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Abstract Using Bargmann’s transformation and some basic results of theory of ana-
Iytic functions with several complex variables, we have disscussed two classes of LPDOs in
this paper. We prove that each operator of one class of them is surjective both from & to
5" and from L'to L®, but not injective, and each operator of another class is injective
from & to &7 but not surjective. And in the latter case,the necessary and suffcient con-
ditions for the corresponding equations to be solvable in S are given.
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0. Introduction

Let P(z,D.) be a linear partial differential operator with polynomial coefficients,
“and let & be the space of temperate distributions on R", we consider the eguation
. P{z,D)u= f e (0. 1D
If (0. 1) has a solution #€ & for given f& 5 ,we call (0. 1) solvable in &. P(z,
D,) will be called a solvable operator if P(z,D.) is a mapping from & onto itself.
The problem on solvability in & was paid great attention to long ago. Hormander
-and Lojasiewicz first proved the existence of fundamental solutions in & for equations
with constant coefficients respectively in [ 1] and [ 2]. Since then,several mathemati-
cians have simplified or improved the proofs(see[3],[4] and [51).
| It may be worth to point out that the problems on the local solvability and the hy-
- poellipticity of left (right) invariant differential operators on nilpotent Lie groups, by
‘means of their unitary representations, can be reduced to ones on solvability and u-
‘niqueness of solutions of (0. 1) in & ,as be shown in some recent works (see Section2
- and Section 4 of Chapter 2 in [ 6]). Therefore it seems to be reasonable that study of
solvability and uniqueness in &7 will be paid much attention to. Just because of this
‘background , we made a systematic study on the problem for a class of LPDOs in [7]. In
this paper,other two classes of LPDOs are discussed. We find that each operator of the
first class is s_urje{:th"e: both from & to & and from L® to L*,but not injective. And
‘each operator of another class is injective from %7 into &, but not surjective. In the
latter case,the necestary and sufficient conditions for the corresponding equations to be
solvable in & are given.
The main tools used in this paper are Bargmann’ transformation and some basic
results of theory of analytic functions with several complex variables.
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1. A Class of Unsolvable Operators

and
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where [, is the set of nonnegative integers and If;_-—'-rfd__ b e o
Let

B(z,3,) = 8(B) = > 5,F° (1. 1)

|al=m

with complex constants b,

It is clear that 5{E) is a linear partial differential operator whose coefficients are
polynomials of x with the principal part of constant coefficient. We shall prove that &
(E) is not solvable in &' and give necessary and sufficient conditions for the equation

b E)u = f, f e & (1.2
to have a solution in 5.
-
Since the Fourier transformation makes B(E) be turned into L (i}'“'b{,E" which

o] =i
is still of the same kind as b( E) ,it is no use for solving our problem. Therefore we shall

introduce the following Bargmann transformation instead of the Fourier transforma-
tion.

Let 3 be the space of holomorphic functions on C". For given real number k,set

: 1/2 :
3 = f:fez%,lflsulfr:z}lﬂc.w 1ﬁ|2?—**dﬂ33‘] G ‘x"}

where du{z) =n"%e " d*z with d*z—= ]___[d.ﬁjd?;rj,whf:re z=£&+ . Put 377 ={J3" and
je=1 2T
37" =3\
k
Let

A(z,x) = rr_"“ﬂxﬂ[_ é{zz L) 4 2. "::|, VYzEeChe C R

: ;
9 3 5

where 2= ZF? and z = 1— 2 12T
=1 i=l

Define the Bargmann transformation 7.5 (R")—37" ag follows .
I ‘[EI{I}A(E-I:F&I. fE & (1. 28
H =

where the integration is formal,the real meaning is that the distribution f acts on A(z,
*» ). In view of [8&],7 produces the following topological isomorphic;
S SRS o andis bl =88 Sand LS 3 1. 43
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In particular
)

.Tr r L_I*_LE T 30
_«a unitary mapping

(o) = [foiz = (a5,19)

