylv)yy (15)

we see that v.(y,t) is a solution for the problem
ce(v)e = (10e(y)v)yy in (0,4) x Bt
(1L 0(0,f) =v(A,t)=0 fort>0
ce(v(y,0)) = wpe(y) forO0<y< A

Equation (15) is a parabolic equation which degenerates at v = 0 and v = oc.

c.(s) 200 ass—0

o{s) =0 ass— oo

According to (5) and Hj, it follows that if s > 1.0, then 71 (s) — oo as e ™\, 0. Hence,
by (12)
ce =+ 0 in Clhpe,00) ase—=0

We define
als).= 21_1;% ce(s) fors >0
- or & € (U,
efs) = —1(s) i (16)
() for 3 = Y.,

By (12), (16) it can be seen that
¢ € C(RTINC?0,9x), ¢ € CHRY) foree (0,1]

and
c. — ¢ in ﬂ"m{R'E'} N Cﬁm{& W)

Naturally, we discuss the limit problem as ¢ — O

clv)r = (p(y)v)yy in (0,4) x B*
(II) v(0,t) =v(A,t) =0 for t = 0
(w5, 0)) = woly)  for0<y<A

where wy(y) = ].1;{1:%b woel(y) (0 < v < A).

Observe that the equation of Problem II is of parabelic type if ¢ > 0, i.e., if v < 10,
and of elliptic type if ¢/ = 0, Le., if v > 15, and @(y) = 0 on the boundary y = 0.
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It 15 needed to define what we mean by a solution of Problem II.

Definition A solution v: (0, A) %[0, c0) =+ R is called to be a solution of Problem
II if

(i) v € L2(0,T; Hy., (0, A)) N Le((0, 4) x (0,T)) for all T > 0.

(ii) v > 0 g.e. in (0, 4) x BT and e(v) € L2 ((0, A) x (0, 00)).
i

(iii) for all T = 0, the function gr(y) = f y(y, t)dt (0 < y < A) satisfies gr(y) — 0
as y >, 0 and y 7 A. i

(iv) For any x € H'Y((0,4) x (0,00)) N C([0, A] x [0,00)) with compact support in
(0, 4) x [0,00)

A
j{u:djxﬂ+{ﬂ(ﬂ}xt = (W]y}:y}dydt = —L vy, 0)wo(y)dy

Remark By virtue of Hélder's inequality, gr € HL. (0, A). Hence gr € C(0, 4).

The main results of Problem (I1.) and IL

Theorem 3.3 [nder hypotheses Hy-Hy, let v. be the solution of Problem II..
Then there exists a sequence g; — 0 as § — oo and a function v € LE.(0, 00; HL (0, A))
such that ve, — v weakly in L2(0,T; HL (0, A)) as i = oo, where v is a solution of
FProblem IL. In addition, the following assertions are valid.

(i) The functions c.(v:) are locally equicontinuous in (0, A) x [0, o).

(11) For any T > 0 there exist functions g1 (y; T) and ga(y; T) which are continuous
in [0, A], vanish af y = 0 and y = A, and are strictly positive in (0, A) such that

(5 T) < ve(y,t) S (s T) forye[0,4], te[0,T]

(iii) For some &1 > 0 and € € (0,1], and for some compact set K C (0, 4) = (0, o¢)

let
Ks = {(y,t) € K : ve(y, 1) < oo — 8}

Then ||ve||lqza (K, ) < € for some C which depends only on &1 and K.

(iv) {ve} is uniformily bounded in (0, A) x R*.

Theorem 3.4 The solution v of Problem I defined by Theorem 3.3 has the fol-
lowing properties:

(i} v € L2 ([0, 0o); HILCI:D,A}] and thus v is locally Holder continuous with respect
to y in (0, 4) x [0,00);

(ii) e(v) is continuvous in (0, A) x [0, c0);

(iii) v is a classical solution in the set D = {(y,t) € (0, 4) x R* : e(v(y, 1)) < 0}.

