THE UNIQUENESS OF STEADY-STATE SOLUTION FOR TWO-PHASE CONTINUOUS CASTING PROBLEM

Yi Fahuai

(Xi'an Jiaotong University, China) (Received September 28, 1988; revised December 28, 1988)

Abstract Concerning steady-state continuous casting problem, we know that if the number of phases is one, both existence and uniqueness had been solved ([1],[2],[3]), if the number of phases is two, the existence had been proved ([4]), but the uniqueness of weak solution is an open problem all the time. This paper is devoted to solving this problem.

Key Words Partial differential equation; free boundary problem; uniqueness.

Classification 35R35.

1. The Steady-state Continuous Casting Problem

The portion of ingot considered is supposed to include the solid-liquid interface (Figure) and occupies a cylindrical open domain $\Omega = \Gamma \times (0, H)$ of $R^*(\Gamma = (0, a)$ for n = 2 and Γ is an open bounded domain of R^2 with Lipschitz boundary for n = 3.)

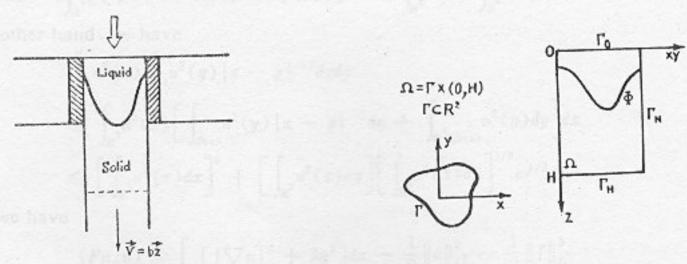


Figure (a) Ingot solidification in continuous casting (b) Ingot geometry in R*

We set $\Gamma_i = \Gamma \times \{i\}$, i = 0, H, $\Gamma_D = \Gamma_0 \cup \Gamma_H$ and $\Gamma_N = \partial \Gamma \times (0, H)$, we denote the gradient by $\nabla = (\partial_x, \partial_y, \partial_z)$, so $\Delta = \nabla \cdot \nabla$. We shall assume free boundary $\Phi = \{(x,y,z) \in \Omega; z = \Phi(x,y)\}$ fixed with respect to the mould and the casting velocity given by v = bz with constant b > 0. The metal temperature T = T(x,y,z) verifies stationary heat equation

 $bC(T)\partial_z T = \nabla(k(T)\nabla T)$ in $\Omega \backslash \Phi$ (1)

where $C \ge 0$ is the specific heat and k > 0 the thermal conductivity. The left member in (1) takes into account the heat transfer due to the convection. If T_0 denotes the melting

temperature at the interface, after the usual renormalization procedure

$$\theta = \int_{T}^{T_0} k(\tau) d\tau \equiv K(T) \tag{2}$$

at the solid region $\{\theta > 0\}$ and at the liquid region $\{\theta < 0\}$, equation (1) becomes

$$\partial_z f(\theta) = \Delta \theta$$
 in $\Omega \setminus \Phi = \{\theta > 0\} \cup \{\theta < 0\}$ (3)

where $f = C_b \circ K^{-1}$ and $C_b(T) = b \int_T^{T_0} C(\tau) d\tau$. At the interface we have $\theta = 0$ and the stefan condition is given, in terms of the renormalized temperature θ , by

$$-\left[\nabla\theta\right]_{-}^{+}\circ\overrightarrow{y}=-\lambda\overrightarrow{v}\circ\overrightarrow{y}=\lambda b \quad \text{on} \quad \Phi=\left\{\theta=0\right\}$$

where $\lambda > 0$ is the latent heat, $\vec{\gamma} = (\partial_z \Phi, \partial_y \Phi, -1)$ is a normal vector to Φ and $[]_{-}^+$ denotes the jump across Φ .

