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Abstract In this paper, we obtain two results of weak solutions to variational
mequalities of triangular form under controllable gmwth and a class of natural growth
conditions, L.e. 1°, L¥-estimate for the gradient; 2°, C-"hc (13, BY) regularity.
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1. Introduction

Lewyl!l, Lewy-Stampacchial?l, Brezis-Stampacchial®l and Giaquinta M.14 et al. have
made a systematic study on the convex cobstacle problem. But for vector-valued func-
tions, especially for the case n > 3, there are a few papers dealing with the regularity.
Under the quadratic growth condition, Hildebrandt 8. and Widman K-0O.% have proved
the regularity to variational inequalities of diagonal form with general chstacle. This
paper proves the regularities for variational inequalities of triangular form with some
special obstacle. We emphasize that the diagonal ellipticity condition we introduced
here is weaker than the strong ellipticity condition and under natural growth condition
(I), we seek solutions in ¢ N L™=/ (2=r)(0 R™) which is larger than C N L>=(0, RN).

We finding u € C satisfying the variational inequality

f[A (z,u) D + aj(z,u)| Do — v')dz
< fnﬂ’,;l::c,u, Du)(u* — v')dz, Vvel (1.1)

where C = {ve HYQ,BRY):v* > %, k=1,2,-- - NinQc R*n> 3 v—1€
HA(D, ™)}, is a closed convex set, vy and 1 are prescribed functions with $¥|sq <

ug|an
We assume that
(i) A:}E[ﬁ:, u) = 0, when § = 1, (Triangular condition)
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Agf{m,u}fﬁfﬁ > MEJ*, V& € R™, ) > 0; (Diagonal elliptic condition)

(ii) Controllable growth conditions:

|ag(z,v)| < C(lu[Y*=2 + f2), f2 e L7(0),0 > n (1)

| Bi(z,u, p)| < C(|p|™ /" + |u|mtD/(2=2) 4 g,y g, € L2(9), s > n/2
(iii); Natural growth eonditions:

ue €N LMW/ RV )and satisfies (2) and
[Be(z,u,p)| S C(| p I + | u [(PF/(n=2) 4 g,)

gk € L’{ﬂ],s > n/2,(14+2/n)<r <2

or (iii); u € CN L*=(Q, RY). M = sup |u| and satisfy ef(z,u4) € {0 %« RNY,0 = 3,
: n

. :
| Bz, u,p)| < a) |p;|* + bi(z), by € L'(01),s > 2, a — const.
7=1

The repeated indices 1, § are to be summed from 1 ta N . While the repeated indices
a, (3 are to be summed from 1 to n; but the repeated index k doesn’. € represents
the constant at various cases. 2° = 2n/(n - 2),¢ = 2n/(n + 2),Du = {Dyut : o =

1,2, mi =1,2,---, N}, uk =f Bt _f utdz.
B

2. LP-estimates

Proposition 2.1 Suppese that (i) and (ii) are satisfied and v € H2(0, RY), ¢ >
n, f u is a weak solution to (1), then there erists a constant p > 2, such that v €
Ll (0, R™), and for any 2o € Q and Hy < dist(zg, 01), when B < Ry, the following

lea
estimate holds

(/ (| Dul® + |u|z-}pf2dz) 1/p < G_{(j;,nﬂﬂufg + ]u|2*jd:u]1f3

nSz

+(f, (CIAP+ Duya) " + R f, ZlaPas) )

L.

