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Abstract. This paper deals with the two-level Newton iteration method based on the
pressure projection stabilized finite element approximation to solve the numerical so-
lution of the Navier-Stokes type variational inequality problem. We solve a small
Navier-Stokes problem on the coarse mesh with mesh size H and solve a large lin-
earized Navier-Stokes problem on the fine mesh with mesh size h. The error estimates
derived show that if we choose h=O(|logh|1/2H3), then the two-level method we pro-
vide has the same H1 and L2 convergence orders of the velocity and the pressure as
the one-level stabilized method. However, the L2 convergence order of the velocity is
not consistent with that of one-level stabilized method. Finally, we give the numerical
results to support the theoretical analysis.
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1 Introduction

In this paper, we deal with the steady Navier-Stokes equations:

{
−µ∆u+(u·∇)u+∇p= f , in Ω,

divu=0, in Ω,
(1.1)

where Ω⊂R
2 is a bounded and convex domain. µ> 0 denotes the kinetic viscous coef-

ficient, u and p denote the velocity and the pressure, respectively. f denotes the external
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body force. divu=0 implies that the fluid is incompressible. We suppose that the bound-
ary ∂Ω of Ω is composed of two parts Γ and S which satisfy meas(Γ) 6= 0, meas(S) 6= 0,
Γ∩S=∅, Γ∪S=∂Ω. Unlike the usual whole Dirichlet boundary conditions, we consider
the following the nonlinear slip boundary conditions of friction type:

{
u=0, on Γ,

un =0, −στ(u)∈ g∂|uτ |, on S,
(1.2)

where g ≥ 0 is a scalar function. un = u·n and uτ = u·τ are the normal and tangential
components of the velocity, where n and τ stand for the unit vector of the external normal
and the tangential vector to S. στ(u)=σ·τ, independent of p, is the tangential components
of the stress vector σ defined by σi =σi(u,p)= (µeij(u)−pδij)nj, where eij(u)= ∂ui/∂xj+

∂uj/∂xi, i, j=1,2. The set ∂|uτ | denotes a subdifferential of the absolute value function at
the point uτ, which is defined by

∂|uτ |=
{

b∈R : |h|−|uτ |≥b·(h−uτ), ∀ h∈R
}

.

The Navier-Stokes equations with nonlinear slip boundary conditions of friction type
is firstly introduced by Fujita in [1] and appears in the modeling of blood flow in a vein
of an arterial sclerosis patient. There have some theoretical results, especially for the
well-posedness analysis of the Stokes problem. We refer to Fujita [2–4], Saito [5], Li [6]
and the references cited therein. Some scholars have focused on the numerical methods.
For example, Suito and his collaborates have applied the boundary conditions (1.2) to
some flow phenomena by the finite difference methods in [7–9], such as the oil flow over
or beneath sand layers and the blood flow in the thoracic aorta. Ayadi and his collab-
orates in [10] studied the finite element approximation for the Stokes problem, where
they use the P1b−P1 element and derived the error estimates in virtue of the Lagrange
multiplier method. Kwshiwabara in [11] used the Taylor-Hood element and obtained
the optimal error estimates for the Stokes problem. Recently, we in [12] applied the pres-
sure projection stabilized finite element method to the steady Navier-Stokes problem and
constructed the simple and the Oseen two-level iteration schemes. We showed that if the
coarse mesh size H and the fine mesh size h satisfy h=O(H2), then the error estimates in-
dicate the simple or Oseen two-level methods will provide the same order of the approxi-
mation as the usual one-level stabilized finite element method [13]. Much research works
have been done about the finite element analysis the variational inequality problems as-
sociated with the Navier-Stokes equations. We refer to the following works [14–16] and
the references cited therein.

In this paper, based on the Newton iteration scheme [17–19], we continue to study the
two-level finite element methods for the Navier-Stokes equations with the boundary con-
ditions (1.2). The main idea is solving a small Navier-Stokes type variational inequality
problem on the coarse mesh with mesh size H and solving a large linearized Navier-
Stokes type variational inequality problem on the fine mesh with mesh size h in virtue
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of the Newton iteration scheme. Denote the approximation solution on the fine mesh by
(uh,ph). We prove the following error estimate:

{
‖u−uh‖H1+‖p−ph‖L2 ≤ c

(
h+|logh|

1
2 H3

)
,

‖u−uh‖≤ c
(
h2+h|logh|

1
2 H3+H4−ε

)
,

(1.3)

where 0< ε≤1, c>0 is independent of h, (u,p) is the solution of the problem (1.1)-(1.2).
Hence, if we choose h=O(|logh|1/2 H3), then the Newton two-level method we provide
is of the same H1 and L2 convergence orders of the velocity and the pressure as the one-
level stabilized finite element method [13]. However, the L2 convergence order of the
velocity is not consistent with that of one-level stabilized method.

This paper is organized as follows. In Section 2, we will give the variational formu-
lation of the problem (1.1)-(1.2) and recall some theoretical results. In Section 3, we will
describe the pressure projection stabilized finite element approximation. In Section 4, we
will give the two-level Newton iteration scheme and show the error estimates (1.3). In
Section 5, the numerical experiments are provided to support the theoretical results.

2 Navier-Stokes equations with nonlinear slip boundary

conditions

First, we introduce some function spaces used in this paper.