Definition of Weak Solution Existence of Solution to the Two-phase Problem

Problem (P) Find a couple
$$(\theta, \eta) \in H^1(\Omega) \times L^{\infty}(\Omega)$$
, such that

$$\theta = h$$
 on Γ_D (4)

$$0 \le \chi \{\theta > 0\} \le \eta \le 1 - \chi \{\theta < 0\} \le 1 \quad \text{a. e. . in} \quad \Omega$$

$$\int_{\Omega} \{ \nabla \theta \nabla \zeta - [f(\theta) + \lambda b \eta] \partial_z \zeta \} + \int_{\Gamma_N} g(x, y, z, \theta) \zeta = 0$$
(5)

$$\forall \ \zeta \in H^1(\Omega) : \zeta = 0 \quad \text{on} \quad \Gamma_0 \tag{6}$$

For our existence result, we shall assume that $f=f(\theta):R\to R$ is a continuous function; $g=g(x,y,z,\theta):\Gamma_N\times R\to R$ is a Caratheodory function, i. e., it is measurable in $(x,y,z)\in\Gamma_N$ for all $\theta\in R$ and continuous in θ for a. e. (x,y,z). Furthermore, letting μ and M be given constants, for a. e. $(x,y,z)\in\Gamma_N$, we assume

$$\begin{split} g(x,y,z,\theta)\theta &\geq 0 & \text{if} \quad \theta \leq \mu < 0 \quad \text{or} \quad \theta \geq M > 0 \\ \forall \ L > 0, \exists \ \bar{g}_L \in L^q(\Gamma_N), & q > n-1, \text{such that} \\ |g(x,y,z,\theta)| &\leq \bar{g}_L(x,y,z), \quad \text{for} \quad |\theta| < L; \\ h &\in C^{0,1}(\bar{\Gamma}_D), \mu \leq h|_{\Gamma_0} < 0 \quad \text{and} \quad 0 < h|_{\Gamma_N} \leq M \end{split}$$

Under preceding conditions for f,g and h, Rodrigues had proved that there exists a solution $(\theta,\xi) \in H^1(\Omega) \cap C^{0,a}(\overline{\Omega}) \times L^{\infty}(\Omega)$ for some fixed $0 < \alpha < 1$ (see Theorem 1 in [4]).

3. Proof of Uniqueness of Weak Solution with Linear Cooling

We shall assume

$$f \in C^0(R) \cap C^1(R \setminus \{0\})$$
 , $\beta_1 \ge f' \ge \beta_2 > 0$ in $(R \setminus \{0\})$ (7)

$$g(x,y,z,\theta) = \gamma(\theta - \rho)$$
 on Γ_H (8)

$$h \in C^{0,1}(\overline{\Gamma}_D)$$
 $\mu \le h < 0 \text{ on } \Gamma_0 \text{ and } 0 < h \le M \text{ on } \Gamma_H$ (9)

$$\rho \in L^{\infty}(\Gamma_N), \quad \mu \le \rho \le M$$
(10)

Here γ is a positive constant denoting the cooling coefficient, $\rho \in L^{\infty}$ is a given function representing known temperature, μ and M are constants.

If $(\hat{\theta}, \hat{\eta})$ is a weak solution gotten in existence theorem; (θ, η) is an arbitrary weak solution, we shall prove that

 $\theta = \hat{\theta}, \quad \eta = \hat{\eta}, \quad \text{a. e. in } \Omega$

Lemma 1 Arbitrary weak solution is bounded: $\mu \leq \theta \leq M$.

Proof In (6), we take $\zeta = (\theta - M)^+$, then

$$\int_{\Omega} \{ \nabla \theta \circ \nabla (\theta - M)^{+} - (f(\theta) + \lambda b \eta) \partial_{z} (\theta - M)^{+} \}$$

$$+ \gamma \int_{P_{N}} (\theta - \rho) (\theta - M)^{+} = 0$$

From (10), we get

$$\int_{\Omega} |\nabla(\theta - M)^{+}|^{2} = \int_{\{\theta > M\}} [f(\theta) + \lambda b\eta] \partial_{z}\theta - \int_{\Gamma_{N}} \gamma(\theta - \rho)(\theta - M)^{+}$$

