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Abstract We prove the global existence of solution to basic semiconductor equa-
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Key Words Super-subsolution; fixed point theorem; [P estimate and Schauder

estimate.
Classification 35K57, 35M10.

1. Introduction

(1) We consider a nonlinear system of partial differential equations arising from
semiconductor theory (see [1]):

(A =L(n—p-N() (1.1)

div.J, — % = R(n,p,8) (1.2)
1 div.J, — g—iz = Rin,p, 0 (1.3)
h fc% — A8 = H(n, p, ), Vi, Vp, Vi) (1.4)

where 1 is the electrostatic potential, n and p are the densities of mobile holes and
electrons respectively, @ is the temperature. J_r.; = D, Vn—pu,nVip, jj., = D Vp+pu,pVip
are the hole and electron current densities, I}y, and Dy, are the diffusion coefficients for
holes and electrons, p, and p, are the mobility of holes and electrons. R is the net
recombination rate. N(x) is the density of ionized impurities. ¢ and g denote the
dielectric permittivity and the unit change. k is associated with the material. We
ASSUME fin, fp, Dy, Dy, €, g, k are positive constants. R(n,p,0) = r(n,p, 8)(np — 1(#)).
H represents local produced heat, one of the simplest forms is _,.[j;t -+ j;j}‘i?*;ﬁ:.
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The system (1.1)-(1.4) governs the transport of mobile carriers in a semiconductor
device. For details please see [2] or [3]. Most researchers neglect the influence of change
of temperature. Strictly speaking, the heat equation (1.4) should be included.

(2) On boundary condition: In this article we will only consider Dirichlet boundary
condition,

(3) Known results and recent developments: there are many results when 8 is
considered as a constant. On steady-states, the first existence result is established in
4] under condition R = 0; for more general existence result of steady-states, we refer
to [5-7]. On uniqueness of steady-states, we refer to [8-11] where partial results are
included. Generally physical considerations show that one has to expect non-uniqueness
of steady-states. On the global existence and unigqueness of solutions of (1.1) -(1.3) (@
is regarded as a constant), see [12], [13], [1]. On asymptotic behavior of solutions of
(1.1)-(1.3), partial results are obtained in [14] under very special boundary conditions,
On the basic equations with heat conduction, as far as we know, only Seidmann [15] and
Seidmann and Troianiello [16] obtained some results. In [15] they proved the existence
and uniqueness of solutions of (1.1)-(1.4) and the existence of periodic solutions. In [16]
they showed some results on the existence and uniqueness of solutions to (1.1)-(1.4)
and the existence of steady-state. No result is known on the asymptotic behavior of
the solutions of {1.1)-(1.4).

Recently we learned following interesting results from [17]: if © is sufficiently narrow
in one direction, § is a constant, then (1.1)—(1.3) has a unique steady-state and the
solutions of (1.1)-(1.3) converge to the unique steady-state exponentially.

(4) Our main results: in this paper we will try to extend the results of [17] to system
(1.1)—(1.4): first we established the global existence of solutions of (1.1)-(1.4); if £ is
sufficiently narrow in one direction, then (1.1)-(1.4) has a unique steady-state and it
15 locally asymptotically stable,

2. Existence and Uniqueness of Solutions of (1.1)-(1.4)
We impose following initial and boundary conditions:

n, P, @i=p = no(x), po(z), fo(z)

i - (2.1)
P, @Jﬂﬂ T ﬂ{ﬂ:, f}- fﬁh: '«t,l:ls- '9{:'5"- I], '{"I*'{H": f}

Theorem 1  Under following conditions, the system (1.1)-(1.4), (2.1) has a
unigque solution (n,p, 1, 8) € [CHIH2(QN for T > 0:0 < gt <y 0
L, (0,0) < (7,9), (ng,po) < (1,1), 0 < N(z) < N, where r,l, H are Lipschitz continu-
ous, r1,01, N are positive constants, i, 7,0, € CEfalte/2inLny. g, Po, Bp € C*T(0),
N(z) € C(Q), |H(n,p, 4, Vn,Vp, V)| < Holn,p, b, V) + Hy(n, p, ¥, Vib)|Vnl® +
Ha(n,p, b, V)| V|, where Hy, Hy are continuous, ly is some posttive constant, and
the compatibility conditions on ng and A, po and §,6y and 0 are always assumed.




