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1. Intreduction

For a strictly hyperbolic system of conservation laws, it is well-known that the
classical solution of initial value problem exists enly locally in time, in general, and one
has to extend the concept of classical solution to weak solution or discontinuous solution
in order to obtain a globally defined solution. Since weak solutions are not unique, one has
te use admissibility condition or s:irm{*.timéﬁ called entropy condition to pick out an
admissible weak solution which is physically reasonable. There has been a general theory
about the existence, unigueness, asymptotic behavior of the admissible weak solution of
Cauchy problem for the one-space dimensional strictly hyperbolic system of conservation
laws. Moreover, there are different kinds of admissibility criteria proposed from either
physical point of view or mathematical consideration and there are certain results about
the equivalence among these different forms of entropy conditions.

What will occur if the strict hypérbolicity fails? Parabolic degeneracy will arise
which can be found in the literature in connection with various models in applied sciences
(C81., C[21). Furthermore, elliptic domain may occur in the phase space, in other words,
the system of conservation laws is of mixed tvpe. The following quasilinear system is the
simplest model of mixed type which can be used as the egquations of motion for dynamic
elastic bar theory ([4)) or used as the equations governing isothermal motion of a Van
der Waals fluid (C7 ).

{?““L“*’:": ; @159
p, — 1, =)
where p () is given by a nonmonotone function and the elliptic domain is a strip {v, <Z o

<Zw,} on the (u. ») plane since the eigenvalue is defined by A*=—§ (2) and p (z) =0

when v, << v <Tryand p (o) = 0 when » == v, or v == vy
It is an open problem to determine the extent to which the Cauchy preblem is

meaningful for such kind of nonlinear system of mixed type. For a first step, we study the
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simplest Cauchy problem— Riemann problem, namely

(e, ») (A 0) =<{(u"’ e =5 (1. 2)
{uy. vy, z =0
where (uz, vy) are arbitrary constant states.

An essential feature of mixed type nonlinear systems is the possibility of shocks
between values one of which is in the elliptic domain and the other in the hyperbolic
region. Such discontinuities are routinely observed in transonic flow, but are not described
by linear system of mixed type or by purely hyperbolic nonlinear systems. It is obvious
that in order to determine which shocks are admissible on physical grounds the classical
entropy condition is not appropriate for shocks connecting states in elliptic domain with
states in hyperbolic domain (C47) .

For handling the elliptic domain, people did various efforts (C13, (41, L8], (7. C62).
We introduce a different approach in this paper. We give a new definition of generalized
entropy condition and a different definition of admissible weak solution of (1.1}, (1.2)
first in section 2 and prove the existence and uniqueness of the admissible weak solution
then in section 3. This approach can be used for much more general system of mixed type
for which the elliptic domain is of the following property: there is at least one direction on
the (u, ») plane such that for any given straight line, parallel 1o this direction, the
intersection of the elliptic domain with the straight line is finite in length. The result
about this kind of more general system of mixed type can be found in a coming paper

(C31).

2. Preliminary Remarks

Since both the system (1. 1) and the initial data (1. 2) are invariant under the
transformation 1_-'_}&5, t—=at, a =0, we look for similarity solutions ¥ =u (&), v =
p(&), & =z/t for which the condition (1. 2) becomes into the boundary condition
W&, pi(&)) = (g wvy)as &L—+F o2,

Substitute u (&), » (&) into (1. 1), we obtain

(du
(f = ':"”:')%"'“‘5 =0 2. 1)
L & e

lae)

which supplies the solution wherever it is smooth. MNamely, either

u = gonstant
p = ¢onstant

dp A :
this is called constant state, or £ = A; (¢) and the vector {E—E ﬁ) iz parallel to the right
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eigenvector r,, corresponding to A;. This defines the i-th rarefaction wave solution if
4; (v) is defined as a real valued function and A, (») is monotone along the integral curve

of the vector field r;, i. e. so called rarefaction wave curve. More precisely, for p <<, or v

-E.."'IFJ

-’-,=“-./{n—iﬁ’ (2 : (-:::-r A=+ — 1 {HJJ
£, (or R;)is the integral curve of g—i =/ — ¢ {v) (ﬂi‘ EE = — /= (2 )
Suppoese that p (v) has the type of graph as in Figure 2. 1, namély, p (v) satisfies the
following hypotheses (H) .

(H)
(i) ..p(») is a smooth function defined on (b, co) , where b is a given positive

constant:

(i) 7 () <O for 0<Tb<Tv<Tw, of v v, and ¢ (v,) =7 () =0, ¢ () —
0 as p—oco;

(i) 2" (0) =0 for v, << v<<v,:

For simplicity, we make further assumptions

(ivy p" (o) Z=0if v<Tp,, and p" (v) changes sign only once for v == v, Where v = v,
and p (,) = p(p.) for definiteness.

