J. Particl Differential Equalions
Vol. 5, No. 1 (1992), 79-85

FORMATION OF SINGULARITIES OF SOLUTIONS
FOR CAUCHY PROBLEM OF QUASILINEAR
HYPERBOLIC SYSTEMS WITH DISSIPATIVE TERMS!

Liu Fagui Yang Zejiang
(Chengdu Univ. Of Sci. and Tech., Sichuan, China)
(Received Sept. 19, 1989; revized Sept. 3, 1990)

Abstract In this paper, for a class of 2 x 2 quasilinear hyperbolic systems, we
get existence theorems of the global smooth solutions of its Cauchy problem, under a
certain hypotheses. In addition, Tor two concrete quasilinear hyperbolic systems, we
study the formation of the singularities of the C!-solution to its Cauchy problem.
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1. Introduction

For the first order quasilinear hyperbolic systems

u+ (vl +20u=0, a>0

(1.1)

vy —uz =0

the existence and nonexistence of global smooth solutions of its Cauchy problem or
initial-boundary problem had been studied by many scholars (see [1, 2, 3, 4, 5])
Suppose that there exists a constant R > 0, such that

o(v) <0, ¥ <R, ofv)eC¥v|<R) (1.2)

For (1.1}, the initial datum are given by
wlz,0) = ug(z), v(z,0) = vo(z) (1.3)

Let z,w be the Riemann invariants, i.e.,

z=u+p(v), w=u-— pv) (1.4)

1 The subject supported by the National Natural Science Foundation of China.
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where p(v) = f \/ —¢'(v)dv. Suppose that zy(z), wy(z), which are determined by the
0
initial datum ug(z), vo(z), satisfy

zo(z), wa(zx) € GI[R}

Nishida had proved that Cauchy problem (1.1}, (1.3) admits a global smooth solu-
tion, if the Cl-norm of wy(z), zo(z) is sufficiently small (see [1]).

Under the hypothesis of “smallness” to the Cl-norm of the initial datum, Li Tat-
siens’ have spread Nishida's result of existence into Cauchy problem of the general n x n
systems with dissipative terms of the diagonal dominant (&, 7, 8)):

Ui+ F(U) +G(U) =0 . (1.5)

However, for the nonlinear vector-function ¢ (U) and weakly diagonal dominant
A = B(0)VG(0)B~(0), whether Cauchy problem to (1.5) admits a global smooth
solution, Li Tatsiens’ have not been studying this case, where B (U7} is the matrix of
the eigenvector to (1.5), and det B(U) # 0, B~Y(U) is a inverse matrix of B(U). In this
paper, for the case of that, we show that Cauchy problem of systems does not admit
a global smooth sclution, even if the smallness of Cl-norm or C%norm of the initial
datum is ensured,

Under the hypothesis of the monotonic initial datum, Li Caizhongs’ have shown
that Cauchy problem of (1.1) admits a global smooth solution, if the oscillation of the
initial datum is small, and Cauchy problem of (1.1) has a C'-solution for only a finite
time ([5]).

In view of the weakly diagonal dominant in (1.1), we compare Li Tatsiens’ result of
the strictly diagonal dominant, a query is easily arised: whether the singular result can
be avoided in [5], if the dissipative terms are strengthened. In this paper, we show that
the singular result is not yet avoided, even if the dissipative terms are strengthened.

In addition, we spread the existence result gotten by Li Caizhongs’ to Cauchy
problem of the general 2 x 2 systems:

g + Ay, v)u, + flu,v)=0

ve + g, v)vy + g(u,v) =0 (1.8}

2. The Existence Theorems of the Global Smooth Solutions
Consider Cauchy problem of the quasilinear equations as

up + Ay, v)u, + fu,v) =0
(21)

v + p(u, v)v, + glu,v) =0
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t=10: u = up(z), v = vp(x) (2.2)
Suppose that
1% Alu,v), plu,v) € C% | A(u,v) — u(u,v)| = 0 > 0,0 = const., Ay # 0, gy # 0;
2¢ flu,v),g(u,v) € C% f(0,0) = 0 = g(0,0), fu(0,0) > 0,4,(0,0) > 0;
3 wola)svolz) € C1,and fluo(2) 63+ lou(=)jst & Bounded,

sign (Ayup(x)) = 0, sign (uuvplz)) = 0, Yz € R, t =0

(H) As gg = [Jug(z)]lco + |lvo(z)||co is sufficiently small, for any C'-solution of Cauchy
problem (2.1), (2.2), there exists a constant Dy > 0, such that

lu(z, t)llco + ||v(z. t)llco < Doso (2.3)

Theorem 2.1 If £q iz sufficiently small, then (2.1), (2.2) possesses a unique global
smooth solution on t = 0, under the hypotheses 1°,2°,3° and (H).