(iv) v setisfies “the entropy condition”: If for some ty > 0, e(v{y, 1)) = 0 (y <
v £ w1), and if for any § > 0, e(v(.,f0)) £ 0 in (yo — &, w0) and in (y1,21 + 6), then

':F'liy} E ‘F(ﬂl} = W{yﬂ}(

= v—yo) +welw) forwmsyswm
Y1 — Yo
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(v} w € C(([0,0) U (A —a,4)) % RT) for some o > (.
In order to prove Theorem 3.3-3.4, we need the following lemma.
Lemma 3.5 Let Hi-Hy be satisfled. Then Probiem II. has o unique classical

solufion

v, € C([0, 4] % [0,00)) NC*((0, 4) x (0,00)) for €€ (0, 1]

Maoreover, v has the following properties:

(i) ve is uniformly bounded in [0, 4] x RY;

(i) for any T = 0 there exists a function g1(-;T) € C[0, A] which is strictly positive
in (0, A) such that for any € € (0,1]

ve(y, 1) = gily;t) for yETU'.--A]: (= [ET]
(iii) There exists a function g2 € C([0, A]) such that
g2(0) = g2(A) =0 andve g2 N [0, A] x [0, o)

Proof Since w.(s) is positive in [0, +oc), by using a gimilar argument as that in
[1], the first part of the lemma can be proved easily. What we should do is to prove
the properties (i) (i) and (iii) as @ priori estimates. The proof of (i)—(iii) is based on
the construction of comparison functions.

Proof of (i) By (14) and Hy follows that for any y € (0, 4)

ﬁEI:yr[]:I = '5'-.5_] {'”-'IUE] = TJI'I'PE{H:JE{E}} < My “T}

where g is a constant which does not depend on &.
By H; and Hy, as y — 0+ there exists a constant ¢z which does not depend on &
such that
ve(y, 0) = e (upe) < (1 + 1)uge < Cotige = C2U (18)
Define
e my Yy
vly) = =
pe(y)  wly+e)
where m is a constant to be determined later.
T
Then @(y) satisfies (p.(y)u(y))" = 0. By (9), Tly) = Y from (17)-(18), we can
choose m so large that T(y) = ve(y,0) in [0, Al

Hence
T(y) = ve(y,t) foralye [0,A] andt =0

irk : :
Y < M1 and H: we lenow that ﬂ[y} 18 llnlfﬂtmhf

Further, from #(y) = —= =
f‘ wly+e) = wly+e)

bounded in [0, A].
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Proof of (ii) Let 0 <y <y < A, by Hy there exists a constant §p > 0 (also
dy < %} such that v.(y,0) > dg for y € [0, 1]
Put z.(y,t) = w.v,, it satisfies

1
Liz) =z — Tz PEy =0
e

We look for a sub.s_{:llutiun of the form

z(y,t) = de Msin(w(y — yo)), w=

d, A >0
W — Yo { )

: 1
e )% W) Hence there exists a constant B such that

d(v) > Bforv € (0, %)

By (12), cl(v) =

4
. 50 we can choose § small enough (e.g. — < min wl(y))
0 MosysA+l
w? M

and A large enough (e.g. X > 5 ) so that in (g, 1) = BT

2

L(z) = Az + ——<pez < Az + wMB ™'z < 0
76

Moreover, for y € (yg,y1)

z(y,0) £ 6 < vy, 0)pe(y) = z(y, 0)

We obtain from the Maximum Principle that v.p, > 2z in (yy,11) x BY. Hence for
I::"f:-” £ '[!a'mﬂl} # [{]aTJ

z ?'r'-t 2 1t {l; A .
wl,) > S0 > 28D 5 B oot gy ) £ 2

Since z'(31;,T) = 0 as y = yy and y = 1, we extend z'(4T) from (yg,3) to [0, A] by
defining 2'(y; T') = 0 as y € [0,40) U [41, A]. Then Z'(.;T) is a nonnegative continuous
function in [0, A] and strictly positive in (yg,4;). Choose

A A

Yo =53 m=ﬂ—2—2

A A

1!2:"2? 'H3=:‘1"~2—¢
A A
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we obtain a sequence of functions 2" (y; T')}, where 2% (4, T) i8 associated with (yan, Yoni1)
just as z'(y; T) with (yo,31). Denote qu(y:; T) = sup 2" (y; T), we obtain (ii).