= J-T_f’f":rriﬁ{zh FIETOTW pRESR (1:5)
For given p< R, we introduce the space |
= {F(z) E 3 | £, -su_p[(I + jzjijz"”e“:”f}?(g}|]}
I ._}r [87],we have ;
3+W=U3*=U3 (1. 6)

- For the moment,we only simply mention thesre. basic properties of T and 37 %e
‘The others will be replenished if necessary,
~ Theorem 1.1 The equation (1. 2)has a solulion in S if and ondy if there exist C =10
PE R such that

i
;3:[3 (2) | O+ |z|2)ri2elel2 Gt
e || <2 and € Q= {2,266 C",b(2)5£0) , where

F(z) = (Tf)(z), b(z) = > b7

fr]=m

Proof It is easy to verify .

| | TEu =zTu, Y u€ & ,j=1,2,,n
Writing

Tu=U

we see that (1. 2) is equivalent to

b(2)U(z) = F(z), U(z) € 3+ (1523
I—Ie:n-:a it suffices to show that (1. 2') has a solution [/ & 37* if and only if (1.7)

|U&nc1+[ﬂﬁﬁ%ﬂ$ﬂ£;uﬂﬂf

[T | U + |27 %72 | g ||
| =C,(1 + |z]%)77 /%12
From the equation (1. 2),we see

H(z) = Fé""’j‘ Vz€Q

52 < 0y + [ 22, Y € o

Let '=Tu and u& & ,then a direct calculation gives
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FU = 2(Tu) = TCREu)

E

where E" = [] B with B, = e a, ).
: i 9 ;
Note that #"u € 5 therefore FU € 31 for any a& I, and € 37,
For any a& I", ,by the same argument as in the case a=0,there are €,>>0 and. P,
& I such that

. %(:ﬁ)] < Q.01+ 2| (1. 8)
for any z€ 2. Putting £ =max C, and p=max({—p,), we then obtain (1. V) immedi-
|a| =52 o | =28

ately.
To prove the sufficiency,we are going to show that F(z)/b(z) can be extended
from £ to C" 50 as to be a member of 377, We begin with the following lemma.
Lemma 1.1 Let g(t),p(t) be analytic functions of real variable (€ R with complex val-
e yand let p(L) be a (nomzero) polynomial of order m, Ly, 1, being its all real zeros. Suppose

that there s a constant O 7= 0 independent of £, such that
ig[é} o

T |
for each t75t., j=1,2 = k. Then g(¢)/p(t) can be extended to an analytic function i R.
Proof We make the decomposition
(L) = (8 — e — B )hg (L)
where the polynomial g(¢) does not have real zero.

Expanding g({) into the power series of x-—h ,then by hypotheses, we know that
|g(¢)/p(t) | is bounded in the set {t € R,0<It— < 4} for sufficient small é> 0.
Hence there is an analytic function ¢, ({) satisfying

e n @ 5
ple)  f— o) (b — B)hg(E)
for each {3548;, j=2,++«, k.
Expanding g, into the power serics of {—{s,we can find an analytic g, satisfying
gty g2 (1) .
p(t) (L — ty)laees (E — f)ug(L)
for each {558, j=3, -,k

Repeating the above procedure, finally we can obtain an analytic function g. satis-
fying (&) /p(t) =g (£) /q(t) for all t& R. Since the polynomial ¢(¢) has not any real
zero, the right side of above equality defines an analytic extension of g(t)/p({) on R.

Before giving the proof of the sufficiency of Theorem 1. 1, we need to study the
set 2= {z.b(z)7=0,z&€ C"}. Let 95 be the boundary of &. Since b(z} is a given poly-
nomial and 4=0,by the uniqueness theorem of analytic functions, the boundary 262 is
just the set of the zeros of h(z) in C*,hence it is also the complementary set of & rela-
tive to . Moreover , & and 352 are unbounded subsets of C",and & is not a convex sel.
These make the proof not easy. We will overcome the difficulty by means of Lemma 1.
1.