(v} j N = ¢ () dyp—4- o as v — b for any given v, < v,,

J "'v' "‘P'(ﬂ:‘tf??—?"-[—m as t:—h—F'r:ﬂfﬂran}fEivcnzau:f_‘vﬁ

"o
Proposition 2. 1 For any given (4, v, with b <" v,<v,, the stale (u, v} which can be
Joined to (u, vy on the Tight hand side by a 1st for 2nd) rarefaction wave ts defined by

Vo U 1, b=l p = v,

s or e
M= i, = J- -0 {7 dn B A, = J' \/---'-P {n) dx
I,:I. 1":'

2. 2),

demoied sl by &, (or B} and for any given {u, v) with v, = 9, = vy, the state (u, v) which

can be joined o (i, vl on the right hawd mﬂ]g- by a 1st{or Znd) rarefaoction wove is defimed by

rt:}ﬂﬂ_ﬁﬂu ||Ir Jvniviﬂp
— J‘ ~f — @ (p)dy

F e e — oy T or
l*"’_Mm= | N = () dy L lﬂ_’ﬂu:

'
..l'l.':I

P2y

while for any given (u, vy with oo = p, "> p _ , the above kind of state {u, v) is defined by
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w ::_} z-"p . . E b E t}'ﬂ
e . or Y
U=y, = f A~ —p () dy oty = — j —p (mdy
vy ; g
_ (2. 2),
(see Figure 2. 23
Turn to discontinuity now. A discontinuity is defined by Rankine-Hugoniot Condition
which takes the form
oglu—uy =plv) —plo
o =plo FACH) 2. 3
aly —p) = — (u—#,)
For any given (u, v, . the state which can be joined to (u, »,) by & discontinuity

defines the shock curve §, with o, and &, with &, from (2. 3). Namely

_J_:va} — p (1)
p— v,

o, =
u—-—uu_\/"}:fﬂj—ﬂi{m} P
v=—1u, Y ¥ — vy .

and

EEE‘/__?{UZI — g {9,

L

H—ﬂ¢=_J_Pfﬂ3'“vaQ . (Isll:'

v — vy ¥ = Ty ;

It is easy to show that &, is a single-valued function of » but is not necessary to be
connected. According to different location of (uy wo) 10 < v, =28, F<_vy Vs, Va ﬂ Vo=,
vp Vg vy ¥. v=7, Where ¥ is defined by p(¥) = p(»,). ¢ is defined by p (D =
2 (vg) . &,is shown 1:1'1 Figure 2. 3 respectively.

In order to determine which shocks are admissible on physical g;-::unds we introduce
the following generalized entropy cunditinﬁ {G. E. C. ) for handling the elliptic domain.

Definition For any given (u_, v_), (4, vy) & 5 (u_, v.) is said lo sotisfy the G. E.
. if either

. when v varies from v_ to vy, excluding v, uself. the corresponding o; vs decreasing
wherever it is defined, or

1. for any v between v_ and v where o, is defined, i holds that

0w u_, v_) e i T T (t=1, 2)

This kind of discontinuity iz called admissible discontimity.

For any given (u_,v»_), the state (u,, r,) € 8, {(z_, v_) which, with (x_, »_)
together, supplies an admissible discontinuity can be determined. According to different

location of (u_, ».). the following pmp-::nsitfdn shows the set of state (x. ») which
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belongs to &, (u_, v_) and satisfies the G. E. C., is still denoted by S;lu_,v_).

 Proposition 2. 2 Corresponding to different location of (u_, v_) withb<"v_ =7, 7
O Ly e Loty vV vy v VD, T <00, 8w, v) can e
defined as follows respectively (see Figure 2. 4). For the case when b <Cv_ <9

b{u{tln E_gﬂgﬂ'ﬂﬁt_? I'JI ﬂEﬂ_ﬂ#{—j
'Sr*.: R B i L o (U ) Sy u—u_EF‘/_p{uJ—p(u_iﬁ
T ey v v T — v_ §— v

P {‘Uaﬂ} Tl (1’—':'

w Ly |
Ry

. where Yy 18 defined by =p Eﬂnl’].uﬁﬂlﬂ# and Up - s defined by

r(up;:l — plp_) A P{HRF}“‘“ plo_)

4] I i ek
DF .i'!j

= p’ (va,) » Uﬁﬁ}ﬂ}'-

For the case when # < v_ <- v,, there are two subcases: v_ <. v Of v_ = v, Where v