V=
{

u∈H1(Ω)2, u|Γ =0, u·n|S =0
}

, V0=H1
0(Ω)2,

Vσ =
{

u∈V, divu=0
}

, H=
{

u∈L2(Ω)2, divu=0, u·n|∂Ω =0
}

,

M= L2
0(Ω)=

{
q∈L2(Ω),

∫

Ω
qdx=0

}
.

Denote the inner product and the norm in L2(Ω) or L2(Ω)2 by (·,·) and ‖·‖. Let ‖·‖k

denote the usually Sobolev norm in Hk(Ω)2. Then we can equip the inner product and
the norm in V by (∇·,∇·) and ‖·‖V = ‖∇·‖, because ‖∇v‖ is equivalent to ‖v‖1 for all
v∈V in terms of the Poincare’s inequality.

Next, we introduce the following bilinear and trilinear forms:

a(u,v)=µ
∫

Ω
∇u·∇vdx, ∀u,v∈V ,

b(u,v,w)=
∫

Ω
u·∇v·wdx, ∀u,v,w∈V ,

d(v,p)=
∫

Ω
pdivvdx, ∀v∈V , p∈M.

It is obvious that a(v,v) = µ‖v‖2
V for all v ∈V . Moreover, if divu= 0, the trilinear term
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b(·,·,·) :V×V×V→R satisfies

b(u,v,w)=((u·∇)v,w)+
1

2
((divu)v,w)

=
1

2
((u·∇)v,w)−

1

2
((u·∇)w,v), ∀u∈Vσ, v,w∈V .

Thus b(·,·,·) :Vσ×V×V→R satisfies the antisymmetric property, i.e.,

b(u,v,w)=−b(u,w,v), ∀u∈Vσ, v,w∈V .

Denote

N= sup
u,v,w∈V

b(u,v,w)

‖u‖V‖v‖V‖w‖V
.

Then there holds
b(u,v,w)≤N‖u‖V‖v‖V‖w‖V , ∀u,v,w∈V .

Given f ∈ L2(Ω)2 and g∈ L2(S) with g≥ 0 on S, the weak variational formulation of
(1.1)-(1.2) is the following variational inequality problem:





find (u,p)∈V×M such that

a(u,v−u)+b(u,u,v−u)+ j(vτ)

−j(uτ)−d(v−u,p)≥ ( f ,v−u), ∀v∈V ,

d(u,q)=0, ∀q∈M,

(2.1)

where j(η)=
∫

S g|η|ds. We call (2.1) the Navier-Stokes type variational inequality prob-
lem. Since Saito in [5] has shown that the bilinear form d(·,·) :V×M→R satisfies the
inf-sup condition, then using the classical argument, the variational inequality problem
(2.1) is equivalent to

{
find u∈Vσ such that

a(u,v−u)+b(u,u,v−u)+ j(vτ)− j(uτ)≥ ( f ,v−u), ∀ v∈Vσ.
(2.2)

About the existence and the uniqueness of the solution u, Li in [13] has established in
terms of the contraction mapping principle. Here, we only recall this result.

Theorem 2.1. Suppose that the uniqueness condition

4κ1N(‖ f‖+‖g‖L2 (S))

µ2
<1 (2.3)

holds, then the variational inequality problem (2.2) admits a unique solution u∈Kσ, where Kσ=
{v∈Vσ : ‖v‖V ≤2κ1(‖ f‖+‖g‖L2 (S))/µ} and κ1>0 satisfies

|( f ,v)− j(vτ)|≤κ1(‖ f‖+‖g‖L2 (S))‖v‖V , ∀v∈Vσ.
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3 Pressure projection stabilized finite element approximation

Pressure projection stabilized method is introduced by Bochev and his collaborates in [20]
and is based on the low-order conforming finite element, such as P1−P1 element or P1−P0

element. The stable condition is achieved by projecting the P0 (or P1) finite element space
for the pressure to the P1 (or P0) finite element space. Moreover, This stabilized method
is unconditional stable and has been applied to the Navier-Stokes equations with whole
Dirichlet boundary conditions. We refer to the following works [21–23] and the references
cited therein. In this paper, we will extent the pressure projection stabilized method
combining the two-level Newton type scheme to solve Navier-Stokes type variational
inequality problem (2.1).

Let Th be a family of regular triangular partition of Ω into triangles not greater than
0<h<1. For every K∈Th, denote the space of the polynomials on K of degree at most r.
Define the finite element space of V and M by

Vh={v∈V : v|K ∈P1(K), ∀K∈Th},

and
Mh ={q∈M : q|K ∈P1(K), ∀K∈Th}.

Then the pressure projection finite element approximation solution (uh,ph)∈Vh×Mh

of (2.1) satisfies the following discrete variational inequality problem:




a(uh,vh−uh)+b(uh,uh,vh−uh)+ j(vhτ)

− j(uhτ)−d(vh−uh,ph)≥ ( f ,vh−uh), ∀vh ∈Vh,

d(uh,qh)+G(ph,qh)=0, ∀qh∈Mh,

(3.1)

where the stabilized term G(p,q) is defined by

G(p,q)=(p−Πp,q−Πq), ∀p,q∈M.