Proof By the hypotheses in the Theorem 2.1, suppose that A, (u, v) > 0,uy(z) > 0,
and there exist constants £5 < &q, €% < Dgeg, such that

[ua(z)llco < €5, [lvol=)llce < €5, ulzt)lleo €7, |lv(z,8)llco €7 (2.4)
Therefore, there exist constants M, My > 0, such that My — 0, as gy — 0, and
|f(u,0)| = Mo,  |g(w,v)| < Mo (2.5)

|A(u, v)llee + llu(wv)llez + 1w, v)ller + [lglu, v)lloz < M (2.6)

(2.1) is differentiated with respect to z, one gets

(e uz) = —K{u,v)e"u, — fivze® (2.7)
where 3 3
' _— — —_—
= m il
A
K (u,0) = fulu,v) + Autz + hu(u,0) f(,0) + 5 i (2.8)
2 Au{HTE}
hlu,v) = dx 2.9
S e v e
By (H), and (2.5}, let = be sufficiently small, such that
3
fulw,0) 2 58 (8= 1u(0,0) (2.10)
Avg 2
BT b 2.11
Auf + 5 =15 (2.11)
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Therefore, by (2.9), (2.10), (2.11), (2.6), one gets
Klu,v) > g + Apug (2.12)

Integrate (2.7) along the first characteristics = = r1(t, ), z1(0, &) = «, and notice
v' = (A~ p)u; — g(u,v), one has

o= J. Kl g, (2.13)

¥ t h V!
uz(ﬂ:, f}ehfz'tj e u::;{&:lﬁ:h[m'ﬁ]_fn K(a)ds i j‘ a8 [f}:l_, 4 — gl .
0 M z=ix(t,x)

where K(s) = K(u(s,z1(s,a)), v(s,z1(s,a))), h(z;t) = h(u(z,t),v(z,t)). Let

* fulu,y)ehley)

glu,v) = —dy 2.14
G L B W) e
For the time being, suppose that
K(s) = /4 (2.15)

Therefore, by (2.13), (2.14) and 3°, there exists a constant M; > 0, such that

luz(z,t)] < M; 4+ B (2.16)
where B is a positive constant depending on &g, and B — 0, as g — 0.

Ast =10, by ug(z) = 0, one may get
Au(uo(z), vo(z)) = 0 (2.17)

thus, K(0) > 3/4. Hence, (2.15) is valid at t = 0. By (2.13), {2.15), one gets uy(z,t) >
—B. By |Au(u,v)] € M, Ay(u,v) £0, let B be sufficiently small, such that B < %
thus, one can get K (s) > /4. Hence, (2.15) is valid on ¢ > 0.

Similarly, as up(x) < 0, Ay(u,v) < 0, (2.16) can be got.

So far, the priori estimate of |u,| is got, for that of |v.], it is done similarly. There-
fore, Cauchy problem (2.1), (2.2) admits a global smooth solution on ¢ > 0.

By 2°, (2.1) can be rewritten as

2

ue + Ay, v)uz = —au — bv — A;j(u, v)u® - Bi(u, v]uv = Cy(u,v)v?

2.18
ve + plu,vlv = —cu — dv — Ag[u,u]ui — Ba(u, v)uv — {l‘g{u,u]ug ( )

where A;, B;, C; e CY §:==1,2 g = a(0,0) = 0, b= &(0,0), c = ¢(0,0), d = d(0,0) = 0.
a -y
Lemma 2.2  Suppose that A = , and the real parts of all eigen-
—le|] d
values of A are greater than a constant ala > 0), Cauchy problem (2.18), (2.2) has a
priori estimate for the Cl-golution

1U(z,2)llge < D||Uo(z)||goe™* (2.19)
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for t = 0, as long as the Cl-solution erists, where U(z,t) = (u(z,t), v(z,t))¥, D=
constant >0.

Corollary 2.3 Under the hypotheses-1°, 2°, 3°, if the conditions of Lemma 2.2
is hold and C° norm of up(z), vo(z) is sufficiently small, then Cauchy problem (2.2),
(2.18) possesses a unique global smooth solution on t = 0.