Proof of sufficiency For » =0, we introduce the subset of £ as follows.
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= {z.b(z) == 0, lzi < ""1}
Let

B(2 2 3ty = (%){z‘ ErG

where z ,2'€ &2, and t€ R. Since b(Z +t(2—Z)) takes the value b(z )20 at t=0,5(z"
+{(z'—2')) is not a vanishing polynomial of ¢. Hence,by the condition (1.7) with
_lj—-ﬂ and Lemma 1. 1. :,tr(z' # 41) is analytic for € R. Consequently.

(—J( = (—}{ ) = 6(7,2,1) — ¢(Z,2,0)
= J-.lﬁ(z +Z oL )dtL

= L -—c )@+t = )+ (5 — 2t

For fixed z ,2' € Q,,b{z -H(z —& ) ) ,as a polynomial of ¢,has possibly (at most m) ze-
ros in (0,1). But it is easy to show that these zeros do not destroy the integrability of
{,hﬁ above integration. In fact,if £& (0,1) is not one of these zeros, then the condition
(1.7) (Eaking la| =13 impIiEﬁ the estimate

’Z 2 (G A+t — ) G=4
Sne(l 4 |7 + 60 — 2) |yl He=Dr | p

Zne(l 4 22| — |
=, {r) ]|z — |

Hence -
RGO/ — FED B | < 6|2 — 2], V2,72 €Q,
Now let z° be any zero of 5(z) ,then the proceeding argument implies 2z € 253, Taking 7

=2|2"| ,according to above inequality and Cauchy criterion of limit existence,we see

llm( W2 = llm( ){z}
:Eﬂq :-EH

!—'-.E

‘exists. Hence we can define

Uiy — [F@A@, if b2 # 0,

lrimF[z'};’b[z'}, if b(z) =
.EFED

& =F3x

It is easy to know that I/(z) is analytic in £2,satisfies the condition (1. 7) and is contin-

d :
‘uous on C°. Next we want to verify that :_E-H and @U are continuous in C" and satisfy
b J :
the C-R condition of analytic functions. In fact,taking |a|=2 in (1. 7),then by the

same argument as above,we can prove that lim %{ 3(2) exist (j=1,2,,r},and
.= —+r el '

z -EII'
that the functions are continuous in C" which are defined by
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(51

5 (2) if b(z) # 0C.e.z € 9)

" -...I =

Uilz) = 4 7
l_ith 55-:{3} if b{:g] — ﬂlfl', &, = E E-"EE:]

e 4

T ED

Let z=8~+ip,&, 1€ R*, we shall verify that
Aot 3L :
3{5 = iy = 1,25 .n
For z& @ ,since I/ ig analytic in £,it follows from the C-R condition of analytic
functions that
U _u
s ; ez
For z€ 382(i. e. ,as above,z& C™G) , let
Tz, =UGE + Lsp)
where z & 25 (—1/2, I,«“’.&‘} (e R,and e, is the j- th coordinate vector in R". By a
similar argument as above’; wa can prove that ¥;are analytic in ¢ for fixed 2 and s,and
that z +- tse & & for any real ¢,except the possible real zeros f,'] ,.!2* i!*(.i:ﬁ_-:m} of b(z"
—ise;) (as a polynomial of £),thus we have =

hm[i’ (2 + se;) — U(2))/s = lim lim (I (4 -+ se;) — TI{E}NS

==}

= T o= B

;
2 =mz

:z¢£.i'
L'liTl ljm(uﬁ’ (2 ,8,1) — W Lz ,8,0)) /s
oo
— lmg lim —J; —-—4[2 I Ise; )di
feo
2
= lim lim
L 11-.: oz (,5 -+ tse, j:ii!
z =0
. . 1
== lilEt[‘ll ilrz: | U, 4 tse,)dt = U, (2)
.LIEQ .
where the final equality follows by the continuity of I/; in C". So that ,we get
il
= =U
- n ' aé-}
in C*,j=1 .‘1.2"" +7. Similarly , we also have
L R S e .
Leany =it J= 1,2, ,m
Hence
a0 1 [ TS e L)
m =‘—rl""_—|_ l.,'l_-l-i_-II
el 2 351 aﬂ}
|| ;
=gW,—U) =0, j=1,2,~.n