Here the operator Π :M→P0 has a piecewise constant range and satisfies

‖p−Πp‖≤ ch‖p‖1 , ∀p∈H1(Ω), (3.2)

where c>0 is independent of h.
Define the generalized bilinear form B : (V ,M)×(V ,M)→R by

B(u,p;v,q)= a(u,v)−d(v,p)+d(u,q).

Denote
Bh(uh,ph;vh,qh)=B(uh,ph;vh,qh)+G(ph,qh).

Then the discrete problem (3.1) is rewritten as follows:

Bh(uh,ph;vh−uh,qh−ph)+b(uh,uh,vh−uh)+ j(vhτ)− j(uhτ)≥ ( f ,vh−uh). (3.3)

In order to establish the existence and uniqueness of the solution to (3.3), we recall
the following stable theorem due to [20, 21].
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Theorem 3.1. For all p∈M, suppose that Π is continuous as an operator M→P0:

‖Πp‖≤ c‖p‖, ∀p∈M,

then Bh satisfies the following continuous property:

|Bh(uh,ph;vh,qh)|≤β1(‖uh‖V+‖ph‖)(‖vh‖V+‖qh‖), ∀(uh,ph),(vh,qh)∈Vh×Mh,

and the weakly coercive property:

β2(‖uh‖V+‖ph‖)≤ sup
(vh ,qh)∈Ṽh×Mh

Bh(uh,ph;vh,qh)

‖vh‖V+‖qh‖
, ∀(uh,ph)∈Ṽh×Mh,

where Ṽh =Vh∩V0, β1>0, β2>0 are two constants independent of h.

We recall the results about the existence and uniqueness of the solution to the discrete
problem (3.3) and the error estimate between u and uh in [13].

Theorem 3.2. Suppose that the uniqueness condition (2.3) holds, then the discrete problem (3.3)
admits a unique solution (uh,ph)∈Kh, where

Kh =

{
(vh,qh)∈Vh×Mh, ‖vh‖V ≤

2κ1

µ
(‖ f‖+‖g‖L2 (S)), ‖qh‖≤

‖ f‖+κ1(‖ f‖+‖g‖L2 (S))

β2

}
.

Theorem 3.3. Let (u,p)∈V×M and (uh,ph)∈Vh×Mh be the solutions of (2.1) and (3.3),
respectively. If (u,p) is sufficiently smooth, then we have the following optimal error estimate

‖u−uh‖+h‖u−uh‖V+h‖p−ph‖≤ ch2, (3.4)

where c>0 is independent of h.

4 Two-level Newton iteration scheme

In this section, we will give the two-level Newton iteration scheme to solve the numerical
solution of (3.3). Let TH and Th be the family of the regular triangular partition of Ω into
triangles of diameter not great than H and h satisfying 0<h≪H <1. The finite element
spaces (VH,MH) and (Vh,Mh) associated with the partition TH and Th are defined as
like in Section 3. The suggested two-level Newton iteration scheme is required to solve
a small Navier-Stokes type variational inequality problem on the coarse mesh and solve
a large linearized Navier-Stokes type variational inequality problem on the fine mesh,
which is constructed as follows:

Step 1 Solve (uH , pH)∈Vh×Mh such that for all (vH,qH)∈Vh×Mh there holds

BH(uH, pH;vH−uH ,qH−pH)+b(uH,uH ,vH−uH)+ j(vHτ)− j(uHτ)

≥( f ,vH−uH). (4.1)
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Step 2 Solve (uh, ph)∈Vh×Mh such that for all (vh,qh)∈Vh×Mh there holds

Bh(u
h, ph;vh−uh,qh−ph)+b(uH ,uh,vh−uh)+b(uh,uH ,vh−uh)+ j(vhτ)− j(uh

τ)

≥( f ,vh−uh)+b(uH ,uH,vh−uh). (4.2)

In terms of Theorem 3.2, the problem (4.1) has a unique solution (uH,pH)∈KH . Moreover,
the approximation solution satisfies

‖u−uH‖+h‖u−uH‖V+h‖p−pH‖≤ cH2. (4.3)

About the problem (4.2), from the uniqueness condition (2.3), we have

Bh(u
h,ph;uh,ph)+b(uH,uh,uh)+b(uh,uH,uh)

≥µ‖uh‖2
V+G(ph,ph)−N‖uH‖V‖uh‖2

V

≥µ‖uh‖2
V+G(ph,ph)−

2Nκ1

µ
(‖ f‖+‖g‖L2 (S))‖uh‖2

V

≥
µ

2
‖uh‖2

V+G(ph,ph).

Then the discrete problem (4.2) exists a unique solution (uh,ph)∈Vh×Mh satisfying

‖uh‖V ≤
2

µ
(‖ f‖+N‖uH‖

2
V)<+∞. (4.4)

Define the Galerkin projection operator (Rh,Qh) :V×M→Vh×Mh by

Bh(Rhu,Qh p;wh,qh)=B(u,p;wh,qh), ∀(wh,qh)∈Vh×Mh.

Then, according to Theorem 3.1, we obtain

β2(‖Rhu‖V+‖Qh p‖)≤ sup
(wh,qh)∈(Ṽh,Mh)

Bh(Rhu,Qh p;wh,qh)

‖wh‖V+‖qh‖

≤ sup
(wh,qh)∈(Ṽh,Mh)

a(u,vh)−d(vh,p)+d(u,qh)

‖wh‖V+‖qh‖

≤c(‖u‖V +‖p‖)<+∞, (4.5)

where c>0 is some positive constant depending on µ.
By using the similar argument in [24], the following approximation property can be

obtained.