Consider Cauchy problem of the equations as

ug + Alu,vju, = —au - b (a > 0)
vy + pu,v)vy, = —cu — dv (d > 0) (2.20)

=0 w=wug(z), v = wylz)

GARgCHb]

—le] d
real parts, then Cauchy problem (2.20) has a priori estimate

Lemma 2.4 [f matriz A = (

) has eigenvalues with non-negative

|u(z,t)||co £ comst. ||ug(z)||ce, |lv(z,t)|lco £ const. ||vo(z)| o (2.21)

for t = 0, as long as the C'-solution exists.

Corollary 2.5 Under the hypotheses 1°,2° 3°, if the conditions of Lemma 2.4
hold and C" norm of ug(z), va(z) 18 sufficiently small, then (2.20) possesses a unigue
global smoeoth solution on the upper-half plane t = 0. 1

At last, we take an example of quasilinear hyperbolic systems to show that the

solutions of its Cauchy problem will blow up in a finite time, no matter how small C°
or C! norm of initial data is.

Consider Cauchy problem of the equations as

n+ Mzwlz, = —z—w-— we

wy + plz, ww, = w?

(2.22)
t=0:2=z(z)==¢, w=wglz) =1/M

where A, p e CL, A # p, A, #0, uy # 0, M =const. >0,

Theorem 2.6 The problem (2.22) has a C'-solution for a finite time.

Proof For any point (t,z){0 < t < M), we take two characteristics L;, Ly of
(2.22), with intersecting the z-axis at #,n respectively. Integrate (2.22) along L, L
respectively, one can get

t
z(z,t)ef = zp(f) - f (w + w?)|z,e'ds
0

w(z, i) =1/(M—1t), (0<t < M)

(2.23)
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w = 1/(M - t) is valid for any point (z,t)(0 < t < M). Naturally it is valid on L.
Thus, one can get

i

2(z,t) = eet — 1}{M—r}—|—£ﬁ (0<t< M)

Therefore, as t — M~ z(z,t) — —oo, w(z,t) — +00, no matter how small £, 1/M are.

3. Formation of Singularities of the Solutions
Consider the following Cauchy problem of equations

w+p(v). + (2a+eju=0

2ev (3.1)
U — Uy =0
Loy
t=0:u=uy(z), v = vg(z) (3.2)

where v > 0, p(v) = k%v™7, ¢, o, k,qﬁcanst. =0, v=1+4 2o, 1."Eac_t|_ <o<l
£

The Riemann invariants are taken as
s =u+ (v, r=u— pv) (3.3)

where ©(v) :/ v —p'(v)dv. Therefore, (3.1) can be rewritten as

o
ret+ A(r,s)r: = —ofr +8) — er

8¢+ p(r,s)s: = —a(r +5) - es

where A, p are characteristic roots of (3.1) and

A=—v=p'(v) = As - ) <0, p=v—-pv)=pls—r)>0 (3.5)
Suppose that,
t=0:s = s0(z) = ug(x) + p(vo(z)),r = rolz) = ug(z) - @(ve(z)) (3.6)
(A) ro(z), so(z) € CL, [Ira(z)lle1 + [Iso(z)]|gr is bounded

& = inf so(z) — sup rg(z) > 0

Theorem 3.1 Under the hypothesis (A), ifsh(z) 20, rh(z) > 0, vz e R, and C"
norm of ro(z), so(x) is suffictently small, then problem (3.1),(3.2) possesses a unigue
global smooth solution on the upper-half plane t = 0.
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Theorem 3.2 Under the hypothesis (A), if
i) so(z) > 0,r5(z) =0,  VYze[f,3); (3.7)
ii) -7 is proper large:
iii) n° € [, 8],8 — n* s sufficiently small: (3.8)
iv) M = so(B) — s0(n’) is sufficiently large;
v) 87 = so(n') — so(ff) is suf ficiently small;

then, the first derivative of r(z,t) which is the solution of Cauchy problem (3.4), (3.6)
must blow up in curve-characteristie triangle of with the base 7.
(3.4), (3.6) can be rewritten as

wy + Aw, = —ce(z 4+ w)

(3.9)
2+ jizg = —alz+w)
t=0:2=2z(z) =s(z), w=wo(z)=ro(z) (3.10)
where
ur=treShin iz e (3.11)
A=AMe(z—w)), a= ule™*(z — w)) (3.12)
According to concrete case considered, by analysis, one can get
i el L8 - 1
B=e " pulz —w) (L‘?- T_lsjl (3.13)

Lemma 3.3 Suppose that z(z) > 0, wh(z) > 0, ¥z (7, 8], zo(z) — wa(z) is a
monotonic increasing function to z in [n, 8], wo(z), z0(z) € C1, zo(e)|lcr, [Jwo(z)|| o
are bounded, then for any C'-solution of (3.9), (3.10) satisfies

20(n) = wolf) < (z — w)(z,¢) < 2(8) — wo(B) — e 2 ((8) - wo(y))  (3.14)

Jor t = 0, where B,n are respectively z-coordinates, as two characteristics passing
through (t,xz) intersect the X-azis.