No.l On Basic Semiconductor Equations with Heat Conduction 45

Proof of Theorem 1  Consider the space 4 = L={(0,T), Wh9(Q)} and a closed
convex set B = {u € A:0 < u < Mt} where M is to be dete:mmed

Step 1  For arbitrarily given v € B,v € B, problem Ay = —{w. — v — N(z)),

‘t_.'_'.'laﬂ = '.!l.FJ has a unmgue solution and ]1!;.'.?| L=({0,T),W2a (1)) < .
Step 2 For given (u,v) and 1 determined in Step 1, problem

k%‘g — Af = H(u, v, %, Vi, Vo, Vi), 0]i=0 = o(z), fan =

has a unique solution 8 and # € L*((0,1"), W2a/lo(Q)).
Step 3  After we have determined (8, v), let (n,p) be the solutions of following

systems:

@5;? — Dy An + 1, VnVy + p&ﬂl{ﬂ p=N)+ Rin,p8)=0
: {;}: D Ap — p, VpVh — Eppp[m —p—N)+ Rin,p,8) =10 (2.2)
| n,pli=0 = no(x), po(z), n, plan = #i(z, 1), plz, 1)

We use the super-sub solution method to establish the existence of solutions of (2.2):
for the super-sub solution method, we refer to [18] or [19]. Let (n,§) = (eMEeMb

o el ! i
— Do AR 4+ p, VaVid —  sup { = EILﬂﬂ'[ﬂ' -p—N)— R{THF:H}}
Bf O pseidt £
iy A MEUNE M ey e Sl & ey
> Me !+ ~Hne (e € MNY-liry = e _Hn 1M

Ejﬁ q— i -
— i VEVY 2p(n— 5 — N) — R(n, 5,8
5~ DpOP — #p VIV ~ ﬂ{fgm{sm” 5 - N) - R(n,5,0) }

= MMt gﬁpEME(EML — Mt N = lirg = MM = L)

and (7, 5), (no,po) = (1,1) < (f,p), so we have: when M = [ + g,u.ﬂf":r, (71,7) is the

super-solution of (2.2).
Consider (n,p) = (0,0):

gn _ DuAn 4+ p,VoVy — inf { - E%(E —p—N)— R(n,p, ﬂ]} .

b O=p=eMt E
= - f ] ) <0
Mﬂg_ Ar(0,p,0)(0)}

The last inequality follows from r = 0, [ = 0. Simlarly we have

el < i e et g R
DpAp ;LF?E"F-!,U D{leréfl;m{eupgfn p— N)— R(n,p, 5']}

= — Irin,0,8)(8)} <

U{ﬂ{euﬁ
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and (r,p) = (0,0) < (7, 7), (no,po), so (n,p) is the sub-solution of (2.2). From the
super-sub solution theorem (see [18] or [19]) we know that (2.2) has a unique solution
(n,p) : (0,0) < (n,p) < Mt M),
So we can define an operator Ty : Ty(u, v) = (n,p). It is easy to prove that T7(B) C
B, in fact T1(B) is a bounded subset of B. From %;—E — DpAn+ prn(n —p — N) +
Rin,p,8) = 0, n|i=p = np(x), n|an = fi(z,t) and the estimate 0 < n < M 0 < p <
ME o] oo o) wraapny) < C, using the LP estimate for parabolic equation, we obtain
1| oo 0,7y, w201y = C. Using Sobolev compact embedding theorem we claim Ty is a
compact operator. Now we settle to show the contimuity of 17
Assume Ty(ui,v) = (iypi), § = 1,20 = ug —us, v = ¥ — Wo, ¥ = 2y — W,
n=Mn —Ng, p =M —pa2, # =6 — . From the equation Ayy = g{m — v; — N},

