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Abstract In this paper, we discuss the nonlinear boundary value problems of
“three elements with two shifts for the first order guasilinear elliptic systems and the
related solvability by using the continuity method.
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1. Introduction

A great number of results have been got about the boundary value problems for
the first order elliptic systemsli—4.

In this paper we discuss the nonlinear boundary value problems of three elements
with two shifts for the first order quasilinear elliptic systems.

Assume that I' is a simple smooth closed curve in the complex plane E, denocte
by GT the simple connected region surrounded, denote G~ = F\ G¥, F(z,w) is a
complex function of complex variable z and the complex function w(z), the function
g( t,wi(t), we(t)) is defined on I' x E x E. And a(t), 8(t) are positive and opposite
shifts respectively, satisfying 4

(a) eflaft)) = B(A(t)) =t, alB(t)) = F(aft)) forte Iy

(b) e'(t) and F'(t) are Holder continuous on I
G1(t) and Gz(t) are Holder continuous functions and different from zero on I'. Find a

plecewise regular solution w(z) of the first order quasilinear elliptic systems
wg = F{z,w) for 2 BT
such that it satisfies the boundary conditions
wt (1) = Ga()w (at)) + Calt)w* (8(8) + olt, w* (8), (1) forte T

|w(z)| = O(]|z|™) for 2 — +oo and the integer m
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For the related notations see [1], we assume

(¢) For each fixed point z in E, F(z,w) has second order continuous partial deriva-
tives with respect to w and W, which are uniformly bounded in the norm Ly 3[-, E|.
Denote by € this bound, F(z,0) € Lp2(z), p > 2.

(d) For arbitrary wi(t), wa(t) € Hy(I'), g(t,wi(t), wa(t)) € Hu(T), v=1-2/p;
and there exists a nonnegative constant M such that for any wgl}{t}, wgg}[t}, w%lj{i},
wi (1) € Hy(T)

Cyla(t, wi (), wi (1) - g(t, P (1), wiP(1)), I
< M{C, [w(2) - wi(8), )+ Clwi(8) - wi?(t), I)) (1)

2. Linear Boundary Value Problems of Three Elements

Theorem 1  Under the conditions thaet a more respective inequalily 15 added,
the plecewise regular solutions in the complez plane of the boundary value problems of
generalized analytic functions

[ wz+ Aw+ Bw =0 for z€ E\ T
§ wh(t) = wo(aft) + G(e)wT(8(t)) fortel (2)
| w(e0) =0
wy+ Aw+ Bw =0 for z€ ENT
{ w(t) =wt(alt)) + G(t)w (B(t)) fortel (3)
| w(o0) =0

are all unique zero solutions, where A(z), B(z) € Lp2(E), p > 2. G(t) is a Holder
continuous function on I,

Proof Assume that w(z) is a solution of the boundary value preblem (2). By
using the expression w(z) = #(2)e(®1} we can obtain that &(z) satisfies

{ gt (t) = e (el -wT () gt (a(2)) + G(t)e P~ ) gt (5(t)) for t e T i
4

&~ (o) =0

Taking Hy(t) = ev (el)-«7()  H,(1) = &7 B)-w"()G(¢), we have indpHy(t) = 0
and Hj(r)H;(f1(r)) = G (r)G*(B1(r)) for r € L. For the variable r, the curve L, the
shifts G1(r), Ha(r), G*(r}, see [5].
Let Xi(2) = e:-:p{:a—jn,ﬁ IH[H;I:T}]T o
that there exists a positive constant M, depending only on the curve I', the shifts

alt), B(t) and L,2(|A| + | B|) such that | X7 (61(r))/ X1 (r)| < M, for 7 € L. So if we

dr

}- From the properties of w[z][ll, it follows
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1 d :
take X2(2) = exp{if ln[l ez ] 1 } then when G(t) satisfies the

; 1 2re Sy, )G Fir))dr — =
inequality
1= G*(1)G" (Bu(r)) # 0 {
; . (B(7 ' it 9 5)
|G*{f}% max /|8 (r] < MHEEM,.L119[|A|+|B|}T“1“{ YA 1}
we have
L- H (1) H3(Bu(r)) # 0
Hlr G T ' 2 2
Hi(ﬁlETDHﬁT;Hx;ifJ}} max /|81 (v)| < min{ = 1

where for the positive constant M, (1] and for M [5], X(z) = X1(2)X2(2). By Theorem
3 in [5], the boundary value problem (4) has a unique zero solution, thereby w(z) = 0.
We are concerned with the boundary value problem of analytic function

