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Abstrart We have obtained in this paper the existence of weak solutions to the
Cauchy problem for a special system of quasilinear equations with physical interest of the
form :

%{u + gz) + %f{ﬂ =0

% + kp(u)z =0

for the assumed smooth function @(u) by employing the viscosity method and the theory
of compensated compactness.
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1. - Introduction

A physical model of combustion reads

%(u{m,t} - q#(r.i]) =+ %f(ﬂihi)) =0
(1. 1)
%z(m,;) + kpCu(z,t))z(z,8) = 0, (z,0) € R

where u denotes a lumped variable representing some features of density, velocity and
temperature, z represents the density of unburn fraction in fluid while k is the rate of
chemical reaction and g is specific binding energy, both of them are positive constants.

f (u) is a smooth function in B and @(u)=1 for ¥==0 and @(z) =0 for u<<0. This
model was once mentioned by Majda [17]. Teng & Ying have widely investigated this
problem; in particular, the existence and uniqueness of the solution on the Riemann
problem for (1. 1) has been obtained on condition that f(u) is strongly convex for u™
0 and £ >>0 for u=<0 [2,3]. They also established the existence of generalized solu-
tions when k= oo under maore restrictions on f(u) by the difference scheme [4,5].

We use, here, the viscosity method and the theory of compensated compactness to
achieve the existence of global weak solutions of the Cauchy problem for (1. 1). for
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smooth @(u) when f" (4)70 a. e. in R. Note that (1. 1) reduces to

g-u{:,t) 4 %f{u{x,i)} — kgp(u(z,0))2(z,t) = 0
(1. 2)
%z(;;,f,} 4 kpQu(z,))z(z,8) =0, (z,8) € RL

It is easy to see that the weak solutions of Cauchy problem for (1. 1) are equivalent to
those for (1. 2). Thus we only pay our attentions to (1. 2) with the initial values
{H{f!ﬂj !3{11{])} = (un{f}jﬂn{ﬂf}}: I E R (1- 3:]

where u,(z),z,(z) are bounded and measurable in B. The programme is as follows,
firstly we shall establish the existence and a priori estimate of the global smooth solution
(' (z48) ,2'(2,2)) for the following parabolic equations

{ 3‘:(311.} + .f(“ll(-f:lt}}; i qu{u'(xis:}}zl{r!!’) = m::(i'rﬂ (1 4)
2(2s8) + kp(u'(2,0)2" (2,8) = e (a,t), e>0,(x,0) € B :
with the initial values

(u'(zyt) 2" (2, 8)) |:-u - (H-(ﬂfrﬂjsf{ﬂ:[}}}; rE R [ B 5)

here w'(z,0),2' (x,0) are step functions which are constants ', 2" in the interval e
< (n+1)e,n€ Z and converge to uy(z),z,(z) almost everywhere in R, respectively;
secondly we shall find out the subsequences of smooth functions (o' (G, 00}, {2 (e, 00 )
such that the subsequence of {u'(x,f)} converges in the sense of strong topology to a
function u(z,¢) and the subsequence of {z'(z,t) }converges in the sense of weak-star
topology to a function z(z,¢). Finally we shall show the function pair (ufz,t),
z(x,t)) is just the weak solution of (1. 2) and (1. 3).

2. Global Smooth Solutions

To reach the existence of the global smooth solution to (1. 4) and (1. 5) we inves-
tigate the following integral equations (for simplicity we omit ¢ s of u' (z,%) znd
2z ¥ ﬂ') )

%

G

Bg{ﬁrf'igrf}

s =" ue,000G,66,000 + [aef " [reacs,
g + kgp(u(8,7))2(&, )G (2, t3&,7) Jd&

==

2 =] 2(6,000(e, 452,038 — kﬂdf " pu(g,)
X z2(&,v)0 (x,4; &, 7)dE
(2. 1)
: 1 (2.~
where G(z,t;&,1) = C}{]}{——— .
Jrimr(e‘. — ) e~ T)}
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It is not hard to see that (2. 1) is equivalent to (1. 4) and (1. 5) if u(z,t),

z(z,1) are smooth encugh. Next we shall obtain the global Eﬂlutlﬂﬂ of (2.1) by the
consecutive method. Let