Proof Takene C§*(Bgr),0<n<1l,m=1in Bryz,|Dy| < C/R. Since u® > ¢
then uf, > ¢%. Setting v* = o* + (1 —n*)(u* — %) + (vl — vk), vt =o' i # k, and
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substituting v into (1), we get

k—1
f |Du*?n%dz < c{f Z|ﬂuff=qﬂdm+f |Dy*|Pde
B B Br

R_f:I

Br

+f B||u* — v¥|d
5, | Bellu® = vt|dz}

+R7? [ |ub — uhtdet [ |u|='.:fz+f S 1fefde
R Br o

f | By ||u® — v*¥|dz
Br
. Cfg (1Dl + [u*" 7 + |gil)|(u* = uk) — (¥* — ¥§)In’de (2:2)

f |Dul9] uk — uh|nPdz

It

2/n
gsf ﬂu“dercf | Du|*d f Dul*d
ER| | (Bn' u| m) Bnl u|*dz (2.3)
[, ot - i
Br
-::-‘.’,'.‘(f iﬂuﬂzdm)rfnf |Du*|2d£+f lul* dz 2
= Bﬁ -ER BR [ 4}
Y k2 2/q
i, et o
fﬂn lo¢llu” - wkin’dz < e | [Duffdz + 5, 9:1"42) (2.5)

In (2.3)-(2.5), substituting |u* — uk| for |¢F — %], we have the similar estimates. Note
that

i 2 27 fn . 2fq
j;jn u|? dz < c(fﬁn | Dul?dz) fan fﬂu]jd:::—l—ﬂﬂaj(fg ul*92dz) ™" (2.6)

Fid

el 2/q
R ELR u* — uk|2dz < GU_;R |Dut7dz) (2.7)

Because of the absolute continuity, there exists Ry < dist(xg, 801), such that when
It < Ry, we have

k-1
k2 r SR 12 2/q
j;rﬂ{fﬂu 2+ Jult" )z < /;Rjgmu:[ n*dz + (j-;‘:‘r: oxl7dz)
: = 2f
#1Ba( f, (D + a2+ [ (DYP + T 1fe)de

+s/;ﬂ muﬁd::} (2.8)%

59




Substituting (2.8)-, into (2.8),, and summing up these inequalities gained through
iteration, we have

fﬂ (Dl + Juf*)dz < c{{ j; (Duf? + ol dg) 4 fﬂ RET:
it Tiaru oL, v

i/n
Gi = (f [gtiqdifj i g?fz:- t= I:Er"'rﬁ
Bpr

Then we get (2.1) immediately by Prop.1.1 of Chap.V in [B].

Proposition 2.2 Suppose (i) and (iii); are satisfied, p € H»nLrr-1/C-r)(q pN),
@ > n, if u is a weak solution to (1), then there exists p > 2, such that u € H]t'f(ﬂ,
R”} and for any xp € £, and Ry < dist(zg, 30), when R < Ry, (2.1) holds.

Proof

[, 1Dul it~ dhlotdz < ([ fupE
Bn Bg

2=
i.g:z)[ " [\ Dupds (2.10)
-~ Br ;

A S o 3 f 2 __I_E—r_.__c‘_r-/‘ nj=l , 3
fﬂﬂ|ﬂu||vﬁ? vhin'dz < ge [ [Dultds+ 25 Tems (BR|¢JE dz)

x f |Dy|?da (2.11)
By

Substitute (2.4)~(2.7) and (2.10) (2.11) into (2.2) and repeat the proof as in Proposition
2.1, the proof is complete.

Proposition 2.3 Suppose (i) and (iii)z hold, and ¥ € H' N L=(i1, YY), o >
n, ¥l < M,2aM < A, if u is a weak solution to (1), then there exists p > 2, such that
u e Hlt’fl[ﬂ,R”] and for sufficiently small R < dist(zg,d0) A Ry A 1, the following
gstimate holds

P e A10p k fﬂzlh
(vang'Du | Pdz) " < C’{(LREWH 2dz)
k 1
([, 21+ 1061 + T las ) az) ")

_-;':]_ o
k=1,2,--- N (2.12)
Proof As in the proof of Proposition 2.1, now we have

k-1
; 2
(A= Ea.M}f |Duk 2 gtde < C’{f > " | Dul |Pntdz + |E-’H|(f |,-Du"|'3dx) &
BR B Br

R .T-=I

+ [ (SD1agl + (D + b o+ [ | Dutfd)
BH o Hg

(2.13),
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By the iteration as stated before, it follows from (2.13), that

LR“Zmu |1:i':r{{: f E[Du-’]"dz M+f Z |b;| + | Dy |
+3 [af]?)dz + % fB Zmufﬁdz}

R =1
Therefore by Prop.1.1 of Chap.V in [6], (2.12) holds.