{ ¢=(t) = &*(a(t)) + G()P~(8(t)) forterl

‘SE'_{-::D} =1 [bj

Denote G(t) = G(a(t)), f2(r) = wy (8(c(wi _1(r)))), and for the notation wi, wi_,
see [B]. By using the method and the related conformal mapping established in 5], we

can obtain that if G (¢) satisfies the inequality |G*(r)] max W |85(r)| < min{ : —I—EMq : 1},

then (6) has only a unique zero solution #(z) = 0. Starting with this solvability results,

by an analogue argument to the boundary value problem (2), we can prove that there
exist a positive constant M, depending only on the curve I", the shifts o(t), #(t) and
Lp2(|A| + |B[) such that when G(t) satisfies the inequality

. 1 . 2
) g VIBO < 37 oo smerey min g 1 (7)

the boundary value problem (3) has only a unique zero solution.
Assume that G(t) satisfies (5) and (7) throughout this section.
Theorem 2 The integral equation

Ku(t) = p(t) + E% j}:[ (2, 7) — Da(alt), a(r))e!(7)|u(r)dr

5= [192(,7) = Da(a(t), o) TR

tom [ 108,808 ()G () - Da(als), (7)) (r)G () (8(r))dr

- 57 0060, BENFTICO - a(alt), () TECHRER)er
0 (8)
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has @ unique solution for any g1(t) € Hu(I'), where {1, and {1y are fundamental kernels.
Proof By using the results in [2] and the estimate for integral kernels (2, (8(t), 8(r))
(NG(0) - 0 (a(t), o(r) ()G (), B2(B(8), B)FTIG(D) ~ Da(el), o()IEE),
we obtain that the kernels of integral equation (8) are of weak oddness.
Next we prove that the homogeneous equation K, = 0 of (8) has a unique zero
solution. Assume that u(t) is a solution of K, = 0, which is Hilder continuous on I
obviously, and make the following complex function:

(L[ e, )t - (e, 00 for 2 € G
2w I
1

w{.z:l: E I
1 + 2 | iz, )G a(t) n(B(e(t)))dt — Qz(z,t)C (D) n(Blalt)))dt

2ms S

(2, t)p(e(t))dt — Qa(z, t)ulalt))dt (9)

for z € &~

then w(z) satisfies the boundary value problem (2). By Theorem 1 we get w(z) =0,
hence pu(t) stands for the boundary value of the function wy (z) which is generalized
analytic in G~, vanishes at the infinite point and is continuous on G~ U I', while
pla(t)) + G(a(t))n(B(a(t))) stands for that of the function wy (z) which is generalized
analytic in Gt and continuous on G¥ U I'. Both of them satisfy the relation wy (t) =
wi (eft)) — G(t)wy (B(t)) for t € I'. By Theorem 1 we obtain wy(z) = 0, thereby
ul(t) =0,

Finally, by introducing the corresponding systems of equation (8) and using the
methods of Section 8 in [6], we can prove that the integral equation (8) has a unique
solution for any g1(t) € H,(I') if and only if its homogeneous equation has a unique
sero solution. Therefore the result of Theorem 2 holds.

From Theorem 2, we can obtain

Corollary 1 The boundary value problem

[ ws+ Aw + Bw = £ for z€ E\T
¢ wh(t) = w(et)) + Gt)w? (6(t)) + q1{t) forte (10)
g (o0} =10

has a unique piecewise regular solution which can be expressed in the form

w(z) = wi(z) + 7 (2)

where Fi(z) € Lpa(E), ¥(2) = "%['[E[ﬂl[ﬂai}ﬂ[?] + Qa(z, ¢)F1(5)]d€dn; wil2)

can be expressed in the form (9) and its integral density u(t) is a solution of the integral
eqiation

H.ﬂ“] = §i1 {t]
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where gi(t) = g1(t) + F(t), 7(t) = 7(a(t)) + G(t)F(B(t)) — 7(1).

Corollary 2 The piecewsse reqular selution w(z) of the boundary value problem
(10) satizfies the following estimate

C.lw®, Gtu P < N{C‘p[g,P]-q— Ly 2[F, E]}

(11)
Culw™, G-Uur < N{C.[g, T) + Ly 2| F, E]}

where N is constant depending only on the curve I, the function Gft) the shifts
a(t), B(t) and the coefficients A(z), B(=).

