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Ahbstract  Concerning steady-state continuous casting problem , we know that if the
number of phases is one ,both existence and unigueness had been solved ([1],02],0310
if the number of phases is two, the existence had been proved ([4]),but the uniqueness

of weak solution is an open problem all the time. This paper is devoted to solving this
problem .
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1. The Steady-state Continuous Casting Problem

The portion of ingot considered is supposed to include the solid-liquid interface
(Figure) and occupies a eylindrical open domain 2=} (0,H) of R{Ir={(0,a) for n
—9 and [ is an open bounded domain of R with Lipschitz boundary for n=3.)
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Figure (a) Ingot solidification in continuous casting (b) Ingot geometry in £

We set I'=x {i}l,i=0,H, =0y and I'y=3I"X (0, H),we denote the
gradient by V= (3,,3,,d.), so 4="57 « /. We shall assume free boundary @ =
{(z,y,2)E 2, 2=O(x,y)} fixed with respect to the mould and the casting velocity giv-

en by v — bz with constant #=>0. The metal temperature T="T1(z,y,z) verifies station-
ary heat equation
BT )T = SACE(TIRAT) in LG (1)
where =0 is the specific heat and £7>0 the thermal conductivity. The left member in
(1) takes into account the heat transfer due to the convection. If T denotes the melting
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temperature at the interface,after the usual renormalization procedure

T
g = Lc.é:[:’r:l:ifﬁ KT (2)
at the solid region {#>>0}and at the liquid region {8<_0} ,equation (1) becomes
d.f(8) = Ad in Ae={0=0} lJ {60} (3)

: r
where f=C, = K land ﬂ’ﬁr{ff’)tbL C(t)dr. At the interface we have =0 and the
stefan condition is given,in terms of the renormalized temperature @,by

— [Vt e y=— apep=1b on &= {6 =0)

where 42>0 is the latent heat, y= (3,¢,3,8, — 1) is a normal vector to @ and [ ]*
denotes the jump across @.

2. Definition of Weak Solution
Existence of Solution to the Two-phase Problem

Problem (P) Find a couple (8,5) € H' (£) %X L™(£), such that

8=h on I, (4)
0=X=>0<9p<1—2{0<C0} <1 a.e..in 8 (5)
L{qu — [£(®) + mnlae) + f S ey
jl'l
Yée HG(D)6=0 on Ty (6

For our existence result, we shall assurne that f=f(0) ,R—R is a continuous function ;
§=9g(z,y42,0) ., X B—R is a Caratheodory function,i. e. , it is measurable in (z,¥.,
z) € I'yfor all #&€ R and continuous in # for a. e. (x,y,2). Furthermore, letting x and M
be given constants,for a.e. (z,y,2) & Iy, we assume

Gz 9,2,608 = () if 6=<u<<0 or 0=M=>1
YVL>0,3g, € LUy, g=n— 1,such that
l9Cz,y52,0) | < g,(z,y,2), for |8] < L;
e C"N(Tp),p<k|l, <0 and 0<k| <M
Under preceding conditions for f,g and &, Rodrigues had proved that there exists a so-

lution (#,&)E€ H' ()" (82) X L=(82) for some fixed0="a<_1 (see Theorem 1 in
[41). |

3. Proof of Unigueness
of Weak Solution with Linear Cooling

We shall assume
f € C'(R) (IRCEUE {0 == — i (R {0 (7)

glz,y¥.2,60) = (8 — p) on & (8)
ke ¢ pn=h<0on Myand 0 <<k <" M on I, (9)
pE LT, p=p=M (10)
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Here y is a positive constant denoting the cooling coefficient, p= L™ is a given function
representing known temperature, ¢ and M are constants.

If (uﬁ',fr} is a weak solution gotten in existence theorem : (¢,5) is an arbitrary weak -
solution , we shall prove that

: =40, p=4, a.e ing
Lemma 1 Arbitrary weak solution is bounded  p= 0= M.
Proof In (6),we take = {(8—M)" ,then

L{w V(6 — M) — (F(8) + Ab)a(o — M)*)

-+ ',PJ; (8 — P}{g —— JH}+2 0

W

From (]EI_},U.M g-et
jl’?iﬂ—ﬂﬂ'* |* =
o

I‘

[F(8) + 210 — L 20 = p)(6 — )+

{6 A}

= LFCOY + Abylag
{o=ar}

From (5),we know that-n=1 in {#>>M},therefore
f Vo — my+ |2 < J [£(8) + abJa.0
Bt R

(o=}

= j 2Fy(8)
E)

=J Fu(hIn, = 0
r.l:l'

where

F.(8) :{L[f(f}-u.b]ﬁ if 0= M

0 if #a<C M
and #=% on I,.

From this, we conclude #<ZM a. e. in Q. Similarly we get #=u in 2 by taking £
=(f—u)". (Lemma 1 has been proved. )
From the definition of weak solution , we have

L{v{a — DV — [£0) — £G) + 1y — $70.6)

S J p(@ — )¢ = 0, ¥ Sedi () s = Oon T, (11

If A5€ L°(2) ,n is outer normal direction of 382, after intégrating by parts,then

= L{m — D) 4¢ + [£00) — F(O) + MbCny— )]0}

] e=bZ+ [ yo—b¢=0
s T ;
1. €.