Proof of (iii) From (i) of this lemma v; < €3 in [0, A] x BT for some constant
¢3. For any small 4 > 0 let Ty be the solution of

(pevm)" =0 in(0,7),55(0) =0, T(y)=¢s

Then
o aplate)

U5 — —y for0sy=y
yely + )

By Ha, @y +¢) > ply +e&) for y € (0, ~), hence

o > = (19)
¥
By Hy, as y = 07
ve(y, 0) = e (uh.) = Ofup.) = Oluoe) = Oy) (20)

Using (19)-(20), we may choose 7y $0 small that
Ty (y) < ve(y,0) fory € (0,7)

Hence, by the Maximum Principle, (y,t) < Ty in [0,7] % RT. By H» and (9), 75 =
eaM ply)

i Y
Let

_.-.|l-1:|_ i ﬂ{y{T

Ty ¥ Yy

esM wly)
{ i, y =10

Then ve(y, t) < T in [0,7] x BT for € € (0, 1].

In the same way, we construct a continuous function ¥ _{?} in [A — 7, 4] such that
w2 (A) =0, 502 A —y) = e3 and ve(y,t) £ T(y) in [A — 7, 4] X BT

We conclude the assertion (iii) by defining

my), 0<y<q

g2(y) = & €3, <y A
o (y), A—-y<y< A

The proofs of Ths. 3.3 and 3.4 are direct by use of Lemma 3.5 and the results in [1].
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4, Existence and Main Properties of the Solution of Problem I

To prove theorem 2.1, we need the following two lemmas,

Lemma 4.1 Let hypotheses Hy-H, be satisfied and u. (0 < & < 1) be the solulion
of Problem Il., then

(i) weq is uniformly bounded in L=([0,T); L (R)) for all T > 0.

(ii) ey i uniformly bounded in Lj (R x [0,00)).

From the compactness of the imbedding BV, — L,]m, we get the following results
as a mna&queﬁcc of Lemma 4.1.

Corollary 4.2 Let hypotheses Hi—Hy be satisfied. Then there exists o sequence
g; — 0 as i = oo and a function u € LR x BY) N BVee(R % [0,00)) such that for
any 1l < P < oo

u,, > u in LL (R x [0,00))

Proof of Lemma 4.1 By (8) we get that 1. has a uniformly positive lower and
upper bound. In any compact set K C R x [0, o), we can prove Lemma 4.1 just like
in [1].

Lemma 4.3 Let hypotheses Hy-Hy be satisfied. Define

the () = min{t.(s), Yo} fors€R

Then the functions ¥ (u.r) are locally eguicontinuous in B x [0, 0c).

This lemma can be obtained directly from [1].

The proof of Theorem 2.1 follows from Lemma 4.1, 4.3 and results in [1].

Finally, by Lemma 3.1 u, has a uniformly positive lower bound, and the assertions
in Theorem 2.2-2.4 are all able to be proved locally in [1], thus they are valid under
the conditions of this paper.

Acknowledgements The author would like to thank her director, Prof. Xiao

Shutie for his guidance and valuable suggestions.

References

[1] Bertsch M. & Dal Passo R., Hyperbolic phenomena in a strongly degenerate parabolic
equation. Arch. Rational Mech. Anal, 117 (1992), 349-387.

[2] Van Duyn C.J. & Peletier L. A., Nonstationary filtration in partially saturated porous media,
Arch. Rational Mech. Anal, T8 (1982) 173-195.

[3] Ladyzhenskaya O.A., Solonnikov N.A. & Ural’tseva N.N., Linear and Quasilinear Equations
of Parabolic Type, Amer. Math. Soc., (1968).