Proof of Theoremn 3.2

At first, differentiating (3.9) with respect to z and using (3.13), one can get

wy = —ple™wl + e w2, — afz, + twy ) (3.15)
L PR P_—gr 3 P_—a .
Zp =—pe b peT Wz — oz + wy) (3.186)
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g S d d
where " = 57 Aa-— B 3 TR5- By (3.7}, (3.10), ii), iv), one has
zlz) >0, wy(z)=0, VYze|[q,fj (3.17)
M = 25(8) — 20(7j) is sufficiently large
' (3.18)
6% = z5(n") — 20(7) is sufficiently small
Thus, by (3.15), (3.17), one can get
wy(0,8) = —azf(s) < 0,¥s 7, F] (3.19)

On the other hand, w:(0,s) = wy(s) = 0 (Vs € [§,8]). So, for any given point
8o € 7, ], there exists a neighborhood D; of (0, 8) in the upper-half plane ¢ > 0,
such that w; < 0in Dy (without segment in the z-axis). Since 25(%) = 0, thus, there
exists a neighborhood D; of (0, 8) in the upper-half plane t > 0, such that z; > 0 in
Dz. Therefore, one may pick out a characteristic triangle Kj (see Fig. 3.1). In Ko
(without segment n3), one can get

zz > 0, wy < 0 (3.20)

and show that (3.20) is always valid in the cured characteristic triangle A with the
base 3 (without segment %3). The reasoning of (3.20) is seen in [5]. We get

(2 — w)' = —Jj.m R (3.21)
:
!
Let
1
fai== 5 In pe(2 — w),
L M) (3.22)
= & dx
‘ fE Eﬁ{ﬂ - —
The method in [5] is borrowed, one
can get Fig. 3.1
(ehw,)" = —ple " wle® — qetw, + et g" (3.23)
(e*wz)" = —pleule® — aeh(z, + w,) (3.24)

Secondly, we discuss the growth of w, along =z = z;(t, 8)(¢t > 0). Integrate (3.23)
along z = z(t, #) and notice w}(#) = 0, one can get

' .
(e"wz)(t,z1(t, B)) = e_“*( f plet P ylertds -|—f g"e{“""”"d.s) (3.25)
0 Q
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Set

U(s,z1(s,8)) = Uls) = ~("wz)e** (s, 21(s, B)) ’ (3.26)
For concrete case considered, one can get
1t+a
ply) =cy @ (3.27)

+a
where ¢ = Js:m'l+2-::r( kv%) ? . By (3.22), it is easily shown that ¢" < 0,

therefore, by (3.27), one can get

2 & oo e
S et Co ()~ )

a—1

- (2 —w) 2o (z,t)] (3.28)
where 0 < § < t. By (3.7), (3.10) and Lemma 3.3, one can get

(2 — w)(z,t) < (20(8) — wo(B)) — €~ ***(20(B) — z0(n)) (3.29)

where 1 is z-coordinate of intersection peoint which is produced by the second charac-
teristics passing through (¢,z) = (t,z1(t,4)) and the z-axis. Take n* = n(to, 3) from
(3.28), (3.29), one can get

¥

(el < - gsze o (eo(B) - wo(B)) ~ < aafB) — aala )] T

~(20(B) - wo(B)) T } = ~aemee (3.30)
Since w; < 0 on z = z1(7,3), one can get
0(s) = —(+=*)(s,71(,8)) > O (3.31)

Let § be replaced by zg(zo = z1(t, 5)), integrating (3.23) from ¢y, using (3.26), (3.30),
and then multiplying the two sides by e*t one can get

t !
em[fhwzj{z,t] L _ﬁmﬂiﬂhwz}lm +f #;ﬂ—h—ﬁa—aayziﬂjds = [ g"&ﬂ"-l_hds {3_32}
1|:| fl;u
Accordingly, one can get
b
U(t) > A+ j (e~ P =89) 12 () ds (3.33)

Ein

By Lemma 4.3, in [5], one can get
t
U) > Af(1- A[ wentasetegs) (3.34)
bo
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Since