3. C%= - regularity

Theorem 3.1 Suppose (i) and (ii) hold, ¢ € HY(Q,RY),e > n and u is a weak
solution to (1), then u € CP2(Q, RN}, 0 € (0,1).
Proof We split u* = U* 4 (u® — U*); here U ¥ is a weak solution to the Dirichlet
problem '
f A:f{z,u{:c}}ﬁﬁﬂkﬂugahdz =0, YeFe H}(Bg)
Br (3.1)

U* — u* € H}(Bg)
We know that for some u € (0,1) and for all p < R < dist(zg,d0) A 1

f |DU*|*dz < c(ﬂjﬂ—ﬂﬁﬂf | Du*|2dz
B, R Ba

k|2 i e k|2 k_ rrkyvie '
Lpiﬂu|d£5G[(R) LR|Du|dm+LR|D{u Uhfds]  (3.2)

By (1), uf — UF satisfies

k=1
[ (4500w Do(u ~ U%) + 3 A5 (2, 9) Dped + a5 (2, )| Dalu* - v)ds
Br o
< f Bi(z,u, Du)(uf — v*)dz, VoF > ¢F u* — v* € Hj(Bg) (3.3)
BRr

Choosing v* - max(U¥, *) = UF v ¢F, we get,
f D(u* - U*)[2dz < c:[f ID(U* — U* v ob)|? da:+f Z|Du’|2d:c
By

_1"-1

+f |ul?" dz + (f |Duf*dz) ¥ id (3.4)
B Bg

where © = min (1 e o E;) But U* — U*v Y* € H}(Bg) is a weak solution to

fB A:f{:‘::“}ﬂ'ﬁ[ﬂk“Ukvﬁk]ﬂﬂﬁﬂkdz v _f AH: (=, “]D.ﬂ{ukvﬂl"k]ﬂu‘p!’kdz
I

R

Ve* € Hy(Br) (3.5)
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Choosing p* = U* — Uk v 1% since Uk v YF = o for 2 supp(U¥ — UF v %) we
obtain

By

f DU — U* v ¥)Pdz < cf | Dy*|*dz < ¢ Rty (3.6)
B

&0

k2 -E_ A= E+2,f-l-f k2 iz f ge
‘én|ﬂu]dmﬂﬂ'[(ﬂ) |ﬂu[dﬂ:+f Z|Duidz+ Eﬂfu[ dz

Riy=1
2 2{q n—242e .
—|—( | D dz} + R J, & < minfu, v) (3.7)x
Br :
By iteration, we find (c.f.[8]).

j;; |Dul*dz < epn=?t2e (3.8)

By Morrey Lemma, we have u & t‘;’ﬂf{ﬂ rN).

Theorem 3.2  Suppose (i) and (ili)y hold, ¢ € HY® n [ri=r (2, RY),0 > n, and
u is @ weak solution to (1), then u 20, RN) o e (0,1).

loe

Proof Let U* be a weak solution to the Dirichlet problem

r—=1

f AP (g u{m}]ﬂﬁﬂkﬂawkdﬂ: =0, ¥Ye*e H}nL"T=r(Bg)
Bp {3.9}

U —u* e Bl L o= [BR}

by using (iii);, we have
ri. k k - 5 S S k k2
Lﬂiﬂu[ ut — |d1r££3'(j;2fﬂu] dz) TE[LH D(u* — U¥)fdz
2{2—r
+ [ [D(U* - Uk v %) 2z + (f u¥ — Uk v g¥|ns —rds:) “{"‘}] (3.10)
B Br
f lul* "1u* - o*|dz < Ef |D(u* - U*)|*dz + cf |D(U* — U* v %)) 2
B Bp B
.. 2
+r_‘:(f [uf* dz) 1 (3.11)
Bp
f oellu* —o¥dz < e [ |D(ut - U¥)Pdz 4 C f ID(U* - U* v *)2de
Br Br By
2
+-':'(f |g¢|’d:z:) ! Rite=2nfe (3.12)
Br
By (8.10)-(3.12), (3.6) and choosing € < min()/4, R*~3+% ,, — min(1-n/e,1-n/2s),
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we have

