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Abstract In this paper, the semiconductor system iz discussed. The existence
and uniqueness of the global solution of the carrier transport problem are obtained.
Under the condition that the width in some direction of the domain being sufficiently
small, the existence and uniqueness of the solution of the steady states are proved. It
is also proved that the solution of the carrier transpeort problem tends to the solution
of the steady states problem exponentially when ¢ goes to infinity.
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Semiconductor system!! is a semilinear partial differential system as follows

f ”iﬂf = An - V. (nV¢) - R(n,p)
L ap Y (Ve =Sy mQr=axT) (0
p

Ad = dxn(n — p — Ny(z,t))
The initial and boundary conditions are

!’l|§ﬂ = ﬁf:ﬁ, ﬂ}, p]aﬂ = ;_.I'I[I,tj, ‘ﬁ"|ﬂl’]‘ = QEP{I,#] Tl éﬁ p 4 [[i', T}

(0.2)
a(z,0) = ng(z), p(z,0) = po(x) on {1

where £ = (zy,72,---,2x),0 € RY N > 1:n,p are the densities of mobile holes
and electrons respectively, ¢ is the electrostatic potential; R(n,p) = rin,p){np — 1),
S(n,p) = s(n,p)(np — 1), r(n,p) and s(n,p) are positive Lip-continuous functions,
Ny (z,t) is a positive smoothing function,  is a positive constant and

D<r=¥F

=

<s=<35 0<Ny <Ny (0.3)
ﬂﬂﬁ,ﬁ,ﬂn,pui 1 {ﬂ4)

69




A, By d € CHIYT(Qr),  ng,po € CTHE(N) (0.5)

|‘ﬁl e ﬁmlii:]l} p - ﬁm{I}E: !‘5 Z= ‘QE’M{I” = GE_T:: 7>0 {ﬂ-ﬁ]

These functions also satisfy the conditions of compatibility.
The steady states of this problem are defined as follows

[ ~An=-V-(nV¢) - R(n,p)
¢ —Ap=V-(pVe¢) — S(n,p) in {1 (0.7)

A¢ = 4rn(n — p— Ny)

nlag = fles, Plan = Poos  Plan = Peo (0.8)

They are strong coupled systems. Many people are interested in these two problems.
There have been many works about them already in various ways and under different
conditions, see [2]-[5].

In this paper, we use the upper-lower solution method!®7] to discuss these problems.
We have the following results:

1. The existence and uniqueness of the global sclution of the carrier transport
problem (0.1}, (0.2) under the conditions (0.3)—(0.5) are obtained. The solution is
bounded and positive.

2. The existence and uniqueness of the solution of the steady states problem (0.7)-
(0.8) under the condition of the domain {1 being sufficiently small in one direction are
obtained. This condition means the matter of semiconductor is thin in one direction
physically. In fact, P-N junction in semiconductor is very thin. The solution we get is
also bounded and positive.

3. Under the condition of the domain Q) being sufficiently small in one direction and
(0.6), the solution of the carFier transport problem (0.1)—(0.2) tends to the solution of
the steady states problem (0.7)—(0.8) when t goes to infinity exponentially.

1. The Carrier Transport Problem

Consider a space
¥ =" L0y L), T30, 1<g< oo

and a set

£ = {{u,v) € ¥|0 € (u,v) < "'}
where M will be determined later; (a,b) <,(>)C means a <,(>)C and b?ﬁ_i,[:_n-]ﬂ';
(a,b) < (c,d) means a < ¢, b < d.
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Define a mapping on ¥,T(u,v) = (n,p): for (u,v) € £,(n,p) is the solution of the
problem as follows

iﬂ; = An— Vn V¢ —dann(n—p— Ny) = R(n,p)
i 3
p!._Pl = Ap -+ ?P V¢ + 4:'1-7]'?{“ = N‘l"] R S{ﬂ-,P}
P
Ag = drn(u — v — Ny) in Qr (1.2)
with the initial-boundary condition (0.2).
At first, we solve ¢ from (1.2), (0.2), and we know that
16|z fo,rwzeny) < ColeMT) (1.3)

Then, the ¢ in (1.1) is known. Now, let us consider the problem (1.1) (0.2). The
upper-lower solution method is used. According to the result in [6], the solution of
the problem exists and is unique as long as there exists a pair of upper-lower solution.
Thus, only one thing we need to do is to find out a pair of upper-lower solutions of the
problem. Now, let us verify that (f,p) = {EM',EM‘},[E,E} = (0,0) are just a pair of

upper-lower sclutions of the problem, where M will be determined later.