L . Y
| wehartegy > %z;—?imﬂ — wo()) T €=M (1 — ~(are)(tt0)) (3 35)

Putting (3.35) into (3.34), one can get

U(t) = —e hwye™ > A/{I —Q(1 - E_{H+E}[:_M]H (3.36)
where
1 = s - g=1
@ = G T D (20(B) - wol) — e (sq(8) — ro(n"))
L _e-1 1o -
~[20(8) ~ wo(B)] 2= }(20(7) — wo(B)) (3.87)
Therefore, from (3.11), one can get
. 1 AE—[ﬂi-r}t.
|rt{$;¢}[ = W E_{“'l"&]“_t'_ﬂ] {3.33]
where p. = u(zo(8) — wo(A)).
In order to explain the question, suppose that
wo(5) = 0, 2(f)=86>86>0 (3.39)

Therefore, by (3.19), (3.18), one may get

- =1 ; -1 _1-—
Q=MD B(5 4 §° 4 M — Me2ot0) 5 @+6 +M)%T 55) . (3.40)

1 T o 25 e ;
where B = & ?_{ H}_{Iﬂr_} 7l =1 (ne:rtme 2::::— .~ I) . By iii), 8 —n" is sufficiently
small, then, 4 - 0. By 0 < f < to, one can get

emlatb)(to—f) _, § 4 B—n" =0

Hence,
Q —& 5(1 4 Ef_ﬂ_al (1 o (M) El) =Q (B-9*—0) (3.41)
& b+ 8* :

Take positive integral numbers n, m, such that
B(1-1/n)(1-1/m) > 1 (3.42)
Fix n and m, let M be sufficiently large, and §° be small, such that

G

SR ' 3.
5T >3 <1l/m (3.43)
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5 <8, (1+%)?:~1—— (3.44)

Thus

(a*T‘SﬂvM)”—g‘;l e

=1
i i (1 M ==
&+ 8"

I |
[EHJ}-) ¥ o< (1/2+ M/(28) % <1/m  (3.45)
Accordingly, one can get @ > 1. Thus, as § — n* is sufficiently small, then @ > 1. Se,
there exists a proper large tg > g, such that
Q1 - E—[HH‘]'["-E"MII} -1 [3_45].

For characteristics z = z,(t, ) and z = zz2(t,7), consider the equations as

r=p- f;;:(s —r)(r, @i(r,B))dr, z=7+ f; uls = r)(r,z2(r,7))dr  (3.47)

Thus, if 5 — 7 is sufficiently large and § — n* is sufficiently small, then

B -1
2u(s0(8) — fn[ﬁ}] i

Therefore, by (3.38), as t > tg increases, along characteristics = = z4(t, B), |rz(z,1)|

must go to infinite in a finite time tg, that is, it will blow up in characteristic triangle
with the base 73,

Acknowledgement The project is put forword by Professors Li Caizhong and Li
Tatsien. The authors would like to express their heartfelt thanks to Prof. Li Caizhong
for guiding warmthfully in the preparation of this work.

References

1] Nishida T., Nonlinear hyperbolic systems and related topics in fluid dynamics, Publications
mathematiques D'osay 78-02, Department de mathematique, Paris-Sud, 1978.

[2] Slemrod M., Instability of steadyshearing flows in a nonlinear vioce lastic fluid, Arch. Rat.
Mech. Anal., 68 (1978), 211-225.

3] Slemrod M., Damped conservation laws in continuum mechanics, Nonlinear Analysis and
Mechanics, Vol 3, Pitman, New York, 1978.

|4] Bloom F., On the damped nonlinear evolution equation wyy = o{w)ye —ywy, J. Math. Anal.
and Appl., 96 [1983), 551-583.

|5] Wang Jianhua, Li Caizhong, Global smooth solutions and formation of singularities of
solutions for quasilinear hyperbolic systems, Chinese Annals of Mathematics, 9A (1988),
209-323.

[6] LiTatsien, Qin Tiehu, Global smooth solutions for a class of quasilinear hyperbolic systems,
Chinese Annals of Mathematics, 6B (1985), 199-210,

7] Yu Jingue, Zhao Yanshun, Cauchy problem of quasilinear hyperbolic systems with the
dissipative terms, Acta Mathemaiica Screntia, 8 (1988), 277-285.

|8] Hiao L., Li T.T., Global smooth solution of Cauchy problem for a class of quasilinear
hyperbolic systems, Chinese Annals of Mathematics, 4B (1983), 108-115,

89