$$\leq \int_{\{\theta > M\}} [f(\theta) + \lambda b\eta] \partial_{z}\theta$$

From (5), we know that $\eta=1$ in $\{\theta>M\}$, therefore

$$\int_{\Omega} |\overset{\circ}{\nabla} (\theta - M)^{+}|^{2} \leq \int_{(\theta > M)} [f(\theta) + \lambda b] \partial_{z} \theta$$

$$= \int_{\Omega} \partial_{z} F_{M}(\theta)$$

$$= \int_{\Gamma_{0}} F_{M}(h) n_{z} = 0$$

where

$$F_{M}(\theta) = \begin{cases} \int_{M}^{\theta} [f(\tau) + \lambda b] d\tau & \text{if } \theta \ge M \\ 0 & \text{if } \theta < M \end{cases}$$

and $\theta = h$ on Γ_D .

From this, we conclude $\theta \leq M$ a. e. in Ω . Similarly we get $\theta \geq \mu$ in Ω by taking $\xi = (\theta - \mu)^-$. (Lemma 1 has been proved.)

From the definition of weak solution, we have

$$\int_{\Omega} \{ \nabla (\theta - \hat{\theta}) \nabla \zeta - [f(\theta) - f(\hat{\theta}) + \lambda b(\eta - \hat{\eta})] \partial_z \zeta \}
+ \int_{\Gamma_H} \gamma(\theta - \hat{\theta}) \zeta = 0, \quad \forall \ \zeta \in H^1(\Omega), \zeta = 0 \text{ on } \Gamma_D$$
(11)

If $\Delta \zeta \in L^2(\Omega)$, n is outer normal direction of $\partial \Omega$, after integrating by parts, then

$$- \int_{\Omega} \{ (\theta - \hat{\theta}) \Delta \zeta + [f(\theta) - f(\hat{\theta}) + \lambda b(\eta - \hat{\eta})] \partial_z \zeta \}$$

$$+ \int_{\partial \Omega} (\theta - \hat{\theta}) \frac{\partial \zeta}{\partial n} + \int_{\Gamma_n} \gamma (\theta - \hat{\theta}) \zeta = 0$$

i. e.

$$-\int_{\varphi} [f(\theta) - f(\hat{\theta}) + \lambda b(\eta - \hat{\eta})] (e\Delta \zeta + \partial_z \zeta) + \int_{\Gamma_N} (\theta - \hat{\theta}) \left(\frac{\partial \zeta}{\partial n} + \gamma \zeta \right) = 0$$

Here

$$e(x,y,z) = \begin{cases} \frac{\theta - \hat{\theta}}{f(\theta) - f(\hat{\theta}) + \lambda b(\eta - \hat{\eta})} & \text{if } \theta \neq \hat{\theta} \\ \frac{1}{f'(\theta)} & \text{if } \theta = \hat{\theta} \neq 0 \\ 0 & \text{if } \theta = \hat{\theta} = 0 \end{cases}$$

From (7) and Lemma 1, e is non-negative bounded measurable. Let $\{\tilde{e}_m\} \in C^{\infty}(\overline{\Omega})$, $0 \le \tilde{e}_m \le C$, C is independent of m, $\|\tilde{e}_m - e\|_{L^2(\Omega)} \le \frac{1}{m}$ and let $e_m = \tilde{e}_m + \frac{1}{m}$, then

$$\|e_{m} - e\|_{L^{2}(\Omega)} \leq \frac{1}{m} \{1 + (\text{meas}\Omega)^{1/2}\}$$

$$\|\frac{e_{m} - e}{\sqrt{e_{m}}}\|_{L^{2}(\Omega)} \leq \frac{1}{m} \{1 + (\text{meas}\Omega)^{1/2}\}$$
(13)

For any $u(x,y,z)\in C_0^\infty(\Omega)$, we denote by ζ_m the solution of

$$\begin{cases} \Delta \xi_m + \frac{1}{e_m} \partial_z \xi_m = u & \text{in } \Omega \\ \xi_m = 0 & \text{on } \Gamma_D \\ \frac{\partial \xi_m}{\partial n} + \gamma \xi_m = 0 & \text{on } \Gamma_N \end{cases}$$
 (14)

Lemma 2 $\{\zeta_m\}$ are uniformly bounded: $|\zeta_m| \leq C$, C is independent of m, depends on u.