1 5 Nl e =
~fiy— AR+ Va-V¢ - sup {—4mnii(A — n— Ny) - R(#,n)}
Fin P<n<p

> FLMEM‘—l— dmneMt(eMt — M _ Ny) — r(eMF n) (M x 0 —1)
W‘(E—nqﬁy ~F) 20 (1.4)

br

RY

as long as
M = 4wqNy pn + Fu, + 5pp (1.5)

And = ™t is almost the same to be verified in equation as (1.4).
On the boundary, we have (0.4). That is, (eMt, eMt) is satisfled to be an upper
solution of the problem, as long as (1.5) holds.

Ln: —An+Vn-V¢— inf {—dmnn(n —n— Ny) - R(n,n)}
Hn PEnsp

b

= —r(0,n) = 0. (1.6)

And p = 0 is almost the same to be verified in equation as (1.6). We also have (0.4)

on the boundary, then (0, 0) is satisfied as a lower solution of the problem.
In addition, it is obvious that the reaction terms of the problem are continuous and
bounded by the upper and lower solutions. Thus, from [6], we know that the problem

T1




(1.1) (0.2) has a unique solution (n,p) in Qr, and it belongs to W2Qr),1 < ¢ <
00,0 £ (n,p) < eMt. Thus

T(f)c & (compact)

Then the continuity of T is not difficult to verified. Set T(wi,v) = (ng,p), 0 =
1,2, ; is the solution of the problem

{ ﬂqﬁ; = 4i'rr3|:u1- — ¥ - N}rj
$:ilan = @(z,1)

Now let (w,z,¢) = (n; — ng,py — p2, ¢y — ¢2), from the equations and the boundary-
initial conditions we can get the following

q
llwllz, qy + ”5’”1,,[11}
t
< Clllus = wally + low = vally + [ (lolly o) + Dol @) (1)
By Gronwall inequality, now we get the estimate of continuity of T
lelly + =115 < Clllwr = wa|l§ + [lor — v2l%) (1.8)

Then by Schauder’s Fixed Point Theorem!' the mapping T has at least one fixed
point. Therefore, the problem (0.1)-(0.2) has a solution.
Now, let us prove the uniqueness of the solution.

If there were two solutions (n,p1, ¢;) and (nz,p2, $2), let us set (w,z,¢) = (ny —
R, P1 — p2,$1 — ¢z), then we can obtain the estimate

[4
il g0 + 21l 0y < € [ (Il o) + 21E o)
By Gronwall inequality, we have
0 < Jlulfy + |2l = (19

That is, the solution is unique.

By Schauder’s smoothing result [10], we know that n,p = CItel+
¢ = CE"":”H%[QT]. Thus, we have

Theorem 1  Under the conditions (0.3)~(0.5), the solution of the problem (0.1},
(0.2) exists and is unique. And the solution satisfies

=

2 (QTL then

0= (n,p) <M, [¢] <C(M), n,p,be P17 (Qy)
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2. The steady state Problem

Throughout this section, we suppose that the domain 1 is sufficiently small in one
direction, let us say this direction is y : 2 € {1 x (0, yo), and yo is small.

Consider a space ¥ = Loo(f) and a set £ = {(u,v) € X|0 < (u,v) < B - Ay*},
where A, B will be determined later.

Define a mapping T on &,T(u,v) = (n,p): for (u,v) € £,(n,p) is the solution of
the problem as follows

{ —ﬂnz—?n-vrﬁ—‘lfﬂ“{“_‘-’_NI"}_R{“it’] (2.1)
2.1

—Ap = Vp- V¢ + drnp(u — p — Ny) — S(u,p)
A¢ = drgu — v — Ny) (2.2)

with the boundary condition (0.8).
We can find out ¢, from (2.2) first, then we can consider the problem of (2.1), (0.8).
This problem has two uncoupled equations, and (#,5) = (B — Ay®, B — Ay?),(n,p) =

(0,0) are the upper and lower solutions respectively. Let us verify them

AR+ Vi V¢ - sup {—4mgr(f —n - Ny) - R(#,n)}
PEn=p

> 24 — 2A4y(C'||lu — v — Nyl|lo + 1) — 47n BNy — F
> 24 — 24y[C(B+ Ny) + 1] —4xgBNy — 7 2 0
as long as

1 1 irn BNy + 7+ 35
{ x 3 A E 'I; EN -I__ “:r B =
¥ = 916(B + Ny) + 1] i R A[C'(B + Ny)+1]?

