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Abstract The mathematical modelling of the electrodeposition phenomenon leads to
a linear elliptic partial differential equation subject to nonlinear evolutionary mixed bound-
ary conditions. In this paper,the existence,uniqueness and regularity of classical solution
are proved for the electropainting problem when *dissolution current™ is zero.
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1. Introduction

We consider a time-dependent elliptic free boundary problem associated with an
electropaint process. The problem is to find a pair (v(z,¢),k(z,%)) such that in an an-
nular region QCRY(N=2) with outer boundary § and inner boundary I” there hold

&;1921'] in & 113

uh]—_l ﬂﬂ? (1. 2)
=1 O

h=(v,—e)t onr Hii

_ hfﬁrﬂ)=ﬂ - on I7 (L 5)

where v, is the inward normal derivative on I, (z)*=max(0,2),2>0 is a given con-
stant.

Similar problems were considered by Hansen and MecGeough ([1]), Aitchison,
Lacey and Shillor ([2]), Caffarelli and Friedman ([37]), and Marquez and Shillor
([4]). The first two dealt with the modelling aspects of the electropaint process and nu-
merical experiments. The latter two dealt with the time-diseretized versiﬁn of (1.1)—
(1. 5) and the electropainting problem with overpotentials respectively.

A problem of the type (1. 1)— (1. 5) can be considered as a model for the follow-
ing process (see [1] or [27]) .

A metal body with an outer surface I”, to be painted, is immersed in a tank with
an electrolytic solution. The solution occupies the region & such that 32=T &,
where & is the inner surface of the tank. The metal part, which is usually called * the
work piece” ,is connected to an. electric potential source, the tank itself (&) serves as
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the other electrode and as a result of the flow of the electric current in the solution and

into [', the process of paint deposition takes place on I The unknown function v
stands for the electric potential and in the boundary conditions on I', the unknown func-
tion % is the thickness of the paint coat. The existence of a “ dissolution current” =0,

that was postulated in [ 2], assures that there is paint deposition only at those points of
I where the current v, satisfies v,_>2 When the dissclution current can be neglected,

the model becomes

Dv=10 in @ (1. 8
p=1 on S (1.7)
ho,=v on I (1. 8)
h=v_>0 onlI (1.9
h(z,0)=0 onT (1. 10)

and we refer to (1. 6)— (1. 10) as problem (P). Hansen and McGeough first pro-
posed this model in [1], and in addition, they also described two major features of the
process, the “ saturation effect” and the “ levelling effect” ,via numerical experiment.
In all these papers mentioned above, however, it seems that no classical solution
has been obtained for the electropainting problem (1. 13— (1. 5) or (P).
In the present paper , we shall study the existence,uniqueness and regularity of clas-
sical solution to the problem (P)
Definition 1. 1 A classical solution to the problem (P) is a patr (v(x,1) h(x,8)) of
Functions such that
(i) vz, ) EC(LX[0,00))
(e ,DEC(INC(L) VY =0
R(z, ) e C"(I'x[0,00))
Ch(z, D) EC (I X (0,00))

(ii) %J:v(:r,_f)eﬁ = k(x,{) on Dl ><: (0,00)

(iii) . (1.6)— (1. 10) are satisfied for any t>>0.
Our main results are the existence theorem and the regularity theorem stated as fol-
lows
K Theorem 1. 1 Let Q€ C'. Then there exists a unique classical solulion of the problem
(P,
Theorem 1.2 Lel 3QE ' (k=4,0<Ca<1), and v(z,t) be the classical solufion
of the problem (P). Then |

p(x, ) € P2 % (0,00))
el TroTecver

Drvia,t) & C(2 X (0,00)) 4 m=1,2,0
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d .
Everywhere below, it will be assumed that Q& € at least and 7 i the normal

derivative into &,

2. Transformed Problem

Supposing (v, k) is a classical solution of the problem (P), we define Baiocchi
transformation

u(z,t) = _[;v(mf)if (z,8) € 8 X [0,00)

and let one show how a problem for » can be obtained.
It is easy to verify that, for any fixed {0, #( + ,¢) is harmonic in £ and u={
on &. By (ii) of Definition 1. 1, we have

e =Hh onl
Then (1. 8) and (1. 9) yield
D(ui) =2¢v onTI
Integrating with respect to the time wvariable from 0 to ¢, we have

w=2u onlrl

Thus the problem (F) is reduced to a transformed problem (Fy) which can be formulat
ed as follows.