— [[r® — £ + 00— cete + 0> + J@=0[%F+%|=0

: (12)
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Here
6 — 8

]
£
0

e(z,g.2) = 1

£(8) — F(&) + (g — )

— it 0FE0
it a=608+%0
if 0=6=0

From (73 and Lemma 1,e is non-negative bounded measurable. Lf:t {6, }ECT(£2),0

=g < (,C is independent of m, 2., —e|l,? :mﬁ a

nd let ¢ =&, —I— ,than

-—{1 + (meas@)'*}

le. — elletey =
| ==l < %{1 + (meas)''*} (13)
fe
For any u#(z,y,z) €} (&?}?, w.:r: denote by £ the SnluT.iGﬁ of
ﬂ;-pfa;==u el (14)
< émzﬂm on I (15)
f’*‘i_m e on< B (16)

Lemma 2

Proof Let @2 lie in the slab 0<"z<"d and set

2. Let V=sup|u| [ }H}: le“"—er Lsince
Ery

{&. ) are ?mafwnﬂy bounded ; | &, | =€ ,C is mdependent of m ,depends on U

E’=ﬂ+£3,,then Fef=e'>>1 in
e

m

&V = sup|u| (— ) {_i—sa.ép]u[ in &
o
and
LV — &) =—suplu| —u= 0 in 2
o
V—£. =0 on I,
we have
IV — &) L s RaTE R
= dVeos(z,n) + V¥
: 1 ='|
— — gup |u|e*cos(z,n) + ysgp]ui e — e J
£

=

— sup|ule’ + ysup|ul
o o

= suplu|(y + 1) (" — &)
o

I

—a — E’]

oI

ry

From minimum principle, we know V — &, =0 in Q,1. e. &, <Z V. Replacing &, by

— ¢ ,we obtain — V=_¢_. It follows that; |, [=
pends on u and d. (Lemma 2 has been proved. )

is independent of m,de-

Multiplying (14} by e A and integrating over: &2, we get,after using
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1 2
e 5
]jp ﬂﬂ@m < ?Le u® EJ.L CAL D
the inequality

2+ [eatasy + j A4uden < 7 | e

Considering

[acae,= [ac. 5= — 5 [alvel:
- Iaf;m% + [lo.g1m. — —jlvs;mlf
~ ja;e:,, + 5 [12ga1".
and & 4
[p.6n %= = fotn(— v =— 5 facen?

using (15) .we know that
M i
foucenr = ﬂj 2,06 dz] ds = jca;m)flgasz 0
P il ar
Therefore
= - St
2.6, EJ!SJ;I 7 1o

Substituting it into (17 ) ,we obtain
[entat) + [10617 < [lagul? + | ew
7 JHH' Pﬂ -

In (12),we choose {=4£_,then

L[.f(é?} S5 e e

= [ @ — 5@ + w0 — DIew — O,
From Lemma 1 and (13),(18),we have
) — F(O) + by — @) Jequ

< C(0,8) J | (e, — e A4, |
I

P
< ¢l =l ol Jea el 2

e
: + Le,,uq

.l m

<2

Te

Now we estimate |3.& (x,y,0)].

E{;M
dz

(17)

(18)

(19):

Lemma 3' |25 (z,9,0) | are uniformly bounded ; | 3,6, (x,9,0) | =C,C is indepen-
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dent of m.
Proof Since A& ¢*°(2),we know that there exists 6>0,such that . #==r<_1 in

QN {0="z<"d} ,here r is a negative constant. Considering (7) in this subset, we obtain
g— 0

- if %46
elz,y.2) = £(9) ] A 1+ A ; (200
£ = 5 :
when 64,
a—f Jie |
<8<0,then e(t, 9412 =T Fn = P = (21)
(1) p=@#<="0,then e(z,y,2) 7 '—_f{ﬂ'? FO=F
= il t—
(2) 0O==6=M ,then E'E:I!yi-z]_.f{&:l_j{ﬂ)_i'_ﬂ
Since p=—@0=_r,we have
g —d=0—r=—r
FOA) — FUBY + =< f(M) — f(u) + A
Therefore
=k (22)

e{x,y:2) Ef{M} =) D
From (20— (22),we know that
e(z,y,z) = C =0 in @2 {0 < z<d}
here ¢ is independent of m.

e ) :
Thus, there exists & =0 ,such that when 0<"z<_d ,EMEE?ﬂgm= | ,2,°--. Using

Lemma 2 and standard barrier function technique,we can obtain |3.&,(z,y,0) | =C,
where ( is independent of m and depends on u. (Lemma 3 has been proved. )
From Lemma 3, (19) becomes

Liﬂﬂ} — £(&) + by — @) Jequ

= E e jemw”)
Jm 2
Let m—=co,then

[Lro — 5@ + it ﬁi}]ﬂulf— 0

From the arbitrarity of u,we know
[£(8) — £(8) + M(np— @ Je =10 a.e. in 2
From the definition of e,we can obtain
=0 a.e.in &

From (11),it fnlldv;fs that
'J-{ﬂuﬁ}aagzﬂ e gi(&),£=0 on I
o =

then a.(g—#)=0in D (EIE} ,i. e. n—f is a function F(z,y)-
Since np— =0 in 0="z="4d,it follows that n—=" a.e. in L.
The unigueness of weak solution has been proved.

a, 0,6 =0

a0, 80

Remark 1 In some cases F{) Z{ 5 @, , @,are positive constants. The con-

dition (7) has included this case.




Remark 2 In (9),y is positive constant denoting the cooling coefficient, there—
fore when g(z,5,2,8) is linear for #, the uniqueness has been solved ,but when g(z,y,
Z,) is nonlinear for #,the uniqueness is Open.
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