S detined by 3 () =p () =B 20 S Sy, When §<<o_ <7V
¥ — v
[b{ivﬂv_ v v vgy OF P=1p,
ST = pls) —plv_) S u—u_ = _“/_P‘:‘*” —pv_)
v—v_ et L ety LA et

where p(vp) = plv_) = P.{Fﬂﬁ:' and p (vs) >0, P (vp,) <V ﬂn,EW-

When v <<v.<v,

] b{vﬂu_ o ﬂﬁﬁc_zﬂﬂﬂu;&{_} ﬂmﬂﬂgﬂgl{_.} of ﬂ=-=ﬂn."'—}
% [ e 3 i
g i ey B TR IO S u—u-=_f_p{v}—p{v_}
v—ov. Y et p—p_ v — P

g {EJLF:' oy '[.'*u_f_l_

where v; ., is defined by p (u_) =  Pr, = Vg

L o Vs

~8
For the case when v, =<~ v_ << v,

[b<v=vs, or va, v = v, l-u=vgn or ©v=va,
"'?1: JI [ L SE u___u"- J P‘{i.':] ol | F{:I}.—}

b =—_ F . p) —plol)
 — g p— p_

i Bt e o k

- Fo 9=

whers v, is defined by p (05 ) = p(»_) and v, = Ve

For the case when vy, <Zv. <wv,.

xb{yiﬂi,ﬂ O vuﬂviﬂgﬂ-g_]

Or L’Lﬁiﬁ{m
1 u—u‘.=1/u__pft:)‘-“?(ﬂ_} e plv) —ple)
=1 e T SRS A=
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P Eu;,ﬂ} — p{v_)

'1-'.[_" ——

where v,_,—, is defined by e

For the case when v, itr_i;;
(v == y_ oOf va,ﬂ't?iluq

or ¢ = vy

v,qﬁﬂmﬂu_ or bTv=<v,

& : g (e L
=i plo) —pin_) i
t—pl = =g s A ___'P{t!f.' —g(p=)
p—v_ Pt
where v, is defined by
pleg ) —plul) plog ) —pln_)
[~} i 5 -t il
o e L S Vs, — V- et i {1’}2;} . 'Un#":: e

plog) —plp )

!-’r_',' T e

=7 (v_) , vaﬁtr,;,ﬂiu-

vy, is defined by

For the case when p_ =%, there are two subcases: v»_ -~ p of ¢_ == p. When 7 <

v.,."f_;:.
y;ﬁﬂz}iﬂ_ of P<Tv= oo >y Zy_ Of vairﬂwﬂu{,:
& H—"J_ZJ_?&:}—;PH:_J s W B ey [oow () SEIRIOT)
o ¥ —t_ po—_ T
When v_ =%
ﬂgﬁil-'ﬂﬂ._ or b"'::ﬂ'ﬂ:l-"_gn Lt T
8y u—u___\/_p(-;:}-—-p{p_) S-’*:'u—u___\/:_hi?{tﬂ T Lk
v—uv_ P = p—op_ (AR L

Now it is ready. to introduce the definition of admissible weak solution.
Definition 2. 3 A single-valued function (u (5, v (£)) is called on admissible weak
solution of (1.1), (1.2) if R

I. 7t satisfies the boundary condilion (u, ©) — (ug, vy) as £ = oo

II. It ig either a rarefaction wape or o constani state wherever i is smooth;

I Any discontinuity satisfies the Bankine-Hugoniot condifion and the above generalized entropy
condilion;

IV. The image in the phase plane takes the minimum variation ameong oll possible single-valued
function (u (&), v(&)) satisfiing (1) -— (D).

3. Existence and Unigueness of
an Admissible Weak Solution
For any given state (u_, v_) , we consider the set of states which, as a state

(ey. ve) . can be joined to (u_, »_) by a single-valued function (u (&), » (&)} satisfying
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the definition 2. 3 and consisting of the first kind of waves. Namely, it contains either a
first kind of admissible discontinuity of rarefaction wave or a fan of first kind of wawves,
consisting of first kinds of rarefaction waves and admissible discontinuities. We call the
whole set the first kind of wave curve, denoted by W, (u_, v»_) . For each point (u, ») on
the curve W (u_, »_) , we determine the set of states which, as a state (u,, ) . can be
joined to (u, »), as & state (u_,v_), by a single-valued funection (u{), » (L))
satisfying the definition 2. 3 and consisting of the second kind of waves. Namely, it
contains either a second kind of admissible discontinuity or rarefaction wave or a fan of
second kind of waves, consisting of second kind of rarefaction waves and admissible
discontinuities. We call the whole set the second kind of wawve curve, denoted by
W.lu, v) .

In order to prove the existence and unigqueness of the admissible weak solution for
the Riemann problem ¢1. 1), (1. 2), it suffices to show that for any given (u_, v_) With b
< v_ < oo the family of curves {W, (u, »,) : (u, v,) & W, (u_, »_) } covers the whole
domain D:{— oo < u-<Ico, b= p=<_co} univaluedly. We give the constructive proof

next which shows the structure of the solution simultaneously.