Lemma 4.1. For sufficiently smooth (u,p), the projection (Rhu,Qh p) of (u,p) satisfies

‖u−Rhu‖+h‖u−Rhu‖V+h‖p−Qh p‖≤ ch2 , (4.6)

where c>0 is independent of h.
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Proof. Let (u,p)∈H2(Ω)2×H1(Ω). Denote Ih : H2(Ω)2∩V→Vh and Jh : H1(Ω)∩M→Mh

are the standard interpolation operators and satisfy

{
‖v− Ihv‖+h‖v− Ihv‖V ≤ ch2‖v‖2, ∀v∈H2(Ω)2∩V ,

‖q− Jhq‖≤ ch‖q‖1 , ∀q∈H1(Ω)∩M.

In views of Theorem 3.1, we have

β2(‖Ihu−Rhu‖V+‖Jh p−Qh p‖)

≤ sup
(wh,qh)∈(Ṽh,Mh)

Bh(Ihu−Rhu, Jh p−Qh p;wh,qh)

‖wh‖V+‖qh‖

≤ sup
(wh,qh)∈(Ṽh,Mh)

Bh(Ihu−u, Jh p−p;wh,qh)+G(p,qh)

‖wh‖V+‖qh‖

≤c(‖u− Ihu‖V+‖p− Jh p‖)+ch‖p‖H1

≤ch(‖u‖H2 +‖p‖H1 ). (4.7)

Then from the triangular inequality, we obtain

‖u−Rhu‖V+‖p−Qh p‖≤ ch.

Consider the following dual Stokes problem: find (Φ,Ψ)∈V×M such that

B(w,r;Φ,Ψ)=(w,u−Rhu), ∀(w,r)∈V×M. (4.8)

Following the regularity results about the Stokes problem, the problem (4.7) admits a
solution (Φ,Ψ) satisfying

‖Φ‖2+‖Ψ‖1 ≤ c‖u−Rhu‖, (4.9)

where c>0 depends on µ and Ω.
Let (Φh,Ψh)=(IhΦ, JhΨ). Then setting w=u−Rhu and r= p−Qh p in (4.8), we have

‖u−Rhu‖2=B(u−Rhu,p−Qh p;Φ,Ψ)

=Bh(u−Rhu,p−Qh p;Φ,Ψ)−G(p−Qh p;Ψ)

=Bh(u−Rhu,p−Qh p;Φ−Φh,Ψ−Ψh)+G(p,Ψh)−G(p−Qh p;Ψ)

=Bh(u−Rhu,p−Qh p;Φ−Φh,Ψ−Ψh)

+G(p,Ψh−Ψ)+G(p,Ψ)−G(p−Qh p;Ψ)

≤ch(‖u−Rhu‖V+‖p−Qh p‖)(‖Φ‖2+‖Ψ‖1)

+c‖p−Πp‖·‖Ψh−Ψ‖+c‖p−Πp‖·‖Ψ−ΠΨ‖

+c‖p−Qh p‖·‖Ψ−ΠΨ‖

≤ch2(‖Φ‖2+‖Ψ‖1)≤ ch2‖u−Rhu‖,
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which implies that
‖u−Rhu‖≤ ch2.

Thus, the lemma is proved.

Theorem 4.1. Suppose that the uniqueness condition (2.3) holds. For sufficiently smooth (u,p),
if |logh|1/2H2

< 1, then the two-level Newton iteration solution (uh,ph) satisfies the following
error estimate:

‖u−uh‖V+‖p−ph‖≤ c(h+|logh|
1
2 H3), (4.10)

where c>0 is independent of h and H.

Proof. For all (vh,qh)∈Vh×Mh, we have

µ‖uh−vh‖
2
V+G(ph−qh,ph−qh)

=Bh(u
h−vh,ph−qh;uh−vh,ph−qh)

=Bh(u
h,ph;uh−vh,ph−qh)−Bh(vh,qh;uh−vh,ph−qh)

≤( f ,uh−vh)+b(uH,uH,uh−vh)−b(uh,uH,uh−vh)−b(uH,uh,uh−vh)

+ j(vhτ)− j(uh
τ)−Bh(vh,qh;uh−vh,ph−qh). (4.11)

Set v=uh and v=2u−vh in (2.1). Then we obtain

a(u,uh−u)+b(u,u,uh−u)+ j(uh
τ)− j(uτ)−d(uh−u,p)≥ ( f ,uh−u),

a(u,u−vh)+b(u,u,u−vh)−d(u−vh,p)+ j(2uτ−vhτ)− j(uτ)≥ ( f ,u−vh).