BT =E u(&,0)G(z,;&,0)dE

wtet) =[ 26,0066, 8,002

A

e =G0 + [ar]” s 1600 2 2.2

b1 (8, 0)) X 21 (51 (e, t58,7) |8

z (24t) =zy(x,t) — IdT ?}(u.—1(§rf)jzn 1{4§r’f)]Gd'§ n ==

Then we have the fﬂllc-w_ing lemmas.
Lemma 1 Assume that £ € C*(R),@(u) € C*(R) with Os@(u)=<_1.Then (2.1)
has a smooth solution (u(z,8),z(z, D)) @ the requon &, = (0,¢,) X (—oo,00) with the esti-

maes ||ull g <V 2M, | 2| o, =V 2 M for any bounded ond measurable initials (uy(z),
20(z) ) with || ug || oM, || 24 || x<SM , where

1 (a—zfjma—zﬁ 5

2L+ ko) 2K T 20L 4 b+ DA 4 V2 M) Jen)?
L= max |f|, s= max |¢ @]
e~ 2 a ||

}, =min [

Proof ~ Without loss of generality we suppose that f (0) = (. Noting that
| ulz,0) || oM, || 2(2,0) || 2<TM since || uy(2) | =M, || z, || <<M,we have from
(2. 2) that

T Glati 8,008 =M< 2M Le |u) | L2 M

|Hu{1'r!')| %
< j 6, t:8,00d8 = M < 2M e | 2@l </2H

ENENIN

Inductively we assume that [ u._, || o «/_M and [l z_, [[ rM Then
] €3 Ehg
o< M+ [aef” [Lhuil - | B+ sl sl 0]us
%M—FL-EM-%#—@ YRy
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<M+Jom. EL*:/E‘/;JEQJ?M |
&

(] = -]
| |z,(:,£}|glﬂﬂ+kjndfj_ |z || Ga2 << M + 2 Mt < /3 11

Thus we have

lulle, <VeM llalq<veu tora>o 2. 8)

Moreover we have in oy

fﬂi{a‘:ﬂ - ul'—l(t"‘} |

%fﬁ‘ﬁr if(ﬂ.-ﬂ = f(ﬂ.-::’ I E‘
57 'i"‘?|".i“':“-—-1}3 -1 — @(u,_,)z _:fﬂ

<[a]" Ll ey — ey | [a,;‘

thGlun —u || X VoM + a0, —a, | de)i
I?+f@ﬂﬁ+k?]f{]iu._!_u_1l]] +"E.,..j'—-.?-__,”}

[2.(z,8) — z,_,(z,0) |
{kfﬂarj |9 C—1)zy — 9Cu_y)z,_, | Gie

fftm.wmf(rru.l—~u.-.1|+nz._ Zaes )

Therefore

| — ey || + |2 — 2z |
= [E* —+ ﬁkﬂf&{q-l-' 1) + k(g + l:'J.
-

s ER e I R ey
i[[£—£+ﬁ£ﬂi(q+l}ﬂ+*{¥+1} St *“"
e ;

c(fluy, —u || + |2 — 2z )

ﬁdﬁm-Hd;+fws(g+1)+k{q+1)}f]

=0y
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26,y is a convergent series since (2L/~/ex+k(g+1) 14~/ 2 Ms)) /2, <1. Tt fol-
L=
lows that {u,(z,¢)} and {Z,(z,?)} converge uniformly in @, ,i. e. there exist functions

u(z,t) and z(z,t) such that

U (xyt) = ulzyt) yz,(2,8) = z(z,t) uniformly in @, as n — oo (2. 4)

There upon # (z,¢),z(x,t) satisfy (2. 1) with the estimates | = | o=V 2 M,
Izl o<v2 M.
We proceed to verify that u(z,t),z(z,¢) are smooth enough, Observe the fact
that in ¢, the function w(z, {) = J‘ld’é FCu(s, 1)) g—g(:, t; & v)d¢ is uniformly
i —

Hoélder continuous with respect to z with Halder exponent 1/3 since f(u(&, t)) is
bounded in @,. In fact we have

2/t
e

[w(@ Do < | £l (2. 5)

For =1 we have

. 1/3
|wz 4 6,8) —wlz, )| << 2| £ e, Eﬁg‘i”fﬂﬁl 4

e Jex

For 0<7d<C1 letting n be a positive parameter and recalling (2. 5) we have
|wlz 4 é,t) — wiz,t) |
<[ & |rac

x

“"L.“"J_i %
+J‘D iTJ‘;ﬂIf{H{‘;iT)) | 1%(1"{' O,8;8,7) — g_";{:!f?‘:"r}‘d‘:

HJ.J"! i—y o af-d BEG
Salflo =+ [ e Ushodef |20 08,0

Jem

bk é. i
<4l fllo L=+ I£1lq+5in—

Jen

1/2
<Al Fllo =+l flq 2 (2. 6)

en

Cul
5

Flu(s,))

{x 'ﬁriigrf:} rié.'