Yilan = ¥, ¢ = 1,2, we have Ay = ~(u — 1), ¥|sn = 0. Using L” estimate we have

e

following estimate:

|1y W2.3((r) = O |u|frj'{|';? ]+|T’|L-= Q::Ij (2.3)
From the equation that n;(i = 1, 2) satisfy we have:
&
;; (VWi + Vi Val) + = {n{m +ng +p — N) — nap)

+R(n1,p1,01) — Ring,p2,02) =0, nlapn=0, nli—g=0

then we obtain following estimate by using LP estimate:

< C(|Vel] Le(gpy T I ?:ﬂ.:r;; | + [pl7, T( J+|E|Jrq|:cgﬂ (2.4)

q
Il 2,y =

and we have similar estimate for p:

ili'f"|w:=1 (Or) = C':lv'ﬁ'-"lqwig 3T |n!1?|:.|:;]-]-‘| |5[3'| La(ge) T |6 r;J-;'{QT}} (2.5)

Gy b
From EE_F — &8 = Hng, pi, ¥, Ving, Vipg, Vi), 8:lan = Ool(z), we have .ﬁ:% —Af =

H(uy, v1,%1, Vg, Voy, Vaiy ) — H(ug, va, ¥, Vg, Vg, Vibz), flan = 0, and following
estimate holds by using LP estimate:

q q
wlwz,lrﬁﬂ & Cilﬂlw‘:.ﬁm? 3 - |t|w-t %) =+ |@|W;'D{QT}] (2.6)
Concluding from (2.3)-(2.6), we have
q
|”|w$-‘{QT} F |P|E.1_;$JI:QTJ < Cllulf + v]f + ™ e gpy + |P|iq(qﬂ}

And also we have

L
g ik 4 q
]Tlqu{ﬂ} = ~/.‘:1|]I} ]'1;[5,::[:}{13| dr < Glnlwqg'l{tg?}

t
q o | q
i?n|mim = /511 |"~?A ?1;(3}1,};1.5| dr = Glnlﬁf'ltc}ﬂ
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then we have

Fﬂliw.q(ﬂ} ""'Ff—“ﬁrl.q{ﬂ} = Cflnilr{v;'l[{;l:j o+ |F|f,{,rq2.1w:]}
L
< O(jull +1ol% + [ (liyraqey + i) t)

By using the Gronwall inequality we have hll?ﬂ""""{ﬂ] + |P|E’l""?{ﬂ} < C(lu|a + |v)a),
therefore the continuity of the operator TY is proved.

Now by applying the Schauder fixed point theorem, we can show the existence of
a solution (n,p,#,1) to system (1.1)-(1.4), (2.1), and using the regularity theory of
parabolic equation, we have (n,p,8,v) € C*=1+22(00) for any T > 0.

For uniqueness part, assume there are two solutions (n;, ps, 8, ¢:), ¢ = 1,2, by using
the similar steps of proving the continuity of T}, we have

L
livsaan + Wlivraay < € [ (rlinacg,) + oo, s

: t
Let g(t) = f |:|'ﬂ-f€-;r1..;,:q y |p|EH,,,{Q }]cﬁa, then we have dg(t)/dt < Cg(t), g(t) = 0,
ﬂ ] A
9(0) = 0, which means g(t) = 0, therefore n = p = 0, and then » = § = 0, this
completes the proof of Theorem 1. '

3. Existence and Uniqueness of the Steady State
We consider the following elliptic system:
(A% =2(n—p-N(2))
divJ, = R(n,p, 8)

4 < (3.1)
divJ, = R{n,p,#) -

A8 = —H(n,p, ¥, Vin, Vp, Vap)

and boundary condition:

n,p, 0, ¥lan = Moo ), Poc(), Boc (), tos(z) (3.2)

From now on we always assume that 2 is sufficiently narrow in xy direction and
2 C (0,zp) x €. We choose the function space A as W1*°(0) and its subset B = {u e
A,0 < u £ b— axi}, where a,b are positive constants to be determined later.