Hu=0 inQ : (2. 1)
#u=1¢ ond& " Gl
>0 andu —~/2u« onrl (2. 3)

In this section, we shall prove that

Theorem 2.1 For any fived {220, there erists a unique solution u to the problem (Pg)
with 1€ Y208, ey ac (0,1).

If we apply the maximum principle to a difference of any two solutions in
ol+e( ), the uniqueness will easily be proved, and it is evident that the only solution
for i=0 is u=0. To prove the solvability of the problem (P,;) for {=>0, we introduce
the following approximation

D=0 inf (2. 4)
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u=1¢ ondsd (2.5)
yu=>0andu, =+2u+ot—¢ onrl (2. 6)

where {>() is fixed and & ((,1).

For every o>0, by a suitable truncation of the boundary data on I', the problem
(2. 4)— (2. 6), which will be called (P,) in the following, has a unique solution », &
C*(&) (ef. [5]). For convenience, in this section we will omit the subscript and de
note by u the sclution of the problem (P,).

By the maximum prineciple, it is seen that a priori

0<u=s"t oni (2. 7)
Furthermore, a uniform positive lower bound can be obtained for all the solutions of
the problem (P,).

Lemma 2.2 Let t>0 be fized. T?wnfarmyau&ﬁmuafﬂmpmbbm(}?} there
holds

D<<y=u ingQ (2. 8)

where y >0 iz a conslan! independent of o.
Proof Denote by 2, the solution of

Azo=0 InQ; z=¢t on8; z=4t2 onrl

Since z attains its minimum everywhere on I, it implies that {2y, = 0 on "and hence
u = inf(z). = 0. Now we choose y = min{¢/2,4*/2} and denocte by z the solution of
r ! :

DSz =01in O z=1{ ond¥; z=y onl

Applying the strong maximum principle to the function z— 2y, which attains its mini-
mum everywhere on I', we deduce that

& {z)e 2= n}f J2z onr (2.9

For any sclution u which solves the problem (P,), the function u—z is harmonic
in £, vanishes on 8, and satisfies (from (2. 6) and (2. 3))

(u—z)a::Jquw—v—v@d:f J_ on I

Using the maximum principle again, we deduce that
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u—z =0 linﬂ

Noticing that

z=>p>0 in&
then (2. 8) holds.

By standard Bernstain technique, we can obtain a uniform estimate on second
derivatives of u, to which it is essential that » has a positive lower bound independent of
o.

Lemma 2.3 Let >0 be fired. Then for any solution u of the problem (P,), there
holds

sup | D% | < ¢

where ¢ >0 15 a constant tndependent of ﬂ'.'
3. Existence and Uniqueness

Based on the estimates in Section 2, we can assert that, for every fixed (=0, the
transformed problem (P,) is uniquely solvable in it (), any a€ (0,1). The u-
nique solution, which is the limit of a subsequence of solutions to the problems (P,) for
=0, is denoted by u(z,2).

By the maximum principle, it is easy to get _

Lemma 3.1 u(z,t) is an twreasing function of ¢, for oll 12=0.

Lemma 3. 2 Stéplu{m,tl)—u(z,h) |<|ti—t|, Y &.:€[0,00),

It follows from Lemma 3. 2 that
Theorem 3.3 u(x,t) EC(Qx[0,00)).
Consider a linear boundary value problem

Or = (brisina s v=1 onS; v, =v/ /22 onl

which is time-dependent due to the occurrence of u in the boundary condition on I'. By
v{z,¢) we denote the solution to this problem for {2>0. The maximum principle implies
that '

G oz, b)ac ], o W Lat) € B0, 50 (3.1)

It is desirable to know the relations between the functions z and v.