Proof Let Ω lie in the slab 0 < x < d and set $\mathscr{L} = \Delta + \frac{1}{e_m} \partial_x$, then $\mathscr{L}e^z = e^z \ge 1$ in

$$\begin{array}{c} \varOmega. \ \mathrm{Let} \ V = \sup_{\mathcal{Q}} |u| \left(\frac{\gamma + 1}{\gamma} e^{t} - e^{x} \right), \mathrm{since} \\ \\ \mathscr{L} V = \sup_{\mathcal{Q}} |u| \left(- e^{x} \right) \leq - \sup_{\mathcal{Q}} |u| \quad \text{in} \quad \varOmega \end{array}$$

and

$$\mathcal{L}(V - \zeta_m) \le -\sup_{\Omega} |u| - u \le 0 \quad \text{in} \quad \Omega$$

$$V - \zeta_m \ge 0 \quad \text{on} \quad \Gamma_D$$

we have

$$\begin{split} &\frac{\partial (V - \zeta_m)}{\partial n} + \gamma (V - \zeta_m) = \frac{\partial V}{\partial n} + \gamma V \\ &= \partial_z V \cos(x, n) + \gamma V \\ &= -\sup_{\Omega} |u| e^z \cos(x, n) + \gamma \sup_{\Omega} |u| \left(\frac{\gamma + 1}{\gamma} e^d - e^z \right) \\ &\geq -\sup_{\Omega} |u| e^z + \gamma \sup_{\Omega} |u| \left(\frac{\gamma + 1}{\gamma} e^d - e^z \right) \\ &= \sup_{\Omega} |u| (\gamma + 1) (e^d - e^z) \quad \text{on} \quad \Gamma_N \end{split}$$

From minimum principle, we know $V - \zeta_m \ge 0$ in Ω , i. e. $\zeta_m \le V$. Replacing ζ_m by $-\zeta_m$, we obtain $-V \le \zeta_m$. It follows that: $|\zeta_m| \le |V| \le C$, C is independent of m, depends on u and d. (Lemma 2 has been proved.)

Multiplying (14) by $e_m \Delta \zeta_m$ and integrating over Ω , we get, after using

$$|\int_{\mathcal{Q}} e_{\mathbf{m}} u \Delta \xi_{\mathbf{m}}| \leq \frac{1}{2} \int_{\mathcal{Q}} e_{\mathbf{m}} u^{2} + \frac{1}{2} \int_{\mathcal{Q}} e_{\mathbf{m}} (\Delta \xi_{\mathbf{m}})^{2}$$

the inequality

$$\frac{1}{2} \int_{\Omega} e_{m} (\Delta \zeta_{m})^{2} + \int_{\Omega} \partial_{z} \zeta_{m} \Delta \zeta_{m} \leq \frac{1}{2} \int_{\Omega} e_{m} u^{2}$$
 (17)

Considering

$$\begin{split} \int_{\Omega} \partial_{z} \zeta_{m} \Delta \zeta_{m} &= \int_{\partial \Omega} \partial_{z} \zeta_{m} \frac{\partial \zeta_{m}}{\partial n} - \frac{1}{2} \int_{\Omega} \partial_{z} |\nabla \zeta_{m}|^{2} \\ &= \int_{\Gamma_{N}} \partial_{z} \zeta_{m} \frac{\partial \zeta_{m}}{\partial n} + \int_{\Gamma_{D}} |\partial_{z} \zeta_{m}|^{2} n_{z} - \frac{1}{2} \int_{\Gamma_{D}} |\nabla \zeta_{m}|^{2} n_{z} \\ &= \int_{\Gamma_{N}} \partial_{z} \zeta_{m} \frac{\partial \zeta_{m}}{\partial n} + \frac{1}{2} \int_{\Gamma_{D}} |\partial_{z} \zeta_{m}|^{2} n_{z} \end{split}$$