k—1
' & ¥
|ﬂu’=—U“}ﬂdm5c:'f Duﬂdﬁf uzu'.m-l—f Dultdz
Joo Pt = Ve O [ 3Dt [ o de(f [Dulide)

R
_+j?n—2+iy}
f |Duk|2dmic{(£)n—ﬂ+ﬂpf |D“kljd-’“+f E|Dﬂj|2d'£—i-f lu?" dz
B, o4 Bp Br 52 By
+(LR |,El'u|2-:i’x)1r + R“_E"'E'“},cv < min(p, v) (3.13)

By the iteration as that in the proof of Theorem 3.1, we finally get (3.8).

4. CY_regularity

In this section, we assume that A}Y and a¥ are Holder continuous functions with
exponent [, then there exists a nonnegative bounded function w(t) which is increasing
and concave continuous, w(0) = 0 such that for z,y €2, and u,v € RY

437 (2, w) = AF (,0)] < 0|z = y* + |u = of*) (4.1)
|af (2, 4) = af (y,v)| < w(lz = y* + [u - v[*) (4.2)
Wiy o, pE Bl o (4.3)
e CHP(a, Y)Y (4.4)

Theorem 4.1  Suppose (i) and (ii) (or (i) and (iil);) hold (g € L*(01)) and that
(4.1)~(4.4) hold, if u is o weak solution to (1), then u € CLF(Q, RY).

Lemma 4.2 Under the assumptions of Theorem 4.1, u € Cﬂ: (Q, RY), for all
a € (0,1).

Proof Because of Theorem 3.1 and 3.2, u is locally bounded. Therefore in B <
{1

1

|Be(z,u,p)| <C(lp|" +1), 2/fg<r<2 (4.5)
N 1/p 1/2
1+ |Dul2)®%dz) " < C f 1+ |Dul*)dz 2.1)
(];m{ Dul*)?/dz) (f, (4 1Duf?)az) (2.1)
Let I'* be a weak solution to the Dirichlet problem

fﬂ AGY (zo,ur)DgU*Dayp¥dz =0, Vip* € HY(Bgry2)

Ri2

Uk — u® = HDI{HRJFQ}
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Because of (0.1) and w being bounded concave, we get

f widr < COR™
Bpyg

(4.6)
[ Dt < croe [+ Dy (4.7)
Brysa By
/ (14 |Duf")|u* = v*|dz < r::(f (1+ | Duf*)dz)
Brya B
%R f | Dul*dz + R*)1-%p (4.8)
B

So

k-1
[ ']ﬂ{u* _ U‘:]lidz < C{f Z |ﬂuffzd;r -I—xlfi-'q,R}f (1+ !ﬂuF]{fﬁ + Rn}
Brja Brez ;o1 Br

: ~2
x(zg, R) = R?P 4 {Rg_“f | Du|*dz + R2)1 2
Bp

From Theorem 2.1 of Chapter III in [6], we have, for p < R/2

fpercse(a) |

—I—x(:-':u,R]L (1+ | Du|*)dz + R“} (4.9)% |

k—1
| Duf|?dz +f > |Dui|dx
¥i

Rfa Rz 5=1

By iteration, we deduce from (4.9);

fa,,“ +1Du)dz < A1 [(2)" + x(zo, B) fﬁnfl HDePE L GR®  (410)

For R/2 < p < R, (4.10) is trivial.