Theorem 3. 4 v(z,t)=Du(z,t), (z,0)ELX(0,00).

Proof For a fixed {0, as a function of z, the difference quotient A\ "u=
(u,—u) /7 solves the problem '

Nz=0 in 8y z=1 ‘onS8; 2=2:/(2u+~2u) onrl
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where |7v|<lt/2,u,=ulz,i+1).
Then the difference /\"s—v is harmonic in L3, vanishes on & and satisfies

2(/\"u — 1:} 2ol — u,)
(Au — o), = on I
oA J2u,)
The monotonicity of u in ¢ (sce Lemma 3. 1) implies that
0= mfu(m 8/2) == u, w5 3t/2 (3.2

Applying the maximum principle to the function /A"u—uv, and noticing (3. 1) il i
and Lemma 3. 2, we have

sup],ﬂu—vl csupfn—u,| clr] £353)

where ¢>>0 is dependent only on ¢, but independent of ©

The desired conclusion follows from (3. 3) upon taking r—1{.

Replacing A"w—v by v (2,60 —v(z, %) and repeating the above process from
which (3. 3) is deduced, we get

Lemma 3.5 sup|v{z h)—uvlz,t)|=c sup|zuf:x: )—ulz, b)) | for any &, 6: €

[6,7]C(0,00), where e=>0 wamﬂmmdemsﬁngmﬁmm!i*
Let vy be the solution of the Dirichlet problem

Dve =0 in 9y v =1 on &; w=0 onlrl
Then, for any {2>0, the function v— v, is harmonic in £2, vanishes on S and satisfies

(v — wo)a = (0 — wy)/ JE — (o), on T

By virtue of the maximum principle, it is seen that

sup |v — v | = Elr{p Zu = supfuvg ). = »/ 21 m}p(vn]. (3. 4)
o] ir

which implies that » converges uniformly on £2 to vy as t—0%, Then, we can give a sup-
plementary definition to v(z,t) for =0, that is -

v(x,0) =wiz) , 2€ 2 (3::5)
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Theorem 3.6 wv(z,t) € C°(2 X [0,c0)).

Proof It is enough to verify the continuity of v at an arbitrarily given point
(a'oy }EE}{ [ﬂ:m)*

If # >0, by means of Lemma 3. 2 and 3. 5, we get

|oa,t) — o )| <elt— 0 | + |oa, ) — vz ) | (3. 67

In the case of ¢ =0, (3.5) and (3. 4) can be used to get

oG, = ot 0) | < /28 sup(eoda + [00(2) — (') (3.7)

Due to the continuity of »(z,# ) and v,(z) with respect to z, the desired conclusion fol-
lows from (3. 6) and (3. 7).

Now we are able to prove the existence theorem.

Proof of Theorem 1.1 By virtue of Theorem 3. 3, 3.4 and 3. 6, it is readily
checked that the function v{z,t) defined above together with the function

k(zyt) = +/2uCzyt) , (2,8) € T X [0,00)
makes up a classical solution to the problem (FP).

Assuming that {v;, %} and {v:,k;) are two classical solutions of (P), we reduce
our censideration to the functions

H;(:ht‘e]=ﬁv¢(i'.'r)d*r, ) €T X[0,00), i=1,2 (3.8
Clearly

u(z,0) =0, z€@, i=1,2
For any fixed ¢=>0, in view of Definition 1. 1 » we infer that
(#)e=Wk onl, i=1,2 (3. 9)
and both u; and u; solve the problem (P;). Then the maximum principle impiias that
wz,d) = w(x,t), z2€ Q