This shows that I/ satisfies the C-R equation of analytic functions in C". Therefore I/ is
26



a holomophic function on C*,namely U/ € 3. Taking e= 0€ %, in the condition (1.7,
we see that [/ € 3%,
It is obvious that

b(2)U(z) — F(z)
ﬂ'ﬂ open set £2,hence it also holds on €° by the unigueness theorem of analytic func-
tion, Therefore the equation (1. 2) has a solution u=T-"I/ € &,
Corollary 1. 1 If the equation (1. 2) is solvable m S, then the zero of the polynomal
b(z) in C° is just the zero of F(z)=(Tf)(2).
& Corollary 1.2 The LPDO (1. 1) is injective from &' into itself ,but not surjective.
Proof Corollary 1. 1 implies that (1. 1) is not surjective. The injectivity follows
3 ﬂm the uniqueness theorem of analytic functions. In fact.suppose that u & & satisfies
(E)u=0, then U="1Tu satisfies b(z)/(z) =0 and U &€ 37", Because b5£0 in the open
set &2, we get =10 in £. Hence the above uniqueness theorem implies that {/ vanishes
0. C".
Remark 1. 1 Some results of theory of analytic functions with several complex
used above (the C-R condition, the unigueness theorem etc. )} refer to R.
Nata-Simham’s Analysis on Rewl and Complex Manifolds.
- Remark 1.2 From the proof of Theorem 1. 1,it is easy to get a necessary condi-
ii_-‘_' 8) which appears to be stronger than(1. 7). But from the proof of the sufficien-
__-1-1:1] guarantee the solvability it suffices that (1. 8) holds for |a!=C2. This shows that
if (1. 8) holds for || =<2, 50 does it for all oS T
If (1. 8) holds only for |e|=C1(or weaker |a|=0),can do it hold for all a&
147 It seems to be a quite difficult problem.

2. A Class of Solvable Operators in &

Let

F, = ——{::-: + ;)

Ay
e
ilh 3j=51_’;=l,“' A T aﬂd ].Et-

¥

B
I
‘gr = ] By
i=1

BC Y =8 2510
o] =m
where b, (|| =<m) are complex constants and b,7=0 for some § with || =m.

In this section , we shall prove that 5('E) is a solvable operator on & ,that is , for
any f€ 57, there exists :u-r._: & satisfying

bO'EYu = f (2.2)
héj"ﬂ the Bargmann transformation 7" mentioned in Section 1 and writing U (z) =T%,
‘we know that (2. 2) is equivalent to
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B = F G

b =

[or]=m
with z= (z;,---,2) 0", 2. “*l[a—g—wi ;}] »While z,=£ 4., £, e R and Fz)=
{Tf)(z). Then,it suffices to shaw that the equatmn (2. 2') has a solution [/ &3+ for
any Fée 37,
We first do some preparztory works,
Proposition 2. 1 The equation. (2. 2') is solvable in 37 ,if and ordy if there are C =0 |
and p& B such that

where

| (Fye), | == € || b(z)n(2) Il ., Wowie 3o 2223

b(z) = Db
with b the con Jugale compler number of b,
Proof Write

where

U="Tu ugc 5

and
V=T, pe& 5”
Note that
TCE) = b(A)Tu = b{a )l
and that

TB{E)v) = b(2)To = b(2)V
thus using (1. 5),ws have
{EJ[E‘,}H,F)F =(TCBu,Te), = (BCEu.v) = (5(E)"u,v)
= (u,0(E)p) = (Tu,T(B(E)v)), = (U,86(2)1),
that is :
(b(d ), V), = (U,b(z)V), (2. 4)

Now ,suppose that (2. 2') has a solution UVe3t™= LJ 3'. We assume U € 3 with some
# & R ,then

luly = Jlg () %1 4+ |z|®)Pdu(z) <+ oo

and hence for all V& 37, we get
| CF :[’r:',.l ":-“:: | (E?‘:a;}uﬁyjﬂl o | '-:rf-rbf-aj'i"r':fﬁ}j“l
é H‘rip |E;‘[:.3:|F|:E} | —

