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Abstract In this paper we investigate the forced oscillation of the solution of a
class of nonlinear parabolic equations with continuous distributed deviating arguments.
Key Words  Forced oscillation; parabolic equation; continuous distributed devi-

ating arguments.
Classification 34C10, 34K15.

In this paper we consider the following nonlinear parabolic equation with continuous
distributed deviating arguments

&
(E) wy=alt)Au - / qla, 8, E)F [ulx, g(t, £))]da(€) + h{z,t), (z,t) € 2 x R,

where {1 is a bounded domain in E" with piecewise smooth boundary 8Q; R, =
[0, +00), u = u(z,t), A is the Laplacian in B™; a(t) € C(Ry, Ry), qlz,t,&) € C(8 x
Ry xla,b], Ry), F(u) € C(R, R); g(t,£) € C(Ry x[a,b], R), g(t,€) <1, € € [a,b]; g(t, &)

1s a nondecreasing function with respect to t and £, respectively; and lim miF_ ]{g{t._
t—+4oo Felad

§)} = +oo; a(€) € ([a,b], R) is nondecreasing in &; the forcing term h(zx,t) € C(Tl x
Ry, R); the integral in (E) is Stieltjes integral,
We consider three kinds of boundary conditions:

(By) u=1p, (z,t) €90 x R,
gl
(B2) an =14, [(=z,t) € xR,
(Bs) i —0 80 x R
3 H-I—,u:u— .z, t) € x Ry

where IV is the unit exterior normal vector to 882,  and v are continuous functions on
O x Ry, and p is a nonnegative continuous function on 82 x R, .

Some papers have been published concerning the oscillation theory of certain classes
of delay parabolic equations. We mention here the work [1]-[4] and their references.
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Concerning forced oscillation of delay parabolic equations, only the work of N. Yoshida
[4] is known. The case with discrete distributed deviating arguments all have been
considered in those papers. However, it seems that very little is known about the work
of the case with continuous distributed deviating arguments, We know only about the
works of eertain classes of ordinary differential equations with continuous distributed
deviating arguments, e.g. see [3], [6]. In this paper we discuss the forced oscillation of
the solution of the partial differential equation (E) with continuous distributed deviat-
ing arguments. Some oscillatory criteria are obtained for Equation (E) satisfyving (B1),
(B2) and (Bg), respectively.

Definition The solution u(xz,t) of Equation (E) satisfying certain boundary con-
dition is called oscillating in the domain @ x Ry if for each positive number T there
erists a point (£g,tg) € N % [1,+00) such that the condition ulzo, to) = 0 holds.

The following fact will be used:

The smallest eigenvalue oy of the Dirichlet problem

{&u—t—ﬂm=ﬂ n §1
u |ga=10

is positive and the corresponding eigenfunction ®(x) is positive in {l.

Lemma 1 Let the following condition hold:

(Hy) F(u) is a posttive and convex function in the segment (0, +0a).
If ulz,t) is a positive solution of the problem (E), (Bi) in the domain € x [, +00),
7 = 0, then the function

Halt)i= [L ‘I'{:I::I{J,'a:l I}Lu[at}i’{ﬂ:]dx (1)

satisfies the inequality

(I) X'(1) + aga()X () + [ " Q(t, ) FIX (g(t, €)ldo(€) < HE)

where Q(t,£) = ming(x, £,£),
TED

H(t) = [ " @{m}dm]_l . [-a{t} faﬂ@%dm fnh(:e:,f}@{:njda:] @)

dS is an areal element of O,
Proof Suppose that w(z.t) is a positive solution of the problem (E}, (B1) in
1 % [7,+00), 7 = 0. Note that

lin mi b)) =
tqi‘i‘?éfl,b]{g{“f}} +00

so there exists a f; > 7 such that

u(z, g(t, &) >0, t=15, & € [a,b]
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Multiplying both sides of Equation (E) by the eigenfunction ®(z), integrating with
respect to @ over the domain £ and using the formula for differentiating under the
integral, we get

d b |
T fﬂ veleitutlel fﬂ Au®(z)ds — fﬂ f a(z,t, ) F[u(z, 9(¢, )| B(x)do(€)dx
= -/ﬂ‘f&l:illi}@{ﬂljldi; t =>4 (3)