Summing the above two inequality yields

a(u,uh−vh)+b(u,u,uh−vh)+ j(2uτ−vhτ)−2j(uτ)+ j(uh
τ)−d(uh−vh,p)

≥( f ,uh−vh). (4.12)

Substituting (4.12) into (4.11) and noting d(u,q)=0 for all q∈M, we obtain

µ‖uh−vh‖
2
V+G(ph−qh,ph−qh)

≤a(u,uh−vh)+b(u,u,uh−vh)+ j(2uτ−vhτ)−2j(uτ)−d(uh−vh,p)

+b(uH,uH,uh−vh)−b(uh,uH,uh−vh)−b(uH,uh,uh−vh)

+ j(vhτ)−Bh(vh,qh;uh−vh,ph−qh)

≤a(u,uh−vh)+b(u,u,uh−vh)+ j(2uτ−vhτ)−2j(uτ)−d(uh−vh,p)

+b(uH,uH,uh−vh)−b(uh,uH,uh−vh)−b(uH,uh,uh−vh)+ j(vhτ)

−a(vh,uh−vh)+d(uh−vh,qh)−d(vh,ph−qh)−G(qh,ph−qh)

≤|a(u−vh,uh−vh)|+|d(uh−vh,p−qh)−d(u−vh,ph−qh)|+|G(qh,ph−qh)|

+|b(u,u,uh−vh)−b(uh,uH,uh−vh)−b(uH,uh,uh−vh)+b(uH,uH,uh−vh)|

+|j(vhτ)−2j(uτ)+ j(2uτ−vhτ)|

=I1+···+ I5. (4.13)
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Now, we begin to estimate I1 to I5. In virtue of Young’s inequality, I1 is estimated by

I1≤µ‖u−vh‖V‖uh−vh‖V ≤α‖uh−vh‖
2
V+

µ2

4α
‖u−vh‖

2
V , (4.14)

where α>0 is a sufficiently small constant. Similarly, we estimate I2 as follows:

I2≤‖u−vh‖V‖ph−qh‖+‖uh−vh‖V‖p−qh‖

≤δ‖ph−qh‖
2+

1

4δ
‖u−vh‖

2
V+α‖uh−vh‖

2
V+

1

4α
‖p−qh‖

2, (4.15)

where δ > 0 is a sufficiently small constant. In terms of the definition of the stabilized
term G(·,·) :M×M→R, I3 is estimated by

I3=|G(qh−p,ph−qh)+G(p,ph−qh)|

≤‖p−qh‖·‖ph−qh‖+‖p−Πp‖·‖ph −qh‖

≤2δ‖ph−qh‖
2+

1

4δ
‖p−qh‖

2+
1

4δ
‖p−Πp‖2. (4.16)

Since b(uh,vh,vh)=0, then we rewrite I4 as follows:

I4=|b(u,u,uh−vh)−b(uh,uH,uh−vh)−b(uH,uh,uh−vh)+b(uH,uH,uh−vh)|

=|b(u−uh,u,uh−vh)+b(uh,u−uh,uh−vh)+b(uh−uH,uh−uH,uh−vh)|

=|b(u−vh,u,uh−vh)+b(vh−uh,u,uh−vh)+b(uh,u−vh,uh−vh)

+b(uh−vh,vh−uH,uh−vh)−b(vh−uH,uh−vh,vh−uH)|

=|I6+···+ I10|. (4.17)

According to Young’s inequality and (2.3), I6 is estimated by

|I6|=|b(u−vh,u,uh−vh)|≤N‖u−vh‖V‖u‖V‖uh−vh‖V

≤
µ

2
‖u−vh‖V‖uh−vh‖V ≤α‖uh−vh‖

2
V+

µ

8α
‖u−vh‖

2
V . (4.18)

We estimate I7 and I8 as follows:

|I7|= |b(vh−uh,u,uh−vh)|≤N‖u‖V‖uh−vh‖
2
V ≤

µ

2
‖uh−vh‖

2
V , (4.19a)

|I8|= |b(uh,u−vh,uh−vh)|≤N‖uh‖V‖u−vh‖V‖uh−vh‖V

≤α‖uh−vh‖
2
V+c‖u−vh‖

2
V , (4.19b)

where c>0 depends on N,α and ‖uh‖V . Using (4.3), we estimate I9 as follows:

|I9|=|b(uh−vh,vh−uH,uh−vh)|

≤N‖vh−uH‖V‖uh−vh‖
2
V

≤N(‖u−vh‖V+‖u−uH‖V)‖uh−vh‖
2
V

≤cH‖uh−vh‖
2
V , (4.20)
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where c>0 is independent of h and H.
In terms of |b(uh,vh,wh)| ≤ c|logh|1/2‖uh‖V‖vh‖V‖wh‖ (see [25]), we estimate I10 as

follows:

|I10|=b(vh−uH,uh−vh,vh−uH)

≤c|logh|
1
2 ‖vh−uH‖V‖uh−vh‖V‖vh−uH‖

≤c|logh|
1
2 (‖u−vh‖V+‖u−uH‖V)(‖u−vh‖+‖u−uH‖)‖uh−vh‖V

≤c|logh|
1
2 (h+H)(h2+H2)‖uh−vh‖V

≤c|logh|
1
2 H3‖uh−vh‖V . (4.21)

Substituting (4.18)-(4.21) into (4.17) and using Young’s inequality, we obtain

I4≤
3µ

4
‖uh−vh‖

2
V+(α+cH)‖uh−vh‖

2
V+c‖u−vh‖

2
V+c|logh|H6. (4.22)

I5 is estimated by

I5= |j(vhτ)−2j(uτ)+ j(2uτ−vhτ)|≤ c‖u−vh‖L2(S). (4.23)