Theorem 2 If zg is small enough, and 0 < n.,(z), Peal®) = 1, Roa(x), posl(a),
foo(), Yoolz) € C22(R), 0< 7 <1, 0< i < h, 0 £ N(z) < N, N(z) e ¢=(}),
where v, [, H are Lipschitz continuous Junctions, v, 11, N are positive constants, then
the system (3.1)-(3.5) has a unique solution (n,p, 4, 8) € {C2e()}1.
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Proof of Theorem 2 Step 1 For arbitrarily given (u,v) € B x B, we can
8 = Yoo ().

Step 2 For given (u,v) and the 1 determined in step 1, we can uniquely find a
f satisfying equation: A8 = —H(u, v, 1, Vu, Vv, Vi), 8lan = ue(z).

Step 3  Assume that n, p are solutions of following equations:

uniquely determine 4 by using equation A = i(u — v — N(x)), 2
£

[ —DpAn + un Ve + g;f.ﬂm[n, —v— N(z))+ R{n,v,8) = 0,
4 flan = fise ) (3.3)
| ~Dolp — 1, VPVY — Lppp(u— p — N(@)) + R(n,p,0),  plan =peo(z)  (3.4)

The proof of the existence of solution of (3.3): consider function 2 = b — ax?, from

q T i ] i
.ﬁ'!,.",l = EIIE—TJ—_E‘"-' I{:-L":I]I, “t;.:"l,,f;n == '{E'Jm{,t:l we have |?'i:.'.-r|}'__m{ﬂ} E C(E.&.T;:|Lw|:ﬂ:| +-|'T.":J|Em[’ﬂ:l:| <
Clu—v—=N{z)|poe(n) = C+C(b+N), where C is some positive constant, then i satisfies:

~Dudit +unVAVY —  sup  { - g;znﬁ.fﬂ — v~ N) - R(#,v,0)}

L]Eﬂgrl—.!}a:f
= 2aly, — 20z pn| V| e — glu,“f?b -1l
£

> 2aDy, — 20211 (C + C(b + N)) — g,u,nm -

If 71 1s to be a super-solution, it suffices that the last term in above inequalities is
positive, i.e., we need following conditions:

a = (gﬁﬂﬁ’ + Tlh)fﬂm 2g < Dn /20 (C + C(b + N)) (3.5)

Note that all constants in above inequalities are in independent of ;. On the
boundary we need to have filzn > n.(z). Note that ne.(z) < 1, then we need h— axh >
1, and it suffices to let

b>1+aD/2u.(C+ Clb+ N))? (3.6)

We can easily choose adequate, a,b such that (3.5), (3.6) hold, then 7 = b — ax? is

a super-solution.
For n = 0, it satisfies

—DoAn +4, VoV —  inf { — glu,ﬁﬂ{;rl -y —N)— R(E,v,ﬁ}}

v b— rx;a:f

< — inf E{T‘(ﬂm,ﬂ}i{ﬁ'j} < 0

D<web—ar

On the boundary we have n(z) > 0 > n, then by virtue of the super-sub solution

method (see [20]), there exists a solution n to (3.3) and 0 <n < b — ars.
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The existence of solution to (3.4): f = b — ax? satisfies

~DpAp —ppVpVY = sup  {Tppp(u - - N) - R(u,5,9)}

O<u<b—ax}

> 20Dy — 2azopp| Ve — il = 2aD) — 2azpp,(C 4+ C(b+ N)) =il 2 0

In order that the last inequality holds, it suffices that @ = v 11 /Dy, 7p < Dy /2p,(C+
C(b+ N)). On the boundary, § = b — az§ > 1 > peo(z), and we can choose a large
first, and then choose b large, finally choose xgp small such that all above inequalities
hold. Also note that p = 0 is the sub-solution of (3.4). Again applying the super-sub
solution theorem we know that there exists a solution p to (3.4) and 0 < p < b — ax?.