For any &g > 0, we have y/(zq, R) < g4, when R is sufficiently small.

Using Lemma
2.1 of Chapter III in [6], we get

fﬂ |Dul*dz < Cp" 242 ya e (0,1) (4.11)

#

Proof of Theorem 4.1

Let m be an integer such that 2-™(r—2+2a) < B* we have

_/; % |Du|*dz < CR"-2+2a+28 (4.11)'
RS2

when p < R/2™, here we use R/2™ to replace R/2 in the proof of Lemma 4.2,
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By (4.3) and (4.11), we deduce from (4.6)-(4.8)

widx < C R (4.6)'
Br
f w2|ﬂuj‘|2dm = C_Rn—2+ia+u,ﬂ {417]1
i
f (1+ | Dul")|uk — v¥|dz < CR2+2e+a (4.8
Bryz

From Theorem 2.1 of Chapter III in [6], we obtain

'/;_}ﬂ |Du — (Du),|*dz = C{ (%)n-i-i LH |Du — (Du)g|*dz + Ru—2+2a+z,ﬁl} (4.12)
“Take « so close to 1 such that 4:::.[2 + 3) = 2, then we have
-/;3,, | Du ~ {Du]pﬁdx = G[(%)“H LR | Du - [Du]ﬂzds: + R“"'h]-, D<e<l

Using Lemma 2.1 and Theorem 1.2 of Chapter III in [6], we may conclude that Du is
locally bounded. Now (4.6)'—(4.8)' can be improved again

f widr < CRE {‘:LE]"
Br
f w”ﬂuklzdm < O pntl {4.?}"
B
f (14 | Duf)|u* = v*|dz < .gf ID(u* — U*)2dz
Brsa Brya
+of f DU - U* v 9*)ldz + B2 (4.8)"
Brys

Just as (4.12) was deduced, we have, for all p < R
= 2 i3 o 5 2 n+28
j.-_n;,, |Du — (Du),Pdz < ¢{ (£) fﬂﬂ |Du — (Du)g|*dz + R}

Therefore Du € C%Floc(02, R™Y).

Theorem 4.3  Suppose (i) and (iii); hold (in (iii)z by € L2(12)), and (4.1)-(4.4)
are satisfied, [] < M,2aM < ), if u a weak solution to (1), then u € G]Efl[ﬁ,RN}.

Let us divide the proof in thres steps:

1. As in the proof of Lemma 4.2, under the assumptions of Theorem 4.3, we can
prove that for any p < R, (4.10) holds. Set

$(zo, R) = R¥™ j; (1+ |Dul?)dx

65



From (4.10) we get, for 0 < r < 1
$(zo, T R) = C1[1 + x(zo, R)r"|r¥¢(zp, B) + C2r* "R™™, Vae (0,1) (4.13)

Let o < @ < 1 and choose r in such a way that 2C77*% < 1. Since we have x(zo, R) <
", provided R < Ry < dist(2g,d(1) A 1 and ¢(zg, R) < £, setting Hy = Cyr®™", we
get

¢(zo, 7 R) = r¥¢(z¢, R) + HoR* (4.14)

Therefore by iteration we obtain

Rﬂa

$(z0,7"R) < ['ﬁ'{ﬂ?ﬂﬁﬁ]'*' Hﬂ,r

2k6
2
Z ,.25]

Provided ¢(zq, B) < £¢,260 < €1, and B < By < Ry such that HUREQ,"{TM — r”] < £0,.
we can get,
gy e
¢(zo, p) = S(EJ , o< Ro (4.15)
Therefore u € C'ﬂf[ﬂg,ﬂ”], for any « € (0,1), where
- T ' 2=n
p = {:::.;.Eﬂ.}zlinﬂmflﬁ f

|Dul?dz = 0}
Brlza)