and

$$\int_{\Gamma_{N}} \partial_{z} \zeta_{m} \frac{\partial \zeta_{m}}{\partial n} = \int_{\Gamma_{N}} \partial_{z} \zeta_{m} (- \gamma \zeta_{m}) = - \frac{1}{2} \gamma \int_{\Gamma_{N}} \partial_{z} (\zeta_{m})^{2}$$

using (15), we know that

$$\int_{\Gamma_N} \partial_z (\zeta_m)^2 = \int_{\partial \Gamma} \left(\int_0^H \partial_z (\zeta_m)^2 dz \right) ds = \int_{\partial \Gamma} (\zeta_m)^2 \left| \int_0^H ds \right| = 0$$

Therefore

$$\int_{\mathcal{Q}} \partial_z \zeta_{\mathsf{m}} \Delta \zeta_{\mathsf{m}} = \frac{1}{2} \int\limits_{\Gamma_{\mathsf{M}}} |\partial_z \zeta_{\mathsf{m}}|^2 - \frac{1}{2} \int\limits_{\Gamma_{\mathsf{0}}} |\partial_z \zeta_{\mathsf{m}}|^2$$

Substituting it into (17), we obtain

$$\int_{\Omega} e_{m} (\Delta \zeta_{m})^{2} + \int_{\Gamma_{H}} |\partial_{z} \zeta_{m}|^{2} \leq \int_{\Gamma_{0}} |\partial_{z} \zeta_{m}|^{2} + \int_{\Omega} e_{m} u^{2}$$

$$\tag{18}$$

In (12), we choose $\zeta = \zeta_m$, then

$$\begin{split} & \int_{\Omega} [f(\theta) - f(\hat{\theta}) + \lambda b(\eta - \hat{\eta})] e_{m} u \\ &= \int_{\Omega} [f(\theta) - f(\hat{\theta}) + \lambda b(\eta - \hat{\eta})] (e_{m} - e) \Delta \zeta_{m} \end{split}$$

From Lemma 1 and (13), (18), we have

$$\left| \int_{\Omega} [f(\theta) - f(\hat{\theta}) + \lambda b(\eta - \hat{\eta})] e_{m} u \right|$$

$$\leq C(\theta, \hat{\theta}) \int_{\Omega} |(e_{m} - e) \Delta \zeta_{m}|$$

$$\leq C \left\| \frac{e_{m} - e}{\sqrt{e_{m}}} \right\|_{L^{2}(\Omega)} \left\| \sqrt{e_{m}} \Delta \zeta_{m} \right\|_{L^{2}(\Omega)}$$

$$\leq \frac{C}{\sqrt{m}} \left[\int_{\Gamma_{0}} \left| \frac{\partial \zeta_{m}}{\partial z} \right|^{2} + \int_{\Omega} e_{m} u^{2} \right]$$
(19)

Now we estimate $|\partial_z \zeta_m(x,y,0)|$.

Lemma 3' $|\partial_z \zeta_m(x,y,0)|$ are uniformly bounded: $|\partial_z \zeta_m(x,y,0)| \leq C$, C is indepen-

Proof Since $\hat{\theta} \in C^{0,a}(\overline{\Omega})$, we know that there exists $\delta > 0$, such that $\hat{\theta} \leq r < 0$ in $\Omega \cap \{0 < z < \delta\}$, here r is a negative constant. Considering (7) in this subset, we obtain

$$e(x,y,z) = \begin{cases} \frac{\theta - \hat{\theta}}{f(\theta) - f(\hat{\theta}) + \lambda b \eta} & \text{if } \theta \neq \hat{\theta} \\ \frac{1}{f'(\theta)} \geq \frac{1}{\beta_1} & \text{if } \theta = \hat{\theta} < 0 \end{cases}$$
(20)

when $\theta \neq \hat{\theta}$:

(21)
$$\mu \leq \theta < 0$$
, then $e(x, y, z) = \frac{\theta - \hat{\theta}}{f(\theta) - f(\hat{\theta})} = \frac{1}{f'(\tilde{\theta})} \geq \frac{1}{\beta_1}$