Case ] g
It can be shown, by (H), Propositions 2. 1 and 2. 2, that W (u_, »_) is defined as

St o) for b<"wp-=<_w_

W ifus, po) =+ i {t_f__’ v-) Lt t_i_ =v g_:?“ (3. 1)
Cole; v Bo=Y) for »=<v=uv
(R, (i, ») for v >71

where C, (v, v,; R, (-)) consists of states fuﬁﬁm, 'E?Lﬁm:' such that corresponding to each

state (u,, v,) € B, (u_, »_) with v = »,= »,, it holds that
P":t-':.ﬁm:' — p(p))

Dy, — )
Lgitd i

— 'FI {w,) . l’f;ﬁ L1 = L

':-u_z,.ﬁ.:ur HLE{”: ESJ{H’; ﬂ.}
and v, varies from v to v as v, varies from v, to v. ¥ = Y, 7.7, (¥. ¥ €
B, ) o (g v ) and (u, ) supply an admissible first kind of discontinuity.
Moreover, u—— oo along the curve .3, monotonically as v—=b, the curve C(w,
= e = | : i = o
vor By (¥_. »_)) is smooth on » = v = » which contacts with E,(x, #) atv»=uv and

finally, ® =+ =< along B, (%, ») monotonically as v — -+ <= . (see Figure 3. 1)

Consider the curve W, (x, v,) for any (u, »,) © W, (u_, #_) . It can be shown that

i?'-’:uf?: — plz.) — 3 (p,) . For any

ﬂ'| el

there exists {u; . ») & &, (u_, v_) such that




fi, v & W (u_, v) withb<To_ <9,

IJ,;: ( ; R, (u, v for b<"wv=w
T e i, ) =
A Syl 9 for v, <_p=<_e<

For anv (u, v, & W,(u_, v.) with »’ <"p, <" #, there are vz, and vp determined in

(3.5 2)

Proposition 2. 2, W, {u,, v, is defined as

(R, (i, vy for b<"v=uw,

Sa (i, vy for ﬂl{ﬂéﬂp#{u
Wolu, v) =8 @00 Uaye) for -p,,ﬁm-::zrﬂ .

Colvp i Vo Ri{ﬂgﬁu}, ”nl,m:':' for v, <<2<"%n,m

(8, Gy vy for »Z=vp,w

3. 3

where fﬂxﬂt:]- Vg g o] & 8, 0u, v) . Siiu;ﬁ.{,}. v Rlg, . ﬂﬂl’u}_}) consists of states
fﬂ;,.!m} vy f‘ﬂ} such that corresponding to each state (u, vy & R,{uﬁﬁm. -uﬁﬂm)- with
t";z’,;n ﬂ I-’-;i i . it holds that

P{ﬂﬂ-ﬂl{ﬂ} s P{ﬂgj

= e (zry) . : T-’,L.ﬁm::"i?ﬁ
Vi g

(U, m Prye) € & Uy vl
as in Proposition 2. 2 and “J'.-F{?-'r varies from », to Vog i HS trg varies from v. 1O 'E-'n-ﬁ.m .
{ﬂ%m . P 3 and (u, v,) supply an admissible second kiﬁd of disn_::ﬂminuity. Moreover,
':“Lﬁ-m ! HLFH}} € &, (u, vy) When v, = va,q and W, (u, ¢,) is a smooth curve defined for

b<—p<_ocoon whichu—+-tococasy—=bandu—+—00 as p—=— o0 .

It is easy to see that vp, —} oo when »,— § , therefore when v, = 7.

rRE{u:i - ﬂ'|} for b":'ﬂiﬂls ]
8y (u ) for P<_p=v = 3
W, e, v) =< g WM ¥y L 2 Rgti} A (3. 4)
R, (us vg) for v,<"v=v.
G-; '&-“p- E R R;'{ﬂp !:']5:' “for -u:_,"n-t,r_

For any (u, v) © W (u_, v_) with #<"v,<"wv,. there are g and 25, deternined

in Propaosition 2. 2, W, (u, »,) is defined differently corresponding to ¢, <" v o 0y == Ve s

where p () = p{v,) , v, <<u,. For the case when 7 <7 v, <.t .
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RBy(u, v for b<lp=<u,
Sl v for v, <Tv=wgy

&y {ﬂﬁrﬁu}a 'i’ﬂ‘gm} for Vo ":?’{-—:!’Eﬂ-ﬂ}

i If?-!uﬁ“;l, ?arﬁn:-:' far e <= 7.
CalPu . Pt Bylly oy wao)) for o, <Tv<Tvp e,un

# # I £ 'E g :
lﬂ,fugﬁm. 'E-"ﬂ-ﬁ.:,:.:l for EJE#LIR.I:E#{J'.I}

(3. 5)
where Szfl’.aj.u}s T’.;fﬂ;fﬁglﬁ,{;p Yaymn)) consists of states {:i::bﬁw, v o) E 5, (uy vy) as
before and Yo gm Varies from v, to Vigsgty @5 ¥y varies from v, to Yoy - Moreover,
(ubﬂ-mﬂm, Vig@an) € & ':Huﬁm- ”E’;W) and W, (u, »)) is a smooth curve defined for 5 <<
v=_coon Whichu—=4coasp—=bandu— — oo as r——+ oo,