Now let’s define an operator Ty : Ta(u, v) = (n,p), and it can be seen that T2(B) C

B, in fact T53(B) is a bounded set of B: from Ay = g{u —u = N), tag = the(z),

and 0 < w, v < b — {I.ET‘]?1 we easily deduce the estimate rzb[w1.m < C. From —D,An +
taVnWViy = —g;;nrr.{n — 9 — N) — R(n,v,8), n|agg = na(z), applying standard L

estimate and embedding theorem, we can show that [n|yi.. < C, and similarly we
have |pla < C, therefore Th(B) is bounded in B. We can use the LP estimate and
sobolev compact embedding theorem to deduce that T is a compact operator.

Now we only need to prove the continuity of operator Th: assume Th(ui,v) =
(ni,pi)y it =12, u=u —us, v=w =W, n=n1 —Ng, p=p1 —p2, § =6 — b,
W = 4y —1Py. Fory, A = g{ﬂ'—"’ﬂ}, P|an = 0, then we have [{|w2.000) £ Cllulpe+|v

_[I_q :I'
For n, we have

LA — #ﬁ(?$1?n+ ViV + g(n(m +nz4+v — N)— ﬂ.g’i‘_.'})
"l"-R[ﬂ'l y U, ﬂl} == R[ﬂ.j, ta, EJ}

By virtue of LP estimate, we have [n|y2.. < C(|V4|re + |v| e +|8]24), and similarly for
p we have [ply2e = C(|Vd|pe + |ulpe + |v|5e).
For 8, 1t satisfies

Al = Hiug, vz, v, Vug, Vs, Vila) — H(uy, v1, ¥, Vg, Vo, Vi), 8lag = 0

then we have :
Olwee < Cllthlwie + |ulpae + |[v]wia)

Concluding from above estimates we have
nlwza + plwze = Cllulwra + |vlwie) < C(lula + |v]a)

Let g be sufficiently large, by virtue of Sobolev embedding theorem we have In|4 +
2|4 = C(lu|a+]v|4), this means the operator T} is continuous. According to Schauder’s
fixed point theorem, we know that T3 has a fixed point, i.e, (3.1)-(3.2) has a solution
(n,p, 3, 8), furthermore from the regularity theory it follows that n,p, . 8 € CH(02).
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Now let’s show the uniqueness part: assume there are two solutions (ng, p;, 8;, 1),
t=1L2,n=n—ny, p=p1— P2, 0 =0 — 2, 9 =1fy — s
For n, it satisfies Do An — po(VaVin — naVib) + R{TL1_1P1131:| Rina,pa, ) = 0,

Multiplying above equation by n and integrating it on {2, we have f J"'.?'j-:r,|2 S f (n?+
p? + 02 + |V|*), and similarly for p we have ] |¥p|* < Cf (n* +p* + 6%+ |[Vu|*). ¥
] 0 0

satisﬁes] |Wa)? < rZ-‘f{ﬂ2 +p*).
f 0
For H, it satisfies Af = H{ng,pg, E]g:_ vﬂg, ?'Pg, v'{.",lg} — H[:Tlh ™. IS'I, ?ﬂ*la ?Pl: ?'i‘.l_r?] :l
Then we have / IVo)* < c[ (n? + p* + % + |Va6> + §|Vn|* + 6|Vp|®). Let § be
0

sufficiently small and concluding from above estimates we have

f{wnﬁ +
£

As we have following inequality

x)
fn —[ / Mg ti.-; d:e:ﬂ/: (f Evnﬁﬂ:u)d:a:ﬂ:a:gf |Vn|?
a2 ~Jo 0

Similar inequalities hold for p, #, so we have

+VO2) < r:::f (n? + p* + 6%)
Ly

(1 - Cao) [ (1Vnf? + 901 + [Vpl%) <0

1
Let zy be so small that C'zg < 5 then we have Vn=Vp=V0=10. Asn,p,flon =

0, then we easily deduce that n = p = # = 0, therefore ¢ = 0.
This completes the proof of Theorem 2.