Hence u,(z,t) coincides with u,(z,¢) for all (,0)ERX[0,00). By differentiation ,
it follows from (3. 8) and (3. 9) that

H;Eﬂ?ﬂfldeEkz
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Thus the uniqueness is proved.
We remark that the existence result remains valid if (1. 7), the boundary condi-
tion on &, is replaced by

v=og on 8 1)

where g(z) >0 is a sufficiently smooth function on &, which stands for the electric po-

tential on the anode (S) as in the electropaint process. Moreover, it can be proved that

the classical solution {v,k} varies continuously depending on the variation of g.
Theorem 3. 7 Suppose that

l<m=g=M (3. 10)

and (v, k) is the relevant classical sobulion where 1=1, 2. m and M are constants. Then we
have

sup |u(2.8) — va(z.8) | < cauplgk — g2 | G313
D= [s,7]

51[113 | By (ot — ol ) | {EEHDHFL — g2 (3.12)
r[4,T

where ¢2>0 is a constant depending on m, M, & and T
Proof Corresponding to (1. 7' ), in the transformed problem (Pg) the boundary
condition on 8, (2. 2), is replaced by

x=1¢t+g(x)on S (2.2 )
By the maximum principle, it is easily seen that

3up|u1—ug| EEUI}|§'1—QEI, 70 213

where u; is the solution of the transformed problem relevant to g, i1=1,2.
The hypothesis (3. 10) implies that (c¢f. Lemma 2. 2) there exists a constant y_>
0 depending on m and &, such that

i)y = N G D ie D [8,T ], = 1.2
Recalling that

hilz,t) = ~/ 2u;(z,t) , (2-':#) el X {ﬂ:m}sl =1,2

we have
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3y ot) — BaCaat) | << |urCest) — wpz,0) |/ </ 2y (3. 14)

for any (z,0) € I'X[4,T]. (3.14) and (3. 13) yield (3. 12).
To prove (3. 11), we apply the maximum principle to the difference 1, — v, which
satisfies

2oy —w) =10 in &
h—n=§Hn—4g on &

ety arediie valhe — hy)
() — v)e = I -+ i on I"

Then we obtain

velhy — Fky) ‘

sup | (z,¢) — vo(x,t) | =< sup|g; — gz| + sup Ak ¢ sup
| & fﬂl.irﬂg

Sx[s,7T I=[47] IFx[4,7]

Because of that

N2y S hia,t) L A2TM, YW D ETX[6,ThHho<<n<M, i=1,2

thus (3. 11) follows.

4. Regularity

In this section, we shall discuss the regularity of the classical solution.

For general evolutionary elliptic free boundary problems, it is a rather knotty prob-
lem to study the regularity with respect to the time parameter {. Owing to the introduc-
tion of Baiocchi transformation, our discussion in this section, as well as in Section 3,
is essentially based on the continuous dependence of sclutions of linear elliptic problems
an the boundary data.

We begin with a statement of regularity of u(zx,£), the solution of the transformed
problem (Pg,).

Let 3Q€ C*t(k=4,0<Ca<C1), then it is evident that

u(e,t) € CH(ED, Viz=0 (4.1)

Using the C* estimate in Section 2 and performing the standard C*** estimates on
u( » 4f) and u( + ;) —u( » ,i) respectively, we obtain (ef. [6])

[ uCest) || proemy s ey Wt € [46,T] e Gl P
|| ’H.{',h} —H(‘,ﬂg:} ” ;',-"""t:-}ﬁ-.{.__ﬂilﬁl '_Ei*| s Htllti e [ﬂstT:i (‘1 S-J
which vield
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| Diuiz,t) — DluCa! )| <c{lz—2a2' |°+ |t —¢ |}, lpl=<k (4.4

for any (I,l),r'{:d‘ W IERX[E,T], where ¢=0 depends on d and T',p=(p;,**,
pv) is a multi-index, |p|=p~++++pyand

izl
B: = M L
Eh:]: *"&j\'