It is eclear that Vi > 0. and LIRSt when ¢,—=w.) , therefore when

1, = g_r; ’

R, (u, v) for b<Tp=w,
Wy, ) = 18, (u, v for v, <o =<vp
S, I:’-!e:ﬂﬁw. E:',!'rﬁ“;:' for Ye "::iﬂiiiuﬂ“] =T G e
(3. 6)
For the case when o) <7 p, = I
By Gy w)) for b<"p= 1w
Sy (u, v, for yj{vizrﬁru:,
Wiy (0w ) =< Sa{u&*’“h FBF“:') for  vs. {:Hgv"ﬂ{”ﬁ“”
Celw,. Vhg i Rafﬂ.ﬁ'ﬁ{u* g g ) ) for “-'-?Lpurﬁm:-{!’{f’-
Ri‘e{?‘!ﬂ'ﬁ-m- t"‘Jﬁ!ll.r[:]:' : for w. iﬂ'{:ﬂﬂﬁ{u
.Salﬁ‘rﬂﬁn}* ﬂﬂ_ﬂ{u} for i.?-:_}i"ﬁ;m
(3. T

» : Plvn,c.y) —piw)
whera ?E:'ng .y 15 dﬁflﬂﬂd b}" = i = e j'}ll -I:.':_:, :I and C i FE £ i, {:-Tf I:.t..'-._, IJE;I':”' H
Egisy =t

"??lr?‘l.[_ dir n EI.“J'.J.:':I:I Cﬂ'ﬂSiEtE ':-.:'.[ ELHtES {H;ﬁﬁt-&, . i:'_r__lﬁ' :-u:. E_:.: S;I:-u*. 'z:lg} a5 bEfDrE alld t-r"__ﬁ ]
varies from P gy 1O v, 83 p, varies from Vu o tO . - Moreover, S:{ﬂﬂpu'}.- t’uﬁ.mﬁ tends
to the same state as S,(u,, »,) does at » = g gy With the same slope there and W, (u

v 13 a smooth curve defined for b <. #<_ -+ oo on which u—~-+ oo as e—b and u-+»— oo
85 9= = oo,

Since Ug, (n —™ U, and Va0 when ¢, —+w., one obtains W,(u, »,) for v,= 2, as
follows

44
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R.(x, ») for b=—v= v, = v,
Solu, ) for v, U= VL
Wilu, v) =0 (v, » Rit;u. 2) ) for thq.‘u}{ﬂ{H. (3. 8)
B, (u. o) - for », < v<v
| &, (u, w) for v=vw

where (4, ») & S,(u, v), (4. v,) € B (u_, v_) . Obviously, (u, ») is the same state on
¢, (%, v, B (u_, v_)) as the starting point for v =1w» .

Now we turn to (u, »,) on W, (u_, »_) for v, = v . For the case when v =T ﬂuig

S lu, v) for w9,
R,(u, #,) for w.=<v=wv
W, (u, v) = -ﬁGg{v'., po Rl v)) for .z:;_‘m < pEL Y, (3. 9
Sy (u, v) for ﬂnﬁmiﬂﬁﬂﬂ,m
| Ry (g ¥r,en) for b-Zev<"vz w

It is easy to find that the W, (u,, ») defind in (3. 9) gives the same curve as in (5.

8) when v, = ¢ . On the other hand, w»g . => v and vy oy = v @s v, p, this implies the

following W, (u, ») for v, = 53;':

S.lu, v for vy, =71
Pt =4|R-a":'ih- ) _fnr - zi_ = <l vy 3. 10)
Oelvre, v Ha(uy, 9] for v =viv.
R,(u, v) for b<—v<_v
For the case when v, = v
(&, (u, v) for w7,
T — (e, “-I!lil . for v < p = v, ail)
Calva, v; Bolu, vy) for pp<_v,
R, (u, 2) for b="wv<"7o
In  summary, (R T — et e by show  that the  family

W (e v) s (,v) EW, w_,v) . b"Twv_ <" 5} is divided into § groups according to b

{'Fli e e I B T = 1, t;'ﬂiﬂlﬂ{;: o r {'!-hii?.;- z:{y.ﬂ?, 1:1}’;\3."]:1‘:{:11 are
expressed in (3. 2), (3.3, 3.5, 3.7, (3 gy, (3. 11) respectively. The boundary

between each couple of neighboring groups, corresponding to », = g, . 0,=0, ¥, = Vs
v, = v, v, =v), v, = ¥, is expressed in (3. 2) for »,=— v, and (3. 4), CROIEY (38R
(3. 10) respectively.