4. The Asymptotic Behavior of the Solution of (1.1)—(1.4)+(2.1)

We don't need the condition that xp is sufficiently small while we prove the global
existence and uniqueness of (1.1)-(1.4)4(2.1). However, the norms of n, p, 8, 1 depend
on time T'. In order to obtain better estimates, we only need to use b — az? to replace
eMt i e we have following result:

Theorem 3  Under the same conditions as in Theorem 1, if we further assume xg
is sufficiently small, then (1.1) — (1.4) + (2.1) has o unique solution and |n|pe=, |p|r=,
Bl pee, |t0| e < C, where C is independent of T,

Write the solution obtained in Theorem 2 as (n*, p 6%, 1:*), the solution obtained
in Theorem 1 as (n, p, &, ).

Theorem 4  If xg is sufficiently small, max(|n™ —ng(x)|, |p* —po(x)|, |6* —bp(z)])
< 1, |7(z,1) = neo @), [P(2,8) = Pool@)], 18(z:£) — Boo(@)], [B(x, 8) — Poo(a)] < Ce=%,
where C,8p are some positive constants, then there exists § > 0, C > 0 such that:
max(jn - n’|, b — 7], 19— 0°]) < Cet.
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Let i, 5, § be the solutions of the following problem

LS

% = Dp i — u VANV — g“ﬂﬂ“z I:ﬂ'ﬁ > F* HE *h‘r:l i R{ﬂ**: F'*: E*}
9 = Dy Ap + p, VEVY* + E;L p*(n* — p* — N) — R(n*,p*, %)
Y atE s s el (4.1)
all:i A * L i, & £l ®
th = NG+ H(n*, p* o, Vn*, Vp*, Vi*)
¢
f, B, 0)¢=p = no(z), po(x), olx), A1, B, Blan = filx, £), plx, 1), B(z, 1)

Lemma 5 3§ > 0 such that: |A —n*|, |p—p*|, |0 — 8*| < Ce .

Proof Let ¢ = b— az?, consider super-sub solutions (7,5,8) = (n* + ge™®,
p* +ge~, 0"+ ge™®) and (n,p, 8) = (n* — ge™*, p* — ge="", 6" — ge™*).

Let we check 7 first

% ™ Dﬁ&?‘i +ﬂn?ﬂ.?ﬂ|_ 4+ g,ﬂ-ﬂn*(ﬂf e j'_]‘ == _hi"} - R{Tz*,ﬁ*, H*}
— &
7 % — DpA(ge™®) + pnV(ge™*)Vep*
> e~%(—6g) + 2067 Dy, — 2azopne | VY|

e~(2aD,, — g — 2ap,o(Cln* — p* — N|p= + C))
> e~ %(2aD, — 6b — 2ap,zo(C(2b+ N) + C))

|

So we only need to assume § < min(aDy /b, &) and xg < D, [2p,(C(26+ N) + C).

Similarly we can proceed as above to choose adequate 4,y such that § is a super
solutions.

For 8, it satisfies

dge*)
9t

Qs _
ko, — A0 — H{(n*,p" 4", Vn', Vp", Vo*) =k —e % Ag > e ¥(2a — kbS)
So we only need to choose § < a/kb st f is super-solution. And similarly we can
choose &, zp such that n, p, f are sub-solutions.