Hence, substituting (4.14)-(4.16) and (4.22)-(4.23), for sufficiently small α and H, we ob-
tain

‖uh−vh‖
2
V ≤c‖u−vh‖

2
V+c‖p−qh‖

2+‖p−Πp‖2

+c‖u−vh‖L2(S)+c|logh|H6+cδ‖ph−qh‖
2,

where c>0 is independent of h and H. Thus, there holds

‖u−uh‖V ≤c‖u−vh‖V+c‖p−qh‖+‖p−Πp‖

+c‖u−vh‖
1
2

L2(S)
+c|logh|

1
2 H3+cδ

1
2 ‖ph−qh‖. (4.24)

Next, we estimate ‖ph−qh‖. From Theorem 3.1, we have

β2‖ph−qh‖≤ sup
(wh,qh)∈(Ṽh,Mh)

Bh(u
h−vh,ph−qh;wh,qh)

‖wh‖V+‖qh‖

= sup
(wh,qh)∈(Ṽh,Mh)

Bh(u
h−u,ph−p;wh,qh)+Bh(u−vh,p−qh;wh,qh)

‖wh‖V+‖qh‖
. (4.25)

For all wh∈Ṽh, set v=u±wh in (2.1). Then we have

a(u,wh)+b(u,u,wh)−d(wh,p)=( f ,wh), ∀wh∈Ṽh. (4.26)
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Similarly, we set vh =uh±wh in (3.1) and obtain

a(uh,wh)+b(uH,uh,wh)+b(uh,uH,wh)

−b(uH,uH,wh)−d(wh,ph)=( f ,wh), ∀wh∈Ṽh. (4.27)

Subtracting (4.26) from (4.27) yields

b(u,u,wh)−b(uH,uh,wh)−b(uh,uH,wh)+b(uH,uH,wh)

=a(uh−u,wh)−d(wh,ph−p), ∀wh∈ Ṽh. (4.28)

Then, in virtue of the definition of Bh, following (4.28), we have

Bh(u
h−u,ph−p;wh,qh)

=a(uh−u,wh)−d(wh,ph−p)+d(uh−u,qh)+G(ph−p,qh)

=b(u,u,wh)+b(uH,uH,wh)−b(uH,uh,wh)−b(uh,uH,wh)−G(p,qh)

=b(u−uh,u,wh)+b(Rhu,u−Rhu,wh)−b(Rhu−uh,u−Rhu,wh)

+b(uh−uH,Rhu−uH,wh)−b(uH,uh−Rhu,wh)−G(p,qh)

=I11+···+ I16. (4.29)

We estimate I11 to I16 as follows:

|I11|= |b(u−uh,u,wh)|≤N‖u−uh‖V‖u‖V‖wh‖V ≤ c‖u−uh‖V‖wh‖V , (4.30a)

|I12|= |b(Rhu,u−Rhu,wh)|≤N‖u−Rhu‖V‖Rhu‖V‖wh‖V ≤ ch‖wh‖V , (4.30b)

|I13|= |b(Rhu−uh,u−Rhu,wh)|≤N(‖u−Rhu‖V+‖u−uh‖V)‖u−Rhu‖V‖wh‖V

≤ ch(h+‖u−uh‖V)‖wh‖V , (4.30c)

|I14|= |b(uh−uH,Rhu−uH,wh)|≤ c|logh|
1
2 ‖uh−uH‖V‖wh‖V‖Rhu−uH‖

≤ c|logh|
1
2 (‖uh−u‖V+‖u−uH‖V)(‖u−uH‖+‖Rhu−u‖)‖wh‖V

≤ c|logh|
1
2 H2‖uh−u‖V‖wh‖V+c|logh|

1
2 H3‖wh‖V , (4.30d)

|I15|= |b(uH ,uh−Rhu,wh)|≤N‖uH‖V‖uh−Rhu‖V‖wh‖V

≤ c(‖uh−u‖V+‖u−Rhu‖V)‖wh‖V

≤ c‖uh−u‖V‖wh‖V+ch‖wh‖V , (4.30e)

|I16|= |G(p,qh)|≤ c‖p−Πp‖‖qh‖≤ ch‖qh‖. (4.30f)

Following the above estimates (4.30a)-(4.30f), we obtain

Bh(u
h−u,ph−p;wh,qh)≤ c‖u−uh‖V‖wh‖V+c(h+|logh|

1
2 H3)‖wh‖V++ch‖qh‖.

Thus, from (4.25) and Theorem 3.1, we have

‖ph−qh‖≤ c‖u−uh‖V+c(h+|logh|1/2H3)+c‖u−vh‖V+c‖p−qh‖. (4.31)
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Substituting (4.31) into (4.24) and for sufficiently small δ, we get

‖u−uh‖V ≤ c(h+|logh|
1
2 H3).

Using (4.31) again, we get

‖p−ph‖≤ c(h+|logh|
1
2 H3).

So, the theorem is proved.

Remark 4.1. The assumption |logh|1/2H2
< 1 holds. In order to obtain the optimal con-

vergence order, in virtue of Theorem 4.1, we choose h =O(|logh|1/2H3). In this case,
|logh|1/2H2=O(h/H) with h≪H.