It can be shown, by (H), Propesition (2. 1), (2.2) and the formular in (3. 1) —
(3.11) that the family of curves {W, (i, v) ; (u, v, & W, (u_, v_) } for given
(x_.p_) with —oco<"u< oo (see Figure 3. 1) b<"p_ =& covers the whole domain
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D:{—co ‘f_ u~_+oco, b<"p< -4 oo} univaluedly. Therefore, the existence and
uniqueness of an admissibly weak solution for the problem (1. 1) (1. 2) can be obtained
for any given (u4. v,) € Dand (u_, »_) € D with b< v_ << . Each group of curves in
the above 6 groups covers a subdomain ¢, I}, ¢ =1, ..... 6, slht:-wn in Figure 3. 1, where
we assume v_ > o, for definiteness. We use dotted line for £, flack line for & and dotted-
flack line for C.

For the case when (uy, v,) € G, (corresponding to b <" ¢, =< »," in Figure 3. 1), the
solution containg two waves: either a l-shock and a 2-shock or a l-shock and a 2-
rarefaction wave. denoted by &, — 8, or §, — R, respectively.

For the case when (uy, v,) € &, (corresponding to »,' <_ v, == # in Figure 3. 1) there
are 8§ different kinds of wawve patterns for the solution which are 8§, — R, §,— &,. &,—
S*—R,, §,—8"—pR,—8"*: R,—R,. R,—8,. R,—8*—R,, R,—S—R,—
87% . where 87" denotes the second kind of right hand side contact discontinuity, namely.
oy (v, v) = A, (), §5° denotes the second kind of left hand side contact discontinuity,
namely, o, (v, v) = 4,(z,) .

For the case when Eu:., vr,) & &, (corresponding to # < v, =, v, in Figure 3. 1) there
are o different kinds of wave patterns for the solution which are kB, — R, R, —8,. &, —
AR e — 8Y¥ —R,(By) . R — 5Y— R,— 87" respectively where §3° denotes
the second kind of admissible discontinuity with ¢, = 0 and the right hand side of value v
is greater than v,. §,(B,) denotes the second kind of admissible discontinuity which has
the state :."3',,:15 the left hand side of value, B, = {uf'“,e* "’Eﬁj » Bpe 8,(u, v . o, (B, =
0.

For the case when (e, v,) € &, (corresponding to vy <o, = wv,) the 5 different
wave patterns are the same as abowve.

For the case when (u,, »,) € @, (corresponding to v << u,= #) the different wave
patterns are R, — 8" R, — &8 —§,, R —S*—R, R, — &' —R,— 8" R, — 87" —
SS% — R,, where SS* denotes the first kind of left hand side contact discontinuity with
7y {v. ) =4 (o) .

For the case when (u_, v,.) & G, (corresponding to ’-?f-c:'_fzrl-::__’c::::} the different wawve
patterns are R, — 87 — B, R, — 8" —R,—8,, R,—8°—R,—R,. B,— 8" — R, —
R,—83*., R, —8"—R —R,— 8" —R,. where S°° denotes the first kind of
admissible double contact discontinuity, namely., o, (o, v) = A (o) = 24,(»,) . the same
for 8o %

Case 2 w<Tv_<Tgp,

Similarly as in Case 1. W (u_, »_) is defined as
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S, e ) for bd="wp<"up_
LA N for wv_=<v»= w,

W tu_. v) =< (oo, R G v3)y [or. u=ly=s Yhgtu_v_)
Sy, v for ﬂLFq_j{:viﬂ_ﬁﬁf—.}
e, (R, (-)) for v wa,

et ] Fp

For any (u, v) € W, (u_, v_), W, (u, »,) can be defined similarly as in (3. 2) — (3.
11) respectively according to different », and the family of curves {W, (u, v} (u, #) £
W, (u_, v_) } covers the whole domain D univaluedly (see Figure 3. 2).

For the case when (u,.»,) € G, G, and &, the wave patterns are the same as in
Case 1 respectively. _

For the case when (u,, v.) © G,, the wave patterns arr; 8, — Ry §,— 8, 8, — 8¥
— 8,(B,). 8,— 8Y¥ — R,(B,), 8§, — 8 — R, — §5° which have the same form as in Case
1 if we replace R, by &, there.

For the case when (uy, »,) € G, . there are 10 different wave patterns, 5 of which
are the same as above and the others are R, — R, R, — 8,, R, — 8% — 8,(By) , R, — 8¢
— R,(By), R, — 8¥ — R, — 3%

For the case when (uy, vy) € @5, in addition to the five kinds of wave patterns
shown in the corresponding place in Case 1, there are more patterns as &, — R, &, — 5, &,
—R,—587" 8 —R—8"—R, 8" —R,—R, 8" — R, — 8, 8"—R, —R,— 9",
gt — B —R,—8°—nR,.

Case 3 v, "o = v,

Similarly, W, (u_, »_) is defined as

Biuii sy ) for b'{:ﬂﬂﬂﬂq{_}
R| {Hﬂﬂ{—}i ﬂnﬁ.;_;.j for EJ:}"'EJ_RF.:_}

For any (u, »)) € W, (u_, v_), W,(u, ») can be defined as in (3. 2) — (3. 11)
respectively'"’ and the family of curves {W,(u, »); (u, v,) & W, (u_, »_) } covers the
whole domain [} univaluedly (see Figure 3. 3).