+1 (2.3)

where if B is taken big enough, the third inequality will be satisfied. In the above, the
following is used

IVé|lre < CllAG|Lo. + |4l
< C'lu—v = Ny|lew +|¢llLe < C'(B+ Ny) +1

In almost the same way for § = B — Ay?, as long as (2.3) holds. And on the boundary,
(B — Ay*, B — Ay®) = (1,1) 2 (fico, Poo)

as long as (2.3) holds.
Then, (B — Ay, B — Ay*?) is just an upper solution of the problem. And it is easy
to verify that (0, 0) is a lower solution of the problem.
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From the equation’s upper-lower solution theory, see the problem (2.1) (2.2) and
(0.8) of Chap.10.B in [7] has the solution (n,p), and

n,peC(Q); 0< (n,p) < B- AY
That 1s,
T(E)c & (compact)
And it is not difficult to get continuity of T. We can obtain the following estimate
Wl + [12llLe € Clllur — uallze + llor = v2llz..)

Then, by Schauder’s Fixed Point Theoreml!?l, the mapping T has at least one fixed
point. Therefore, the solution of the problem (0.7)-(0.8) exists.

Now, let us discuss the uniqueness of the problem (0.7)-(0.8). If there were two
solutions: (ny,p;, @), = 1,2, weset w =n1 —ng, 2 = p —pa, W = @1 — @2, then, w, z, ¢
satisfy

—Aw =T (W) = V - (nVe) — (Rln1, ;1) — R(nz,p2)
~Az =V (V) + V: (p2V¥) = (S(n1,p1) — S(n2,p2))

At = drnw — 2)

wlan = zlan = Plan =0
multiplying the first two equations of (2.4) by w and z respectively, and mtegrating by
parts on {1, we have

f{ivwﬁ + V2|t )dz < E:f (w® + 2%)dz (2.5)
(1 {1
where € depends on B and independent of yg. Note that

fw-*d:—f (fyw)zd:t:*i f|vw'fd f 24y < f v:td
o ¥ = ¥ | ar, 2 4r = Yo s I
1 [ 0 n i1 i

As long as yp be small enough, such that

G s

[ N

Then
f{vwgf + V2 ?)dz <0 (2.6)
|

Hence, |Vw|,|Vz| = 0, a.e. So, w,z =const, but wian = zjagn = 0. Then, w =z =0,
and ¢ = Q.

That is, the solution is unique, as long as yg is small enough.

From all above, we have

Theorem 2 [Under the condition of the domain (1 being sufficiently small in one
direction, the solution of the problem (0.7)—(0.8) exists and is unique. The solution also
salisfies that

0<(n,p)<B; |¢|<C(B) npoeC()
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3. Asymptotic Behaviour

In this section, we also suppose that yg is small enough.

At first, we need to get the bound of the solution of the carrier transport problem
(0.1)-(0.2) which is independent of .

Verify that (B — Ay?, B — Ay?), (0, 0) are a pair of upper-lower solution of the
problem (1.1)—(0.2), in the set £ = {(u,v) € ¥|0 < (u,v) < B- Ay*}, for example, for
equation of n:

1 ar
—fiy — AR+ VA-Vé — sup {—4mnd(d —n— Ny) - R(fi,n)}
[T PEn<p

> 2A — 2Ay(C'|lu — v — Ny|lo+ 1) — 4anBNy —F 2 0

as long as (2.3) holds and for the p equation as well as boundary-initial conditien can
be done as before.

That (0, 0) is a lower solution can be verified easily, too.

Thus, replace B — Ay® to ¢M* in the proof of Theorem 1, we can derive that

Theorem 3 If the domain (1 is small enough in one direction, and (0.3)-(0.5)
are satisfied, the solution of the carrier transport problem (0.1)-(0.2) has the estimate
independent of t:

0<(n,p) < B, [¢|=<C(B) (3.1)

In the following, we will denote the solution of steady states problem by (n*,p*, ¢")
to distinguish the (n,p,¢#), one of the solution of the carrier transport problem.