Using Green's formula, we have

du P
Ydr = > Abdz
fﬂaurx-(r]dm [ s aﬂuﬂirdE+Lu ¥
o
= --f w"—fdﬂ—ﬂu--[ ulbde, t=1i (4)
an ON i,

From (H;) and Jensen's inequality, we obtain
s .
[ [ Fluta, o(t, )@ (@)dzdo(s)

~ > Y - fﬂu($1§(f1§}}¢{ﬁjdm
"“[H [,/;.3@{ ) F( Jo ®(x)dx )

Combining (3)-(5), with (2) we see that the function X (t) defined by (1) satisfies the
inequality (I,).

The proof of Lemma 1 is complete.

Theorem 1 Assume that (Hy) holds, and that:

do(§), t2t (5)

(Hz) F(—u) = —F(u) for u € (0, +00)

If the functional differential inequalities

@) X0 +ae®XO+ | QL OFIX(s(t,0)do() < HE)
and

: _
(1) X'(t) + a0a(t)X() + | Q(LOFIX((t,€))ldo(€) < ~H(Y)

have no eventually positive solution, then every solution of the problem (E), (By) is
oscillatory in £ x R,

Proof Suppose that u(x,t) is a nonoscillatory solution of the problem (E), (Bq).
If w(z,t) = 0, (x,t) € Q2 % [r,4o00), for some 7 > 0, then from Lemma 1 it follows
that the function defined by (1) is an eventually positive solution of the inequality (1),
which contradicts the condition of the thesrem.
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If u(z,t) < 0,(z,t) € Q x [7,+00), then set
w*(z,t) = —ul(z,t), (1) €Qx[r,+00)
By (Hj), it is easy to check that w*(x,t) is a positive solution of the problem

o

: ; :
{m = aft)Au - _[ q(z, t, &) Flu(z, g(t, E)do(€) — Az, t), (z,1) € 2 X Ry
w(z,t) = —plz, t), (x,t) € 98 x Ry

From Lemma 1 it follows that
=1
X*(¢) = [ f:ﬁ(m}dm] f u*(z, )8 (z)dz
i 0

is an eventually positive solution of the inequality (Iz), which contradicts the conditions
of the theorem as well. This completes the proof of Theorem 1.
Remark 1 N. Yoshida [1], D.P. Mishev and D.D. Bainov [2] have considered

boundary condition of the type
(B1) w=0, (x,t)€d0 xRy

but have not considered the boundary condition (B;). (B*) is a special case of (B)).
Theorem 2 Assume that (Hy) and (Hz) hold. If

b tT gd E :

ltlrr{'"lﬁg_[q [—a[y} aﬂwﬁdtﬁ“uk_[nh[ﬂ:..y]@{r}dm] dy = —oo (6)
i

lim sup [—n:{y) Hﬁ:a—qj.dﬁ -I—f h.[a:m]@{:a;]dn:] dy = +oo (7)

L—+toa an ON v

for every sufficiently large number A > 0, then every solution of the problem (E), (Bq)
is oscillatory in £} ¥ Hi.

Proof By Theorem 1 we shall show that the inequalities (I;) and (I3} have no
eventually positive solution. Suppose that X (#) is an eventually positive solution of the
inequality (I;). Then there exists a {; > 0 such that

X(t) >0, X(g(t,&) >0, t=t, £€lab

From (1;) it follows that

—1 3
X'(4) < [ / @{:ﬁmm] - [wa(a‘.j [ ¢ 00 ds + [ hiz, y]@{:ﬁ}d:ﬂ] .
0 an ON 0
Integrating both sides of the above last inequality from #; to t, we get

X0 - X < | [ B(a)da] b / [— o) [ pondS+ [ Az, ) ®(2)d) do,

=1
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Using (6), we have

liminf X () = —cc
L——ax

Thus we can see that X (1) has no lower bounds, which contradicts the fact that X(t) = 0

for all t = ;.
Because of (7) it’s easy to see that

: AP
lim inf [ﬂ{y]f Ww——d5 — [ h{:s,y]lfﬁlf:?:}dx] dy
t—tco f 4 an ON 0

t

= — limsup [—a{y}f FEJS-I- / h(n:,-yjlfl*{:::jlrﬂrx:] dy = —oo
t—4o0 JA an OGN a
30 we can prove that the ineqguality (Iz) has no eventually positive solution by the
analogous arguments as in the above proof. The proof of Theorem 2 is complete.
Setting ¢ = 0 in Theorem 2, then we can obtain the following corollary.
Corollary 1 Assume that (Hy) and (Hs) hold. If