Now, we begin to show the L2 estimate ‖u−uh‖ by the Aubin-Nitsche technique. In
order to do that, we need the following regularity assumption about the homogeneous
linearized Navier-Stokes equations:

Given z∈L2(Ω)2, suppose that the linearized Navier-Stokes equations





find (w,π)∈V×M such that

a(w,v)+b(uH ,v,w)+b(v,uH ,w)−d(v,π)=(z,v), ∀v∈V ,

d(w,q)=0, ∀q∈M,

(4.32)

admits a unique solution (w,π)∈H2(Ω)2∩V×H1(Ω)∩M satisfying

‖w‖2+‖π‖1 ≤ c‖z‖,

where c> 0 is independent of h. Denote (wh,πh)∈ Ṽh×Mh the stabilized finite element
approximation solution of (4.32). Since uH is uniformly bounded in V , then there holds

‖w−wh‖V+‖π−πh‖≤ ch‖z‖, (4.33)

where c>0 is independent of h and H. We recall a lemma due to Layton [26, 27].

Lemma 4.2. Suppose u,uH∈V and v∈V∩H2(Ω)2. For every 0<ε≤1, there exists some positive
constant C=C(ε) such that

|b(u−uH,u−uH,v)≤C‖u−uH‖
2−ε‖u−uH‖

ε
V‖v‖2, (4.34a)

|b(u−uH,u−uH,v)≤C‖u−uH‖
1−ε‖u−uH‖

1+ε
V ‖v‖V . (4.34b)

Theorem 4.2. Under the assumptions in Theorem 4.1, the two-level Newton iteration solution
(uh,ph) satisfies the following L2 error estimate:

‖u−uh‖≤ c(h2+h|logh|
1
2 H3+H4−ε), (4.35)

where 0< ε≤1, c>0 is independent of h and H.
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Proof. Set z=v=u−uh in (4.32). Then we get

‖u−uh‖2= a(u−uh,w)+b(uH,u−uh,w)+b(u−uh,uH,w)−d(u−uh,π). (4.36)

For the approximation wh of w, setting v=u±wh in (2.1) and vh =uh±wh in (3.1) yields

a(u,wh)+b(u,u,wh)−d(wh,p)=( f ,wh), (4.37a)

a(uh,wh)+b(uH,uh,wh)+b(uh,uH,wh)−b(uH,uH,wh)−d(wh,ph)=( f ,wh). (4.37b)

Subtracting (4.37a) from (4.37b), we obtain

a(u−uh,wh)−d(wh,p−ph)+b(u−uH,u−uH,wh)

+b(uH,u−uh,wh)+b(u−uh,uH,wh)=0.

Hence, from (4.36), we have

‖u−uh‖2 =a(u−uh,w−wh)+b(uH,u−uh,w−wh)+b(u−uh,uH,w−wh)

−b(u−uH,u−uH,wh)−d(w−wh,p−ph)−d(u−uh,π)

=J1+···+ J5. (4.38)

About J1, J2, J4, we have

|J1|= |a(u−uh,w−wh)|≤µ‖u−uh‖V‖w−wh‖V ≤ ch(h+|logh|
1
2 H3)‖u−uh‖, (4.39a)

|J2|= |b(uH ,u−uh,w−wh)+b(u−uh,uH,w−wh)|

≤2N‖uH‖V‖u−uh‖V‖w−wh‖V ≤ ch(h+|logh|
1
2 H3)‖u−uh‖, (4.39b)

|J4|= |d(w−wh,p−ph)|≤‖w−wh‖V‖p−ph‖≤ ch(h+|logh|
1
2 H3)‖u−uh‖. (4.39c)

About J3, using Lemma 4.2, we have

|J3|=|b(u−uH ,u−uH,wh)|

≤|b(u−uH ,u−uH,wh−w)|+|b(u−uH,u−uH,w)|

≤C‖u−uH‖
1−ε‖u−uH‖

1+ε
V ‖w−wh‖V+C‖u−uH‖

2−ε‖u−uH‖
ε
V‖w‖2

≤chH3−ε‖u−uh‖+cH4−ε‖u−uh‖

≤cH4−ε‖u−uh‖. (4.40)

About J5, we note that Ππ is the piecewise constant, then

d(u−uh,Ππ)=−
∫

Ω
(u−uh)·∇Ππdx+

∫

S
(u−uh)·nΠπds≡0.

Thus, we obtain

|J5|=|d(u−uh,π)|= |d(u−uh,π−Ππ)|

≤‖u−uh‖V‖π−Ππ‖≤ ch(h+|log h|
1
2 H3)‖u−uh‖. (4.41)
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Substituting (4.39a)-(4.41) into (4.38), we obtain

‖u−uh‖≤ c(h2+h|logh|
1
2 H3+H4−ε).

The proof is completed.

Remark 4.2. The L2 error estimate is suboptimal even if we choose

h=O(|logh|1/2H3).

Hence, H3 = O(h|logh|−1/2). Then we have H4−ε = O(H1−εh|logh|−1/2). Note that
|logh|−1/2

<1 when h is sufficiently small. Thus, the estimate (4.35) becomes

‖u−uh‖≤ c(h2+H1−εh). (4.42)

5 Numerical results

In this section, we will give the numerical results to support the theoretical results de-
rived in Theorems 4.1 and 4.2. However, the discrete problems (4.1)-(4.2) on the coarse
mesh and on the fine mesh are the variational inequality problems. Then, we must con-
struct the numerical iteration schemes to solve these variational inequality problems.
Here, we use the Uzawa iteration method, which has been used to solve the numerical
solution of the Stokes type variational inequality problem in [10, 11, 28].