(z,8;8,7) |d&

dy

Choosing 7=¢**, we have from (2. 6) that




IHP(I-!-‘ ~+- ﬁ,!ﬂ) wlz, f,)| 4 " f ” 2 dl.-"E i _% ” b ” q!dun

J;

provided that 6**<Zt. Iﬂn the other hand, for 6%°=t (2.5) reduces to |w(z+6,t)—
w(@, ) | <4 || f || o ——=¢"". Hence

N

Re fur any d >0 (2.7) -

e <L 8 0) =t ) | < fLM[T+

since |15 16, < 150 —$O 14, < Nullg < < +/ 2 LM. Furthermore
e a4t 102
U (8,00 L a,t;8,00a8| = | 1im JH S (21t38,0)28

I

lim E (l-l, I u,jﬂ(ﬂjﬂ;ﬂﬂsﬂ”

N—e

a=—N+1
=1

= 2M lim E G(x,tine,0)

.'-—-l--a-:rﬂ___‘ —N+1

= 2" Ga,8,0008 = 22 (2. 8)

Thus (2.1),(2. 8)and (2. 7) reduce to

|z + 6,8) — u(z,) | << const (6 + 67%),(z.8) € @, (2.9

where the constant is independent of z,¢ and 6.
From (2. 9) we have

[lar]” sace,m i—iég‘

= U’;drﬁﬁm(.f(ﬂ(éﬂ)) — f Q) ;;gd;\

i G - B 18 1 (E o I._!‘:“|2
é““”“L‘”f_m“i e el j(Eau =D PV — rf)”‘f‘f
=

const

Thus % exists in ¢,, and

Ju M
Tt =] (8,00 Zat;8,00

] 3 EI . %
+[ao] " [Zawemy - 2w

4] —

%(Igﬁ;épf}
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4 kew(uCe,7)Y2(E) %imnéw)]d; (2.10)

Furthermore
Ju
| S50l o, < const 2. 11)
where the constant is independent of z,!.
Similarly (2.10),¢2. 11) imply that
]a“(x + &,8) — —*-{:u r,:s << const(¢™124 + 6% (2.12)

the constant is independent of z,¢,d.
Ag a result the integrals

[ao]” Lo, 2 Zoterise,mae
& maptaee,maem 23 G, T (art:8, 0288

converge in ¢,. Thus % exists in ¢},. Noting that

U
2 — ot — L) St + kapCua,0)aa, 1)
N s Jdz Fz az
we get that — exists In th ol — eX-
ge 5 €% in ¢,. e anologous way we can obtain that — W] and Y ex

ist in Q.

Lemma 2 Suppose that 4, (z)—=>0,z,(z)—0 as |z|—>=oco. Then the smooth solution
(u(z,t),z2(x,t) ) oblained in Lemma 1 satisfies u(z,t)—0,2(z,t)—=0 as |z|—oco uwniform-
ly m Q. z
Proof Since u(£,0)—+0,2(£,0)—=0as |&]|—=oco, we have u,(z,)—0,2,(x,1)
== () uniformly in @,. Inductively we can get u, (z,t)—=0,2(z,t)—0 as |z|—0 uni-
formly in @, for any r=1. Thus u(z,f)—0 and 2(z,¢)—=0 as |z|—oo uniformly in
'@r

Lemma 2 implies that there exists N which is independent of z and { such that
[H(#sﬂ" ilslﬂfjﬂ?rﬂ-)l % 1 as |#i ; N fq‘.'-r'.l" t E (D,E'q:" {E- 13}

Lemma 3 Assume Wl the conditions of Lemuma 1 and Lemma 2 hold ,then for any T =
0 || ql%M+2+W(M+1)TEH: [ qlgfﬁ‘f-l-l)ﬂ“ so long as {,<.T.