For convenience, we rewrite u''’ =» where v is the classical solution of the prob-
lem (P) and also the derivative of u with respect to ¢ as shown in Theorem 3. 4. For
any positive integer m_—=2, by "™ (z,8), (z,£) € 02> (0,00), we denote the solution
to the following linear boundary wvalue problem

Au™ =0 in ™ =0 onsS
W™ = 4™/ 2u + Culu,u o, u®™ V] on I

where

G'-Eullu“-} : - ’H':ﬂ_l:']

= 2 ﬂ” (-‘_* 1)‘-1(21 ST 3} ' I (“/E?;} l—!iH (.u':l'}}i"-
T | RO H T =1

'i-:'-l-i-m+1-l|ir-l| Fe=1

By induction, u*™ is well-defined and it can be claimed that the assertions (4. 1)
— (4, 4) are valid also for "™, Namely we have
Lemma 4.-1 Let Q€ " (k=4,0<"a<71). Then for any nommegalive infeger m,

there hold
WD ECT(R), Yiz0 (4. 5)
| = (o) | 2oy <<¢» VL€ [4,T] (4. 6)
| 2™ Coyt) — u™ (o ute) || promy el — 2|y W lste € [6,T]
(4.7)
| D™ (z,8) — D™ (2’ 0 ) | Sefle—a' |*+ [t — ¢ |}, (ol <k
(4. 8)

for any (x,8), (z' 8 DELQX[E,T ], where ¢==0 depends on & and T, p is a mulli-inder as
before.

Lemma 4. 1 provides the regularity of »™, by which it may be concluded that
(with u'% =u)

Corollary 4. 2 wm e X} (0,08)) , m=0,1,2,-

Asa matter of fact, '™ is exactly the m-th order derivative of u with respect to £

Theorem 4. 3
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“{’?(3’!#] — DTH(IJ) 3 {1::!":} = Q X (nim]'r =1 2y
Proof It suffices to prove that

sup | Aam0 — u | K Culr] s m= 1,2, (4. 9)
o

where (>0 is fixed, |7|<t/2, Ca=>0 is dependent on ¢, but independent of T.

We proceed by induction. |

On account of (3. 3), (4.9) is valid for m=1.

Assuming that (4. 9) is verified for all 1<Cj<lm, we now show the truth of (4.
9) for m=1. As in the proof of Theorem 3. 4, it is seen that the difference A u'™ —
#*"*+ g harmonic in &, vanishes on S and satisfies

(&TH{H} S H-‘Cil-!-l}:}. — {&fﬂ{m} p—— H{'H_”}f "'IEI-I _|_, F,. on I’

where et
Fo =LA/ v 20) + a0/ (20D Tu™ -+ (™ — um)aut® /(2
+ ATGn — {Guia[su® 5 oee yu™ ] + u0u /(2097

W™ =y et 4 )

Bv calculation, we have

D1/ N 2w) =— u/(/28)?

and

DG = Gm+|[’ﬂpﬂ“:'p'“ :“{m}] e u-:t.'lﬂn:mljuf,:: [ 2u)?

Then with our inductive assumption, we can deduce that

sup| A1/ J2u) 4w /2wt < el7| (4.10)

sup | ATGe — (g [a,wt 0 u0™ ] 4 a0 /(G 2008 | = c]®] (4. 11D
(]

where ¢ >0 is dependent on ', 5, «++,Cu_; and ¢, but independent of r. Moreover,
(4. 7) gives

sup |ut™ — wi™| = ¢ 7| (4. 12)
)

From (4. 10), (4. 11) and (4. 12), we have
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| Fu| < Cul 7]

Then applying the maximum principle to A"u*™ —u™*! we obtain

sup| AT u™ — a0 | < sup A/2u »sup|F.| < €. | 7|
o i I i

Thus we have come to the desired conclusion.

Finally, the regularity result (Theorem 1. 2) follows from Corcllary 4. 2 and The-
orem 4. 3.
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