For the case when (u,, v,) € G, @, @,, the wave patterns are the same as in Case
2 respectively.

For the case when (u,. »,) & G,, the wave patterns are § — R, 8, — 8, §,— i
— 5(Bn,. 8§ —8—PR,, 8§ —8—R,— 8 8, —R,—B8" 8, —8F—S8,(B). 5 —
8y — &,, where 55" denotes the second kind of admissible discontinuity with o, = 0 and »,
< Uy
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For the case when (uy, vy) € &;, the wave patterns are in two groups, one of
which are §, — 8§, 8§, — R, §, — R,— 8%, 8, — 85" — R, and another one has 87" — R,
as the first wave instead of &, .

For the case when (u ., ».) € ,, the wave patterns are the same as is the second
group abowve.

Case d o, <v_=<w,

W, u_, v_) is defined as

(R, EHRF{_}, :::-R#.;_,:I for -p}zrﬂﬁ,;_:,
T R for -;:-_-f-'::t:":_::.ﬂﬂﬁt_;.
W g oo =< Bilul o) for p,~~v=v_
: Cilvp v_: B,(-)) for T =0t
Holus e ) for b<"v<"vp (-

similarly. H"E{u.,_u,} can. be defined and the family of curves {WE.{H.J v () e
W, (.. v.) } covers the whole domain D univaluedly. (v ) =v. Whenv_ =wv.) (see
Figure 3. 4, where the family {W,(u, »): (u, v,) € W, (u_, v_) } is divided “into 6
groups according to b<Co, o, v <o, vyv, = v.. v, <y, = v v, = 7. v
=7 and covers G, Gy ..o (7, respectively. )

For (u,,vy.) €&, the ﬁfav& Ipattr:ms are the same as in Case 3. For
(.. wy) € G,. the wave patterns are B, — 8. R,— S — R, R, — gt — 8, R — o
— 8" — R, B, — 85" — §%* — R,— $%° and anaother group is with &, as the first wave
instead of B, — 8%,

For (x4, v,) € &,. the wave patterns are in two groups, one of which contains &, —
Sp 8, — 8" —8,(B), 8§ —8"—R, 8, —R, 8 —R,— 8:%, another group has E, as
the first wave instead of 5, .

For (u,, vy) € G,, the wave patterns can be also divided into two groups. One
group is §,— 8, §, — R, 8,— R,— 85" 8, — 85" — 8,(B,) . 8, — 87 — &, . Another has
87" — R, as the first two waves instead of &, .

For (u,, v,) € G, the wave patterns are ek __p — &, 85" — R — R, Faiie it
R,— &L, 8" — R — 5" —R,. '

For (u,,w».) € G,, the wave patterns are the same as in G except the last one is
S — R, —R,— 85" —R,.

Case & », <o _<up

W, (u_. #_) is defined as
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rRl{u_, ) . for wp=w_

A Sy for wva, (- i T
Witu_, v) = 4B Gingyn vay ) for vy v <"vn,

C, (v, Vigi—n Ro(Rg,)) for !f‘Lu{srll,-:—mii"ﬂ'zj

[Ty lu_, w_) for b<To<Twvp m,—u

Similarly, W, (u, »,) can be defined and the family of curves {W,(u, v,); (4, »)) &
W, (u_, v_) } covers the whole domain I* univaluedly (see Figure 3. 5).

For (u,. vy) € &, and &, , the wave patterns are the same as in Case 4 respectively
except 7% — R, — 8% is the head instead of R-l--S'i"" in one of the groups for (7,. For
(by. vy) € &,, the wave patterns are the same as in the corresponding Case 4 but the
first wave is 8" — R, or §, in the two groups instead of R, or &, respectively. For
(¥y. vy) € G,. the wave patterns are the same as in Case 4 too, but the first wave is 8,
or B, in the two groups instead of &, or 8* — R, . For (u,, v,) € ¢, or &,, the wave
patterns are the same as in Case 4 respectively, except the first wave is K, instead of S
i ' |

Case B ov_ 17

W, (u_, »_) is defined as

= (By(u_, v_) for. s =wv_
Slu_, v_) for wa, e et e I
W tu_, v_) =R, fﬂﬂﬁ,,_], vﬁﬁ,;_]} for t:_ﬂiv{vnﬁ{_;
Cilvg vay—: Ri(By()))  for Vo) V=P
| F (e, vl for b"w-Twy

The others can be discussed similarly as before. We end up with
Theorem 3. 1 For any gm,-ﬁ'm (w_, »_) & D, Ry, vyl & D, there ensts a unique
admissible similarity weak solubion of the Riemann prodlem (1. 1) and (1. 2).

{ %) G,=ac" |Ja® corresponding to ») < 0= vm, and :mj,r_—;ﬂv.ﬂ;
respectively. W,(u, ») can be defined as in (3. 7) for v, < v, < vy ., . However,

W,(x, v is defined as follows for Vg, (= = =uv.