For initial values, we have
file=t =n" +glz1) Z 0" +1 2 nolx) = fii=0 20" — g(m1) = fili=0
For boundary values, we have

filan = Neo(2) + glz)e ™ |ag = Az, t) = nelz) — ge_“mﬂ = fi|an

And similarly we can check the inequalities of p, . Then by virtue of the super-
sub solution method theorem we can complete the proof of Lemama 5: Let's write



52 Lou Yuan Vol .8

. e
Q=0 x(t,t+1), 2 = {(z,¢) : z € Q}. As i — n" satisfies equation dfnt)

DaA(R — n®) — pu V(R — n*)Vy*, and we already know that [f — n*|an < (et
|fi — n*|qe < Ce™?, then we have | — n*|p2og,) = Ce~ . Let ¢ be sufficiently large
and by virtue of embedding theorem we have |7t — n*|y1.=0,) = C'e—%, We have same
estimates for p and @, this completes the proof of Lemma 5.

Proof of Theorem 4 Let W = n(z,t) — fi(x, 1), £ = p(z,t) — flx, i), § =
Az, t) — é{x,f}, then from (1.2), (4.1} we have

% ~DpAW + pn(VnV (3 — %) + VWVE*) = L [(n 4 n*)(n — n*) +n(p - p°)

+N(n* —n)] + R(n,p, ) — R(n*,p*,8*) =0, Wlan=10

therefore
Wi,y = Clln = 2*[Lagy + 1P = 2% |iagen) + 10 — O |zegn, + |W pagaty)

< C(|W /Loy + 121 zeg0) + IS]Ls(a + [Wlzagary +27%)

And similar estimate holds for Z; For 5, we have

.ﬁ:i;_f = AS+ H(n,p, 8, Vn, Vp, Vo) — H(n",p", 6", V0", Vp", Vi),  Sli=osn =0

Therefore we have
[Slwzaea,) € CUSILay + ¥ = ¥ lwreay + In = n*lwrag,) + [P = P lwie(n,)
< ClSlua@) + W = lwaay + 11 = Wlyzaay +1P = Plypyay
+HWlwiam) + 1 Zlwia@)) < CUSl e + 1 — ¥*lwraga,) + e

+E|W‘|W§"[£’I¢} + e|W|pe(qey + 5|E'|[,:,fq3-t (0 T |2 pagny)

and from Ay — ¢*) = g{[n —n*)—(p—p*)} (¢ — ¥*)|an = 0, we have estimate
% = ¥ lwragy < Cle™ + [n = n*| oy + [P = 2| La(nn))-
Concluding from above inequalities and letting £ be sufficiently small, we have
Wi,y HZlwzagn,y +18lyzaq,) = Cln — 'l + P — 2*lreay
HW o) + 1 Zlon + Wlie@e) + 1Z]Laan + [Slosgar +e7%)
< CIWlsage + 12l nagan) + (W lLsga) + 12 nagar) + 1S Loga) + %)
= fJﬂ?l_Uq{E?W|Lw(m} + V2] La(n,y) + CUW | pagney +| 2] Lagney

+|S|pa(ney + e7%)
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Let xp be so small that Cxp < 3 then we hawve

Wzt 12wt @ T [Slwzaa, < CAW

preaty + 12| gty + 1S peary + €7%)
< G'-E%M{]Wh,m[m} + | Z| gty + S| poogaey +e7%)
Let g be sufficiently large, by virtue of Sobolev 'embedding theorem we Hawe
W Lo (q2e) +|Z Loty + [S]z=(ar)
< Cay (W lzos(aty + |2l () + 1S liem(aey) + Ce?
Apain letting xp be small, we have
(W oo(aty + | 2] ey + [S|poe(ney < Ce®
and then we have

- s _E
|7 — 07| feogqry S [ — 7| ooy + [Wpoogaey £ Ce

For similar reason we have
P — p*|poopany £ Ce™®, |8 = 0%|poopary < Ce™%, |th — ¥ | poogey < Ce™®

This completes the proof of Theorem 4.
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