Proof Let #(z)=ch(mz) for any large integer m. Multiplying the second equa-
tion of (1. 4) by # (z), integrating in the region (—N,N) X (0,t) (0<It<l¢,), we
obtain '
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[” 6@ — [ g0
= f”ffﬂ(infﬁiafx ) | Lpdy — J-J " (z(x,7) )20 (2, v)dadr
- J-J H*P(H}mf (z)dzd¥ (9. 14)

where NN is the same as in (2. 13).
From (2. 13) there exists a constant 4 which is independent of z and ¢ such that
lef (2(z,e)) 2, (2, %) |7 | << Ame”. Letting w(d) = sup |z(z,t) |, recalling that

SE(—N,¥)
|9C2(z,0)) | =Ze™, we get from (2. 14) that

Jw n(z(z,t) )dz < ZNe™ + ATme™ + hﬂj w('r]:ff ﬂ(z)dz (2.15)

Using Gronwall's inequality we have

r q(z(z,))dr << (BNe™ + ATmﬂ"}e:xp{hnj w(f)d'r} (2.16)

—

Raising on both sides of (2. 16) to the power 1/m and letting m % oo we obtain
w) =M+ 1+ .I:J.'w{'r}d'r (2.17)
o

Using Gronwall's inequality again we get from (2. 17) that
w@ <M+ DM+ D™ ¢<t, <T) (2.18)
Thus (2. 13) and (2. 18) lead to
|2 ¢ < (M + 1) (2.19)

Now we turn our attentions to the estimate of u(x,¢). Let

{ n(u) = ch(mu)

$) = mshGm) ) — [ () f (s (2. 20)

where m is any large integer. :
Multiplying the first equation of (1. 4) by o (u), integrating on (—N,N) X
(0,t) (0<Tt<t,) we have
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il ¥ I
J_N’i‘(u(mﬂ)dﬂ: = _[-_F?}(u(#, 0))dz + Ly}(u(hﬂ) ¥ dr

=£a¢f (u, |¥ dv — IJiﬂEﬂ”{u}ufdxiT -+ J.;J-:_E?QWI:H}E??' (u)dzds (2. 21)

Similarly we can reach the following estimate from (2. 21), (2. 207,(2.13),(2. 19
lull o << M + 2+ kg(M + 1)TeM (2. 22)

Lemma 3 plays an important role in extending local smooth solutions globally, To
reach the estimates in Lemma 3 we choose the special entropy pairs (7,00, (5,4) in-
stead of employing the extremum principles [8]. From Lemma 3 we can assert that the

iteration may step upwards. Actually, for any T>>( the length of each iteration inter-
val keeps fixed

T,=mm[1, B—2+2)en 3— 2/2

| 2L + kg Jemyt 2K

Em

2Q2Lr + k(g + 1) + /2 M8y /em)?

where L, = max | f ) |,8 = L @ ) | Mz = M + 2 + 2kg(M + 1)Te7,

since the L™ norms of z,u are less than (M=+1)e* and M, respectively after each itera-
tion. Thus the smooth solution exists in the region ¢r=(0,7) X (—co,c0),i.e. , we
have

Theorem 4  Suppose that u,(2) ,2,(z) are bounded and measurable with
| g || oy S M, ” z |l r=cpy = M ,and up(z) = 0,2(z) = 0 as II[ o=

If FEC*(R) and o (u) € C'(R) with Osp(u)<1, then (1.4) and (1. 5) has a global
smooth solution (u'(x,t) ,2 (x,t)) which satisfies

| =l gy (M + 1)e™
Tl =< (M 4+ 2) + 2kg(M + DTe™ foranyT>0 (2. 23)

3.  Global Weak Solutions

From (2. 23) in Section 2 we easily gain W ELT(Q),Z EL”(R), and &’ €
L7 (L) for any bounded open set. Multiplying the first equation of (1. 4) by w'(z,t),
then integrating over £ and using (2. 23),we have
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Jew € 1@ (3. 1)

In view of the background of functional analysis there exist subsequences of
{u'(z,t) )}, {2'(x,1)} and functions u(z,t),z(z,t) such that

' (x,t) :hu(z,t},z'{m,ﬂj —Lz{m,s} in L=(L) as e— 0 (3.2)