Consequently -

b()V(z) € 37
By [8],in 37 there exists the seminorm saquc:nce {1l = |l ,},ex being equivalent to
the seminorm sequencef | » | »1sersWhere || « || is the seminorm of 3, defined in the

preceding section. Thus there is p=p(p' )ER suc:h that
Wl ., <clw|, ywesz*
28



where " is a positive constant only dependent on p'. Hence we get
' |7, | <o), |5 |,
=C| 8=V ||, V¥V €3 ™

Ty
=

- The necessity is proved.
Conversely ,suppose that the estimate (2. 3) holds,and leg

3 " = {8(a)V (2),Vi(z) € 37} C 3"
then (2. 3) shows that (F, V), determines a continuous linear functional on the sub—
space 3, of 37™. Thus, by the functional extension theorem in the Frechet space 37
‘there is U'e (377 ) =3%" gatistying

CF.V), = (U,802)),, Feliee gas

- Hence combining with
(U1 b(2)V(2)), = (B(IDU, V),

«obtained in proof of the necessity,we have

BT, V), = (F,V),, Y V&3
nscquentljf '

LA =
%m shows that the eguation (2. 2') has a solution I/ € 3+,
- The following lemma is a direct extension of Ehrenpreis lemma.-

Lemma 2.1 Let a and 297, {j=1,2,,m) be given m—+ | points on the compler
plane Cyand let R be a positive number , then there erists a cirele L. Ca) with cenfre a and vadius 7
<R such that for every 2& L _(a)

R
=. e tzea et liatoe = L)

Proof Without loss of generality , we assume that a is the origin and that 0<"r, <<
rr.*‘-‘; PSS RTrg =y, with r,= |29 |, j=1,2, ++,m. Then 7,, -+, 7, divide
thf' interval [0, R] into at most k- 1 subintervals, so that there is at least an interval

R =
with the length;m+ We denote it by [7,,7,,, ] and let r= (r,-}-r,, ) /2, then the cir-

cle with center e and radius r is just desired,

Lemma 2.2 Let q(w) = g™ '+ c g, be a polynomial of weE C with q,7=0, and
let B be a gwen positive number and a € O, ﬂmﬂﬂwmmnmrdei,(a) with centre a and rodies T
<R such that

lg () | =< (EER—)MI-?GI, Y we L(a}. (2.6)

Proof Denote the m zeros of ¢ by 2, j=1,2,++,m. Then

_ glw) = gy(w — ') eee (wp — 2™)

iﬂurmvm,by Lemma 2. 1,there is a circle L, (a) such that

Ll | R
=20m - 1)’

it we L (a). Therefore (2. 6) is obtained.

lw — =z

j - 1!2!.“!?}1

Proposition 2. 2 Iet b(z) = Zbﬁ; be a polynomial of order moin 2= (2, ,2,)

L] ==
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" then for each pE R, there is o constant © only dependent on p such that
e geeadViE || 2T

for all V=377,
Proof First,let 2= (z ) yw= {247 ,2,) &' ,then b(z) can be writlen as

b(z) = > ,B;(w)z™’ (2. 8)
=1
where B.(w) are polynomials of wE O, m,<m. We shall prove that for p& R, there
is ', (p) >0 such that
| By )V (=) || ,—a, = C,(p) ez |[,, ¥ Ve 3™ (2.9)

In fact,set

¢, = {z:]zl <p, 2EC}

and z= (z,,w) € C,,then when B, (w) 3= 0,by taking R= and a=z, in Lemma 2.