However, we only give the Uzawa iteration method for the variational inequality
problem (2.1). The similar method can be used to solve the two-level stabilized schemes
(4.1)-(4.2). The variational inequality problem (2.1) is equivalent to the following varia-
tional equation:





a(u,v)+b(u,u,v)−d(v,p)+
∫

S
λgvτds=( f ,v), ∀v∈V ,

d(u,q)=0, ∀q∈M,
λuτ = |uτ |, a.e. on S,

where λ∈Λ={γ∈ L2(S) : |γ(x)|≤1 a.e. on S}. In this case, we can solve the variational
inequality problem (2.1) by the following Uzawa iteration scheme:

λ0∈Λ is given, (5.1)

then as λn is known, we compute (un,pn) and λn+1 by

{
a(un,v)+b(un,un,v)−d(v,pn)=( f ,v)−

∫

S
λngvτds, ∀v∈V ,

d(un,q)=0, ∀q∈M,
(5.2)

and
λn+1=PΛ(λ

n+ρgun
τ), (5.3)



R. An and H. L. Qiu / Adv. Appl. Math. Mech., 5 (2013), pp. 36-54 51

Figure 1: The domain Ω.

where ρ>0 is a parameter, PΛ from L2(S) to Λ is the projection operator defined by

PΛ(γ)=sup{−1,inf(1,γ)}, ∀γ∈L2(S).

Consider the problem (2.1) in the fixed square domain (0,1)×(0,1) (see Fig. 1). Choose
the appropriate f such that the exact solution (u,p) is given by

u(x,y)=(u1(x,y),u2(x,y)), p(x,y)=(2x−1)(2y−1),

u1(x,y)=−x2y(x−1)(3y−2), u2(x,y)= xy2(y−1)(3x−2).

For all ph,qh ∈ Mh, the stabilized term G(ph,qh) in the finite element approximation
formulation can be computed by the following local Gauss integration method in [18]:

G(ph,qh)= pT
i (Mk−M1)qj = pT

i Mkqj−pT
i M1qj,

where

pT
i =[p0,p1,··· ,pN−1]

T , qj =[q0,q1,··· ,qN−1],

Mij=(φi,φj), ph =
N−1

∑
i=0

piφi, pi = ph(xi), i, j=0,1,··· ,N−1,

where φi is the base function in Ω with respect to the pressure such that its value is one
at the node xi and is zero at other nodes. Mk, k ≥ 2 and M1 are pressure mass matrix
computed by using k-order and 1-order Gauss integration in each direction, respectively.
pi, qi are the value of ph, qh at node xi. pT

i is the transpose of the matrix pi.
Let the iteration initial value λ0 = 1 and the parameter ρ = µ= 0.1 in (5.3). We pick

nine coarse mesh values H = 1/2,1/3,··· ,1/10. In terms of Theorem 4.1, we choose the
fine mesh h=O(|logh|1/2 H3) such that the error derived in Theorem 4.1 is of the optimal
convergence order:

‖u−uh‖V+‖p−ph‖≤ ch. (5.4)
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Table 1: Values of h.

1/H 2 3 4 5 6 7 8 9 10

1/h 8 16 32 61 101 153 221 305 408

Table 2: Relative errors and their convergence orders.

1/H 1/h
‖u−uh‖V

‖u‖V
Order

‖u−uh‖

‖u‖
Order

‖p−ph‖

‖p‖
Order CPU

2 8 0.313701 / 0.0848167 / 0.0557971 / 0.469

3 16 0.151545 1.0496 0.0213492 1.9902 0.0207313 1.4284 0.235

4 32 0.073768 1.0387 0.0049929 2.0962 0.0073802 1.4901 0.89

5 61 0.038159 1.0217 0.0015329 1.8304 0.0028017 1.5013 3.203

6 101 0.022894 1.0131 0.0005971 1.8695 0.0013129 1.5032 8.938

7 153 0.015061 1.0084 0.0002908 1.7322 0.0007034 1.5024 22.047

8 221 0.010404 1.0059 0.0001528 1.7488 0.0004057 1.5016 44.188

9 305 0.007527 1.0041 0.0000891 1.6756 0.0002497 1.5011 89.782

10 408 0.005623 1.0031 0.0000547 1.6739 0.0001614 1.4999 159.672

From Remark 4.2, the L2 error estimate ‖u−uh‖ is suboptimal. Table 1 displays the values
of h with corresponding to the H.

Tables 2 displays the relative H1 and L2 errors of the velocity and the relative L2 error
of the pressure and their convergence orders and CPU time, from which we observe the
predicted optimal convergence orders of ‖u−uh‖V and ‖p−ph‖. However, the conver-
gence order of ‖u−uh‖ becomes smaller and smaller as H and h decrease, which support
the estimate (4.42). The CPU time implies that the two-level Newton iteration method is
an efficient and high-performance algorithm to solve the variational inequality problem
(2.1).
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