Consider an auxiliary problem

1 L1
24, = Af— VA V" — drnn*(n® - p* — Ny) — R(n*,p")
“l" -
h = AP — V5. Vo' +drnp*(n® — p* — Ny) — §(n*,p"
I p—Vp-V¢' +dmqgp*(n” —p y) — S(n*,p") , (3.2)
ﬁlan = fi, ﬁlﬂﬂ =p on Afl x [{],T]

lg=0 = Mo, Pli=o = Po on f

Lemma  The problem (3.2) has a unique solution, and this solution has the esti-

nate

i —n*| < e, |p-p| <y (3.3)

where § 1s a positive constant and will be determined later, g = B — Ay”.
Proof Verify that (7,) = (n" +e g, p" +€7 %), (n,P) = (n* —e™"g,p" — e™"g)
are a pair of upper-lower solution of the problem (3.2).
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At first, with the condition (0.6), on the boundary, we have
(n* + e %, p" + e7%g)lan 2 (oo + €™, Poe + €™ 1) > (5, 5)

> {ﬁm B E_Tt: floo — E_‘TI] E (ﬂ‘ e 'E_PMQJF* o E_Hg”-ﬁ'ﬂ

{ﬂ* + EﬂEtH,P* 3 E_ﬁ!}]lsﬂ_—ﬂ = {ﬁm + 1, Poo + l} 2 {HU:FDJ
> (oo = 1, Poo = 1) = (n* — ¢ g, p* — e™%%g) =0

as long as § < 7,
Then let us see the equation

1
—fy — AR+ Vi - V" + dann*(n® — p* — Ny) + R(n’,p")

2]

> —(An* —Vn*-V¢* — dngn*(n* — p* — Ny) — R(n*,p*))

i) &
J.—e“”( Ll 24y(C'|lu* = v* = Nyljo + 1])
Fin

5 1
> e 0 - f' +24 - 2Ayo(C'(B + Ny) + 1)) 2 0

as long as
2 1 s , Amin{p,, o} }
2[C'(B + Ny} + 1] B

and it is almost the same for p equation as long as (3.4) holds.

é = min{*y, (3.4)

That is, (fi,p) is an upper solution. The lower solution can be verified in almost
the same way as long as (3.3) holds.

We can note that if yy is smaller, & can be take a little bigger, then the speed of
the convergence will be greater.

Subtracting (3.2) from (1.1) and set (w,z) = (n — A, p — p), then, w and z satisfy

1
—wy — Aw+ Vw - V¢

Hn

= =V(¢—¢")-Vn —dmy(n - n')(n* — p* — Ny)
—dmnn*((n = n°) = (p - p*)) — (R(n,p) — R(n*,p*))
1

—2 — Az —Vz: V¢
J .”-pzt 3 i (3.5)

=V(¢—¢')- Vn+4rg(p - p*)(n* — p* — Ny)
+dmnp’((n — n*) — (p - p*)) —(S(n,p) — S(n*,p"))
Afg —¢*) = dmy((n—n") - (p - p*))

| wlan =2lan =0, (¢~ ¢")lsn=¢ — Pos, w(z,0)=2(z,0)=0
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The existence and uniqueness of this problem is obvious. By L, Estimatel® and (3.3),
we have

lwllw (g + 12l (g < Cllin = wlizg@r) + lIp = Pllzq @)
< C([|lwlz (@r) + 2llL @) + 1R — 0%l @n) + 16 = P°llzy(@r)

< Ch’ﬂmwﬁw}h{qﬂ + “z”W:'l{QT:I] —+ {;',,5-_”

1
For yp = —, we have

S0,

207

Hw”w;?-l{@.r} 3T ”EMW‘?J[QT] < l’::'f:':“_'”

[llze + l|2l|2e < Ce™

Then,

In = n*llze < lIn = Allze + 1 = 2*llrw £ Ce™®,  |lp=p'llL, < Ce™
¢ = ¢*llw < €Ul = n*) = (8 = p)|Lw + I# — Foollz.) < 2Ce™

Now, we have
Theorem 4 If the domain 01 is small in one direction and (0.6) is satisfied,

the solution (n,p,¢) of the carrier transport problem (0.1)-(0.2) tends to the solution

(n”

,p*,9") of the steady states problem in exponent when t tends to infinite.

In my working on this paper, Prof. Ye Qixiao has given me some helpful advices.

Here, let me express my gratitude to him.
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