L

8y (up ) for v=>w,

Rty ) for .= p=p

Ir—:r'a; f!-?'.... TJI: Rgfl}} f'L'-'T I"Lﬂl;—:l ‘:-:.'E:'{ui i
Wt{:'up T:'l:l == I::El T:I

P P Y for wp = o= w0

&y fﬂﬂu-u:-r T’sgu]} for Fﬂﬂcl‘;-f; H’{!-‘aﬂr_:]

-H't I::-‘HHI;-:J.;-- ?"H_n_u]} for b= v ‘f:i:'ﬂu (L

53



P{v)

L

I

I

|

I 5 ﬁ'-':-"c-" 2]

!

|

i

| -
|

|r 'r:llt"ﬁ-*""u '
: 51[['-'-:--':-13}
b

51[["-:»"'-:-:']]

i i)

o4

T e — — — — R S e e e

L=

f # :R Hl-
R ; I r\fl_",—""‘
1 ] ’funr“ }
Kegumy o




v
| | ! ' f
J | | | | I I | | I I
S S L oyl g
B s
I | | . a .
J rﬁl.l‘r'f—] =|r I HHESE{E_P\.‘_}EJF : | : l.r :
| By | & ] | = .,'l'.'ﬁ y- .t
F : r : 1 | & -| H: i £ "l'ﬂ':'"'x":lﬂ
| b
| r | | | 3 Gl !
| i | s | T lF E‘%IN"
| | By | I ol
| e E ) y) i ! | l 5=|r \
| LIS | | fay Cuav-Ygl | PReg BalCu_,v_iz)
| ! Ir | ngted ' / Jl R | :
| El““-J'l'—Ilj AT (f ) | I |
[] F 2 Lk L 1}
i | | T : e
Tuh W=y L Yy l . 5
f ref 'I"i "p'h/'l--; L Lt we
sgllu, v gl

Fig.2.4a Fig.2.4b
the cases: b<p <7 §<v_<§ the case: < v_ < ¥, Vy = ¥_ "= v,
Rz = H;{'E_{ﬂ-ivn ﬂ;ﬁ_g;.v.—.'ﬁ:;

waw,

Fig.3.1
55




.rr-.l

PRy

—_—

;.rrf!.....-...-..q.ma......

= Te

u._.__:_..

_"._..r”'ﬂm ...Nﬂ

&

3 i .m_-f

i) 5 iy

L ....__l_u"_ ._._.r
.nqn__.____

Uﬁ.“' _“.._.

a e et

=
L -
1, e
e _n.1.1. ;
|.n-| -n.
I-.l1 -.
s hed
s
L
v
!
:
srrdae., |
= v
e e

(i=1mEite

Fivn -.n_l....
-JIII-.I n-.i.
Fu,k .
....._.1- ..._.u._.._.mh. i

(2'n)E, o
.-._,.-....-.r _“-m._..n.m._._.“_

I-JPI-IL-I ﬁb1
J..r..: LR e U T “_

-...lu_._..wruﬂ ..-n1.
_“......-.-u._HNE a" -

E o B 5
.-... _"h-____.-._ __.HL_.“.....“._._.-....
P =T e
r= K e ¥ ey
AhE "k ............f.....-f e A/r > -

'
oy " A

B I.-lI-IlII.-I
|.I-
H.“.n_m H.”_..lF_..-Mrnl.-.wm.ﬁ_

56



_".nuﬁmmlhmpudu (= “_.n_qh__,..
T




C1]
(2)
(3]
(4
05
6
&3]

L8]

o8

References

Fattori H., The Riemann problem for a van der Waals fluid with entropy rate
admissibility criterion— Isothermal case, Arch. Rational Mech, Anal. {to appear)

Hsiao L. and de Mottoni P., Quasilinear hyperbolic system of conservation laws
with parabolic d:géﬁerac},’. {to appear)

Hsiao L. and de Mottoni P., Existence and uniqueness of Riemann problem for
nonlinear syster of conservation laws of mixed t¥pe. (to appear)
James R. D., The propagation of phase boundaries in elastic bars. Arch. Rational Mech.
Anal, , 73(1980), 125-—158,

Keyfitz B. L., The Riemann problem for nonmonotone stress-strain functions: A
"Hysteresis® approach. (to appear)
Shearer M. , The Riemann problem for a class of conservation laws of mixed type, J.
Diff. BEqus., 43 (1982), 426 — 443,
Slemrod M., Admissibility criteria for propagating phase boundaries in a van der
Waals fluid, 4rch. Rational Mech. Anal. , 81 (1983), 301 —315.
Temple B., Globa! sclutions n.t‘ the Cauchy problem for a class of 2 % 2 nonstrictly
hyperbolic conservation _iawa, Advances i Applicd Math. , 3(1982), 335—375.