(Without loss of generality we always regard the subsequence as the original one). Next
we shall prove that there exists a subsequence of {u'(z,¢)} such that u'(zx,t)—u(z,t)
a.e. in £ if f"(u)5£0 a. e. in R by using the theory of compensated compactness. To
do this we introduce :

Lemma 5 [Lef

() g, (W)= G — 2, £C) — F(r))
(), ¢ ()) = (FG) — F() ,j'ff(msr:

where » 48 any red! number, Then !1:'5.:‘?f Hg){ "(2,1)) les i a compact set of H.,' (2),i=

i P
Proof For any 5€ W3 (Q) we have

I'(y) =ﬂ(% + Sq,) u' (z,0)n(x, ) dxdt

=Hff W0z, ) Ceuly + kgp(u))dzdt = I} (n) + Iy(n)
o =— [[ats @
B = [ (= o7 )" + hap 2 F! ) G it

(3. 1) implies that

)| <const /e | v/ eul | oy * I 9l wiey > 0 as &= 0

i.e. INE HZ'(Q),

(3. 1) and (2. 23) yield that [I3() | =<const+ || 9| »,i.e. || I3 | o+ = const.
So that [} lies in a compact set of W™ "% (Q),1<Tg,<<2. Thus I' lies in a compact set of
W% (), 1<Cqe<2. We easily get from (3. 1) and (2. 23) that I’ lies in a boundary
set of W (@) ,r,‘:::'-l Therefor I* lies in a compact set of H..' (2)([67]). Similarly

we can get (33? = ){u (x,¢)) lies in a compact set of H,..' (£).
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Lemma 6 If f"(u)520 a. e. in B and the conditions in Theorem 4 hold , then there erists

a subsequence of {u'(z,0)} such that the subsequence converges almost everipohere i 82 as e—=().
Proof From the theory of compensated compactness ([ 6]),we have

(o — T;j‘ (F (s))%s — (F @) — F(r))?

=u' — r| (F(s))s— (F&) — F(r))?  a e in O (3.3)

where g(u')denotes the weak limit of g(»') in L™ (&) as e—=0.
Referring to [7],we have from (3. 3) that

(w — u:rj"'f:ﬁa):ﬁds — PG — £ )L
+ (f(&') — f(u)) =0 a.eingQ £3050

Noting that
@ — 0 F s — (Fa) — £
= :ﬁ{(f(ﬂ — £ W)= 0
we have from (3. 4) that

im| [ — [ @Ys — G — s st = 0 (3.5)

Since f (u)=£0, a.e. in B we see that
') w w - a 2
[[as[ "¢ e — £ @)yido=[ asf ﬂ:w[j f’{p}dp] >c@) if |6 —u] >
where a is any positive number, and (3. 5) implies that
]:IF_H':']]II'IES({(E,JJ'](I,E) e &, 'ﬂ' e H' = ﬂ}:} =0
Therefore there exists a subsequence of {#'(x,t)} such that
wlx,t) = ulx,t) a.e.in Qase— [ (36

Finally we reach the main result in this paper
Theorem 7 Suppose thet £ € C°(R) with £7(u) =50 a. e. in B,plu)E C'(R) with ()
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Se()<<1. Then (1.1) and (1. 3) has o weak solution for any bounded and measurable initial
data uy(z) y 2z, (x) which salisfy u (2) =0, 2,(2)=0 as |z | =00,

Proof  For any € C}(R) we have from (1. 4) that

- LJ- @' + F D0, + kep(u')2n)dzdt

==

=3 r w(x, Dyz,0)dz = J.um o m:t:r::.ilz‘eﬂ
4 i ppevs - (3.7)

J?ﬁm(fm — ko )y dadt + mez'{s:.fi)ﬁ(z,ﬂ)dx

= [[" eanasa

Letting &0, in (3. 7) we get

J:Im Cury, + Fudy, -+ k‘i"?{ﬂ)z’?)'ﬁ'ﬂ _f_J-ﬂ_ﬂ Hu(I}?F(Ip Mde = )

= oD

J :T f (e, — kp(denpddedt + | 2 () n(x,0)dr = 0

=00

by virtue of (3. 6),(8.2),(3.1) and (2. 23),i.e. (u(z,t) y2(z,t)) is the weak solu-
tion of (1.1) and (1. 3).
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