2,we get from (2. 6) and (Z. 8) that
16(Z ) | = [2Cm, + D 4+ p) 17" | B () | (2.10)

where L (z ) is the circle with radius r= -7 and centre z, on the plane C. It is obvi-

1
1+p

- Il

ous that (2. 107 still holds for By(w)=0.Let V& 37, then we have
Lh(zy )V (z,u) | 2= [2(m; + 1)(1 + ) 1™ | ByCu) | [V (2 ,w) |
when z, & L. (%, ). Hence we obtain
sup |Bz)V (=) |

FE=E XA E 27

= [2Gm, + D+ p> ] ™| Bew) | ¥z, ) | (2.11)
where 2= (z,,w) & €. Fixing temporarily , then V{s,w) can be regarded as an ana-
lytic function of s & -:TJ Thus, using the maximum principle on the circular domain
ls—z, | ==r,we get

|V (z,0) < |V (5" ) |

where 5* is some point on L (z ). Set z,=s" in (2. 11) we obtain

sup  |[pWV(| =[2Gm, + DA+ p ™™

|zl <pt 1+
3 SUp LBy G) | [V (200 | )
z| = p
Since the inequality holds for all z= (z,w) & C,,we have
sup eV | =[20m + DA+ ] - ﬁup{lﬂ ()

|zl <t (1 +p) |z} =p
Hence ,using the maximum principle of analytic functions,we get

sup BV ()| = [20m + DA + p) |7 sup | By (udV (2) |

Jal ok (1

and consequently

- V(g wd |}

A =17/
sup BV + |22 e

—1
Izl =g+ Ci-Fp}

=[1 4+ (p+ 1+ p)")i]””c“”“"""3'_1‘2” . sUup |6(2)V (2} |

| &] ==t (ltp) "
g A=z
T A I s T U e i ®
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« [2¢m, +. 1)L+ p) ] ™ - sup kﬂﬂ{w}vfx}\

Now let I=
g(p) =2(m, + 1)~™¢1 4+ E’g)"“u[]_ | {P Ly e P}—E]E]PJ"E

o (1 Fuptym —2)iZ, (o — 1t o) i /2
fhien it is easy to verify that g(p) has a positive infimum ¢,- Therefore we know
sup lb(z?li’(z){] + 2|2 112

|sl=pblitm
= g(p) ;a}lpp{ | By ()W (2) | (1 + |z]2) ™ el P2y
. =, sup | B, (u)V (z) (1 + |z]|° yGr=m,)/2g= x| ,rzl
E'IM ¢e,we obtain the a;t:nim,c
1 | 8(z)V (2) || ,== sup sup  {(1 + !z‘a),fze—uﬁz bV ()|}
$<p o o= o b p)

~ ¢, sup “sup {CL+ [z|DT T E LBV (2)|)
0= pZ o0 |z|=p :

=, || BV () || -

18V |, =Cll BV @ || - s YV EST
Secondly , write B, (w) as

L1l
2

By(w) = >, B (w)a
., =0
with ;= (zy,++ ,2,) € G~ % ,where B;" (w,) are polynomials of w,. Then according to

the preceding proof we get :
| sV iz) ||, ;:;-::’ ]1 Bu,{w}i"(z"'l [[R=

=0, || B )V ) || —m —m,

A finite repetition of above procedure finally leads to
[5GV I, C IV N oot

‘Note that m, - +m_ <_m,thus we obtain
” Viz) || p—Cm ek ) =¥ | p——

(2.7) is proved.
Theorem 2. 1 For any f € 5" . the equation (2. 2) has a solubon i 5.
Proof As stated above and according to Proposition 2. 1,it suffices t

__EZ_” (2. 3) holds.
" Let FE 3, p being a real number. Let I be such a number that {+p>>n,then the

integral J{l + 2|2~ 9 4"z converges. Let V€377 ,then we have the estimate
](F’F:}Jll é |FIP|I}?|-—;|
/2
=171, [ + 1 1]
2 112
- n—'”[m,[ J{l izl iter FEG RN Wit 1313)—*”-3'.::*3}

o verify the
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<c [V,

where
12

¢ = p | [0+ e re
Hence , by substituting 5({z) by 5(z) in Proposition 2. 2,we get
[(E <V, SO | B2V ||

This is just (2. 3. ;

Corollary 2.1 The LPDO (2. 1) is a surjective mapping from 5 to itself ,butl not an
e jective one.