2. Let us consider restrictively in £2g, then by the same reason as that in the proof
of Theorem 4.1, we can get u € G’ﬁf{ﬂg,ﬂ”].
3. Use inductive method, when k = 1, (1) implies

f [A?iﬁ{ﬂ:,u}ﬂﬁul T ﬂ'?[E:uJ}Du[uI o Uljffd“: < f _Bl{ul - ul}d:t:
BER TR
Vol > o ul — ol € H{ N L®(Byp)
Choosing v! = u! — en(ul — ¢l)etl’ =¥ 0 < e C§°(Bz2r), € > 0 then we obtain
f |.DI:‘-L|!.1 ok T’{Fl}ﬁleﬂulmqﬁ'lﬁndﬁ ik tf E-D|“1 K ¢lliilﬁs|u1_¢l|:ﬂd$
Bap Byp
< f-E'DfB A (2, uje™ = *'F Dylu’ - ¢! * Danda
IR
~Ch fﬂ af (z, ) ¥ |l - 1| Dynde
2R
_I_C*E'[E |D{u1 _ _i'&l}lzlul i ¢1|23t|ul_wlquldx " Cﬂf r;dg;
2R

Bag

2lul — 1| D(u! - $1)2 = | D(u! — )| Dju? - ¢1[?
5fﬂ[u1 s ‘fbl:]iz'f'cfﬂlul £, ,¢1|2|E
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Choose ¢ large enough and & small enough, we get

’/;:I |D[u1 - ¢1}|3£:|u1_¢1|2nd$ < —Cﬂf A?iﬂ{ﬂ:,u}ﬂ:lul_ﬁllgﬂﬁlul . ".lll'liﬂ _ Duﬂ{f.:ﬂ
&

Bap

_C'lf ni’{m,u:}cli“]_ﬂlli1u1 — Y| Dandz + Caf ndx
Ban u

iR
L ]
Note that the nonnegative function W' = max ju! —$1? — |u! — 1|2 is a supersolution
i
for an elliptic operator

A% (2, ) V' DWW Dyndz
Bar

& ; '
2 al(z, u)el ¥ |l — ! Dyndz - %f ndz
I::l:':l'l:!l Han Gﬂ Bag

Because -:1.15”“1"1'['1|2|u1 — | € L%(Bsyg), hence by weak Harnack inequality (see [7],
Theorem 8.18) we get

R [ wldz<clintw! + R} (4.16);
Br

Bir

If W! s 0in Bag, we can and do choose 1 in such a way that n < Cyin Bpgyy 2 C5 > 0
in Bg, and

f Ai’f{m,u]e’t”l_‘ullﬂﬂﬁﬁflﬂquz
Bap

Cy

2 f a¥(z, u)e™ ¥ 1! Y| Dandz
Co JBag

Cs #
= — Wldez + CRPL
R? IB,r e

Confer Theorem 4 in [9], therefore we conclude
f |D(u! - ¢)|*dz < C'R”_z{ max Ju! — @!)* - ma:-:|u — o+ R} (4.17)
Br =i
which implies that for fixed zp € 0,2 > 0, there exists Ry, such that for all p < Ry

pz'“f |Du'*dz < ¢

By
Now assuming that ul,--- uk~1 e Cﬁf{ﬂ], by (1), we have
f |45y Bz, u)Dgu® + ZA 8z, u) Dgu? +ai‘[m,u]]ﬂa{uk ~ v*)dzx
Bag
=1

< f Bi(u* — v¥)dz, Yok > ¢* u* — o* € Hy 0 L™ (Bzr)
B‘IH
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Choosing v* = uf — eq(u* — gb"}a’r“k""'kﬁ, and noting that D/ is locally bounded,
when j < k, we can obtain

f |D(u* — ¢*)|%dz < G’R“"E{ max [u* — ¢F|? — max |u* — ¥ 4 R}
B Ban Bp
which implies that there exists R, such that for all p < Ry

pj"ﬂf | Du*|?dr < &
B

g

Take Ry = min(E;, -, B}, hence when p < Ry, we have

pz_“f |Dul*dz < £
B

-

The proof is complete.
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