:
lgﬂljgf'/‘;fﬂh[ﬂay]@{x]d:cdy: —xa (8)
t
lim Sup-/ Lh{m,y]@[ﬂ:]dmdy = 400 (9)
t—fon J A !

for every suffictently large number A > 0, then every solution of the problem (E), (B})

ts osctllatory in £ x R,
Theorem 3 Assume that (Hy) and (Hg) hold. If the functional differential in-

equalities
]
(I3) Y'(t) + f QL E)FIY (g, (£, €))]do(€) < G(1)
ard
t
(L) Y'(t) + j QL EFIY (g, (¢, £))|do(€) < —G(t)

have no eventually positive solution, then every solution of the problem (E), (Bg) is
oscillatory in 2 x Ry, where

G(t) = |& 1 [u{t] l;ﬂ u'JdL‘i'—I—fi_th[:u,ﬁ}d:r:J ] 2—/;_!&:1:

The proof of Theorem 3 is similar to that of Theorem 1 and hence is omitted.
Theorem 4  Assume that (Hy) and (Hy) hold. If

L
lim inf ’a{yjf W, y)dS +f .h.{:a:,y]lri’.:n] dy = —oc (10)
A an 0

L—p ==

t

lim sup [ﬂ.{y] _[m Yz, y)dS + j;_} h.{z:,g,r]d:n] dy = 40 (11)

t—too J A4
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for every sufficiently large number A > 0, then every solution of the problem (E), (Ba)
is ogcillatory in § X Ry,

The proof of Theorem 4 is similar to that of Theorem 2.

Remark 2 N. Yoshida [1], D.P. Mishev and D. D. Bainov [2] have not considered
the boundary condition (B2).

Theorem 5 Assume that (Hy) and (Hp) hold. If the functional differential in-

equalifies
b
(Is) E'HHI Q(t, ) F[Z(g(t,£))]da(£) £1ﬂ|_1f h(z, t)dzx
a o
! b [
(Is) Z'(t) +[1 Q(t,£)F[Z(g(t,£))]do(€) = -'Iﬂl“lfﬁr*r-(ﬂ:}tldm

have no eventually positive solution, then every solution of the problem (E), (B3) s
oscillatory in £ x Hy.
We can prove Theorem 5 by the analogous arguments as in the proof of Theorem 1.
Theorem 6 Assume that (Hy) and (Hz) hold. If

t
lim inf f hiz, y)dzdy = —o0 (12)
E—=4oo J 4 00

t =
liirisip f f h(z, y)dzdy = +oo (13)
t— oo 44 S

for every sufficiently large number A = 0, then every solution of the problem (E), (Bs)
is oscillatory in © x Ry,

The proof of Theorem 6 is similar to that of Theorem 2.

Example Consider the equation

0
Up = Ui — Ef ul(x,t+ £)df + elcosz [(3+ ¢ 7 )smt — e~ cost],
T
{l,t] = (ﬂ, E) . R..|. {14}
and a boundary condition of the type (Bz):

ugl0,1) =0, 1y (;—T,f.) — —ebgint, ¢ Ry (15)

Here n = 1,1t = (L’I,%),_ a(t) =1, g(z,t,&) = 2, Flu) = u, g(t,£) =t + &, h(z,t) =

et cosz[(3 + e ") sint — e " cost], JanwdS = —etgint. It is easy to see that

f:: [ﬂ.[y] j;m Wz, y)dS + fﬂh{m,y}dﬂ:] i

I
= f [—e¥siny + e¥((3+ &™) siny — ™" cosy)] dy
Lo
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= e'[sint — (1+ ¢ ™) cost] — o [sinty — (14 e~™) costy

Hence all the conditions of Theorem 4 are fulfilled. Then, from Theorem 4 it follows
that every solution of the problem (14), (15) is oscillatory in ({I', -g) x Ry. In fact,

u(x,t) = e*sint cosx is such a solution.
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