Proof Theorem 2. 1 shows that (2. 1) is surjective from 5 'to & . To prove that
(2. 1) is not injective, it suffices to show that the equation (2. 2') has a nontrivial solu-
tion in & when F=I(). Set

[i]
U(E:’ =E::1. vzz (315'“!3*} E c*
where z" & C" is an arbitrary zero of 5(z) and

"
P Rl
Jrl s E,zjzj

3=

then it is easy to see that U{z) € 3~ "and that
B(AIU(2) = b(L)e"* = 0
Thus, the homogeneous equation relative to (2. 2') has really a nontrivial solution in
Sz
Theorem 2. 2 For each £ L*(R") ,the equation (2. 2) has a solution u € L*(R").
Proof We first formulate the prior estimate
lolls<<cllsBrp|l 2y ¥ o€ (R (2:12)
In fact,let Tp=¥1(z) ,then ¥& 3~ ™. Hence,by (2. 4} we have
(B(2),6(2)), = (F,b(3)[6()¥(2) ]),

|- 7 Ca)
— v, S L 2yw v

|I |I'-'|§.=i'1 ﬂ] d

=5 ll(w,z.{“}(z)b"’?'faf}?'}u

|o|=m ~*

= ;ﬁ{bf"*(ar}w,b“’(as}mﬁ

[ | =

that is
] 2

= 1
Bw @ | = | 2] —52(@)
lajezm 9 :

where 0" (2) = ab{(z). Since b(z) is a polynomial of order m, there is a & Iy with

| | =m such that 4,5=0. Because of

E'{l:l"]
HIC
@ |
we have
Er'[ﬂ'} a‘_ g
—{ 2 = b ¥
o]

Hence we conclude
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|8, | |F]y = |P(2)B(2) |,
that is

¥, < C

Tz |, (2.13)
By(1.5),we see that
1#]e = |Telo= Il @l
Zi:?ind
6(DF(2) |, = |B(2)T@|o = [TGBE)P) |, = || B(B)p | 2
bstituting them into (2. 13),then (2. 12) is obtained immediately.

Now let & LE(R") ,then for every @& 5 (R") we have

[ < [ FllallelasellfllelldBel -
By this ineguality and a standard argument,we can find ﬁE FE satisfying
(frp) = (u,b(B)p) = (u,b('E)" @) = (B('Edu,p), Y o€ &
Hence the fact that & is dense in L? yields
BBy = § _

wE L' is a solution of the equation (2. 2). The proof is completed.

Finally , we give a simple example to illustrate the application of our results to the—

ory of right invariant differential operators on the Heisenberg group.
Let

L — ":'?l*"'!'fi’:} ERY, p= (p:sp) ER
and ¢& R ,then (f,¢,p) can be regarded as a local coordinate of the Heisenberg group
", Write

r:l.,_E
Loy
a 1=
Li=a ol
M_i "L -;3— 3= 1,2, ,n

We consider the right invariant differential operator of the form

K—ZEL + iM,T) withi= ,/— 1 (2.14)

j=1

'It is easy to know that K is an operator of non-principal type. We shall show that K is
hypoelliptic.
In view of [ 6],a unitary representation of K in L*(R") is

.".._1 s i =l
n'ﬁ*:iﬂ.-:'(if,ﬂ}=2’{|l|”2rj—|ll”1i&:]i, A E R\D (2.15)

=1

It is obvious that the principal part of o, (+1)(x,D) is Z ;, which is an elliptic
f=:1 p il

¥

operator. If we can prove that (2. 15) is an injective mapping from &7 (R*) into itself,,
the hypoellipticity of K follows directly from Proposition 4. 7 of [ 6 ]. We take the simi-
larity transformation

r= |41y, F=1,2,0,m
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such that (2. 15) is changed into the operator 2 Iﬂl’rz E“E . By Corollary 1. 2, the latter

=i

is an injective mapping from 5 to itself and so is from 5 to 5. Therefore K is really
a hypoelliptic operator on H".

(1]

[2]
[3]

[4]
5]
(6]
7]
(8]
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