3. Solving the Nonlinear Boundary Value Problem
of Three Elements

We are concerned with the bou ndary value problem

W:F{z)m} fﬂi‘z'EEl"kF
W (t) = Gr{B)w (a(t) + Ga(w* (B(1) + olt, w¥ (1), wo(1)) forter (12)
|w(z)| = ﬂ.{fzj’”'j for [2] — +co and the integer m
By using the standard function of the Haseman boundary value problem for analytic
function corresponding to G 1(a(t))[*#] and the method in 4], we can prove that, solving

the boundary value problem (12) is equivalent to finding the piecewise regular solution
in & of the boundary value problem

s

wy = F(z,w) forze E\T
| w0 = w(el) + WUt BW) + ot wt (1) 0 (1) forrer (13
. w“[m;l ={

In what follows we assume that & (t) satisfies the inequalities (5} and (7) with 2¢C
replacing Ly 2( |A| + | B[ ), where the constant € has been given in Section 1.

Theorem 3~ When F(z,w) and g(t, wi(t), ws(t)) satisfy conditions (c) and (d)
in Section 1 and the constant M in (1) 75 sufficiently small, the boundary value problem
(13) has @ unigue solution which can bhe constructed by using the continuity method.

Proof By using the estimate (11) and properties of Flz,w), g(t, wi(t), wy(t)),
we can prove that the solution of the boundary value problem (13) is unique when M
satisfies 2MN < 1.
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Next we prove the existence of the solution, we are concerned with the boundary
value problem with a parameter i, 0 p<l,

-

wr = Flz,w) for z€ ENT
¢ wt(t) = w(eft) + G(t)wt (B(t)) + nal t,wh(t), w(t)) fortel (14)
w (oo} =0

b

Obviously, the case of p = 1 is the boundary value problem (13) and the case of

4 = 0 is the boundary value problem of the analytic function, which has a unique zero

solution!®l.

If the boundary value problem (14) has a solution for certain p = pg, 0 < po £ 1,
then it can be proved that there exists a constant § independent of po such that for
any g, Ho < p < po+ 0, the boundary value problem (14) has a unique solution.

Denote by wg(z) the solution to (14) for p = pa, then we have

Culos Bl € o (Cu{8(6,0,0), T1 + LpalF(£,0), B}

Now we shall construct an approximation sequence {wm(z): m2 1} as follows:

Wmz — p[Fw{H, Wm—l}{"-"m X ‘r-"-'m—l} i3 FE{E: wmﬂl][:mm o E.m—l} 21 F{E: Wm—l]!
for z€ ENT

W (1) = wa(alt)) + COWABE) + no(twha(), waal) forteT

w3 (00) = 0

This boundary value problem has a unique solution. By the estimate (11}, the uniform
boundedness of Cy[wm, E] can be derived from the boundedness of C.|wa, E].

In order to examine the convergence of the approximation sequence, we consider
the difference:

Nm-1(2) = Wm(2) — Wn-1(2) for m = 1
Then we have
f M0z = w2z, w)no + puFglz, wo)Tg + (1 — uo) F(z, wo) forz€ ENT
g (1) = 05 (o)) + G(&)nd (B(8)) + (1 — po)al t,wy(t),wg (t)) fortel
ng (o) =0

-1 = Am-1(%)1m-1 + Bu—1(2)fim_1 + Cm-1(2) for z€ E\T

o (1) = mr () + GEOnE-1 (B@) + gma(t) fort€T

| Nm-1(ce) =0 for m > 1

o,
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Here

Am—1(z) = pFulz, wm-1)

Bm-1(2) = pFylz, wym—1)

Crm-1(2) = p[F(z,wm-1) — F(z, wm-2) — Fu(z, Wm-2)m-2
— Fg{ 2, wm-2)Tm-2]

gm-1(t) = u[ g(t, wi_1(t), wa1(8)) — g( 1, wr_a(2), wr_a(t))]

Noting the uniform boundedness of {wpn(z) : m > 1} and using (11) we have

':rl-"[ﬂﬂ:r E} {_: [F‘ o #D}Nl}
Cu[ﬂm-—l, E] = H{N'E . Nﬂci‘.ﬂ[’?m—i, E]}Cy[ﬂm—h E] form>=1

where the constants N2 = 2MN, N, N; are independent of u and pg. It is only
required that g — po < (1 — 2MN)/(N1N3) so as to guarantee that the sequence
{wm : m > 1} will be convergent. Using the method in [4], we can prove that the limit
function of {wn(z) : m = 1} is exactly the solution of the boundary value problem
(14].

In this way we obtain the step length § = p — pp < (1 — 2ZMN)/N, N3 which is
independent of 4 and ug. Therefore, starting with g = 0, repeating the finite process
we obtain the solution of the boundary value problem (13).
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