(2)
$$0 \le \theta \le M$$
, then $e(x,y,z) = \frac{\theta - \hat{\theta}}{f(\theta) - f(\hat{\theta}) + \lambda b}$

Since $\mu \leq \hat{\theta} \leq r$, we have

$$\theta - \hat{\theta} \ge 0 - r = -r$$

$$f(\theta) - f(\hat{\theta}) + \lambda b \le f(M) - f(\mu) + \lambda b$$

Therefore

$$e(x,y,z) \ge \frac{-r}{f(M) - f(\mu) + \lambda b} \tag{22}$$

From (20)-(22), we know that

$$e(x,y,z) \ge C > 0$$
 in $\Omega \cap \{0 < z < \delta\}$

here C is independent of m.

Thus, there exists $\delta > 0$, such that when $0 < z < \delta$, $e_m \ge \frac{C}{2} > 0$, $m = 1, 2, \cdots$. Using

Lemma 2 and standard barrier function technique, we can obtain $|\partial_z \zeta_m(x,y,0)| \leq C$, where C is independent of m and depends on u. (Lemma 3 has been proved.)

From Lemma 3, (19) becomes

$$\left| \int_{\Omega} [f(\theta) - f(\hat{\theta}) + \lambda b(\eta - \hat{\eta})] e_{m} u \right| \leq \frac{C}{\sqrt{m}} (1 + \int_{\Omega} e_{m} u^{2})$$

Let $m \rightarrow \infty$, then

$$\left| \int_{\theta} [f(\theta) - f(\hat{\theta}) + \lambda b(\eta - \hat{\eta})] eu \right| = 0$$

From the arbitrarity of u, we know

$$[f(\theta) - f(\hat{\theta}) + \lambda b(\eta - \hat{\eta})]e = 0$$
 a.e. in Ω

From the definition of e, we can obtain

$$\theta = \hat{\theta}$$
 a.e. in Ω

From (11), it follows that

$$\int_{\Omega} (\eta - \hat{\eta}) \partial_z \zeta = 0 \qquad \forall \ \zeta \in H^1(\Omega) \,, \zeta = 0 \quad \text{on} \quad \Gamma_D$$

then $\partial_z(\eta - \hat{\eta}) = 0$ in $D'(\Omega)$, i. e. $\eta - \hat{\eta}$ is a function F(x,y).

Since $\eta - \hat{\eta} = 0$ in $0 < z < \delta$, it follows that $\eta = \hat{\eta}$ a. e. in Ω .

The uniqueness of weak solution has been proved.

Remark 1 In some cases $F(\theta) = \begin{cases} \alpha_1 \theta, \theta \ge 0 \\ \alpha_2 \theta, \theta < 0 \end{cases}$, α_1 , α_2 are positive constants. The condition (7) has included this case.

Remark 2 In (9), γ is positive constant denoting the cooling coefficient, therefore when $g(x,y,z,\theta)$ is linear for θ , the uniqueness has been solved, but when $g(x,y,z,\theta)$ is nonlinear for θ , the uniqueness is open.

References

- [1] Chipot M. & Rodrigues J. F., On the steady-state continuous casting Stefan problem with nonlinear cooling, Quat. Appl. Math., 40(1983), 476-491.
- [2] Faria L. O. and Rodrigues J. F., Sobre um modelo variacional para a solidficação dum lingote em vazamento continuo e sua aproximação numérica. Prepubl. CMAF No. 5/83, Lisbon (1983).
- [3] Rodrigues J. F., Sur un probléme á frontière libre stationnaire traduisant la cristallisation d'un métal, C. R. Acad. Sc. Paris. 290-A(1980), 823 — 825 (see also Ph. D. thesis, Univ. Lisbo, 1982).
- [4] Rodrigues J. F., Aspects of the variational approach to a continuous casting problem, Free Boundary Problems: Applications and Theory, V. II.

rean Lemma Cause of the Cause in the large of the Cause o