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1. Introduction

During the last decade, much has been done in the study of singularity propagation
for nonlinear partial differential equations, which has already been introduced in [1] and
[6]. However, one has not seen much work on the reflection of singularities at boundary
before. In 1979, M. Reed & J. Berning (8] proved that the singularities still propagate
along the characteristic curves after reflection at the boundary for semilinear wave
equations in one-dimensional case. For the multi-dimensional case, there have been a lot of
work lately, such as that done by G. Métivier [6), M. Beals & G. Métivier [2] and M.
Sablé-Tougeron [97, who use the tools of pseudodifferential and paradifferential cperators
in conormal distributions. Newvertheless, one has not seen any work done by classical
methods in piecewise smooth solutions up till now, while to solve this problem is of egual
importance,

On the other hand, J. Rauch & M. Reed [7] proved the following result about the
singularity propagation of the solution to the Cauchy problem for semilinear hyperbolic
systems by classical methods:

Given a symmetric strictly hyperbolic system

Ju(t, @ + D4, 0, ult. 2 +BE Dult 2)

i=1

= (Pu) {t. z)
= Flt il oy z e 4 (. 1
where £ = (z, =, ..... ) = (z,, ') ; P is the partial differential operator representing

the first line of the equations; Ajs are 2 X 2 symmetric matrices, B is a 232 matrix, u
e o O AL ) A; (t, )'s and B (£, z)} are smooth enough., f(u:é z) is smooth encugh with
respect to its arguments; A.s, B and f are all constants outside a compact set with respect

to (¢ z) . If the initial data are piecewise smooth with a jump discontinuity across an (r
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— 1) -dimensional hypersurface ¢, then there is a unigue local piecewise smeoth solution
to the Cauchy problem of (l1.1), whose singularities propagate along the two
characteristic hypersurfaces issuing from o . After that, Chen Shuxing proved the same
result in the 33 case in (5).

Itx this paper, one has proved the foliowing main theorems: -

Theorem. For LIJ; J and a boundary mn:im:

Mu|z5=10 1.2} \
where M € C(3%2: Hom RY , the /
bovndary 392 of the region 12 is reguler, f¢=ﬂ

(1. 2) s a stably admissible boundary
condition (cf. C111, C123), [0, T %
L is noncheracteristio Sor smmall T . If in
t=_0, fhere i3 a piccewise smooth solufion
to (1.1) and (1. 2) whose singudarities
propagaie along a characteristic
hypersur face Zaﬂﬂwe Ezﬂ' =0} : Fig. 1

intersects with the boundary 352 X 00, 77 at en (n— 1) -dimensional hypersurfaoce o and is
reflected into another characteristic hypersurface El; then in £ =0, there is still o local

Fecerunse simooth solulion whosze singularities propegate along Z : | E: . Furthermore, the order

of the singularities is maintained ajter the reflection.
In our paper, we will first simplify the problem in section E,.Ell'lﬂ then we will

estimate the jumps across the characteristic hypersurface E.. The proof of the main

theorem will be given in section 4 and the order of the singularities will be discussed in
section 5. i
2. Simplification

Thanks to the regularity of the boundary, we can flatten it locally by a
transformation of the independent variables. So we suppose the boundary to be {z, =0}
and 0 to be the crigin, as shown in Fig. 1. We suppose further ihat E: is above 5_-:1
where E‘ (2 == 1, 2) iz the chzracteristic hrpersurfaces corresponding to the eigenvalues
A (=1, 2) , that is to say. A,<70<TJ.,. First. we must solve the problem in I =
{ & =) [t =0, ¢t z) iz below EE} :

Dienote o, to be the {(n— 1) -dimensional hypersurface at which Zz intersects with

the initial plane. o, is téngent to the boundary at ¢ . The solution is known in the region
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@ between ¢, and the boundary on the initial plane thanks to the given condition, as
shown in Fig. 3. We continue the solution in £ into a neighbourhood B of ¢ smoothly and
then get a local solution ¥ near @ by solving an initial-boundary value problem in [0, 4
o0) % B Cef. C41). As 7 is in fact in the determinate region of & for the initial-boundary
value problem (1. 1) and (1. 2), the value of u in I is the very solution in [ to the
problermn we consider, that is to say ¥ |, = u|,. While using the results in (4], we must
see that we do not need the restriction on fufor ¢ = 0, because we have aire_ad:,f known
ffuzt, x) fort="0.

L,

Fig. 2 Fig. 3

Let Z:L to be the characteristic hypersurface issuing upward from o, corrcsmndingﬁ

toA,. we can get u in the region lIl= { { z) |t =0, (& ) is below 2.} by solving a

Cauchy problem.
Up till now, we have got the solution in the regicn { (¢ =z 1t=0, (¢ =z} is below

—

El}except for a part region Il = { (t, z) is above EE and El* below El} For
further discussion, we first introduce a transformation of the independent variables.

Lemma 2.1 For fwo kypersurfaces m, and 7, in the half space {x, =0}, if =, and m,
intersect with the boundary § = {z, =0} af the same (n— 1) -dimensional hypersurface o and
T, Wy B are transversal lo each other; then there exists a local i-ij’j’mmar;ﬁzism whick transforms
the half space into self and fransforms 7, w, tnto (¢ =mge,} . {¢= max | respectively, the
origin being fized, where my and my are two different real sumbers.

Proof First. we transform o into an (n-— 1) -dimensicnal plane { (¢, | t=0, &, =
(1}

For the transversality of =, and =, with the boundary, Wwe can cXpress them as
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D |t=g@ ) G=1 2 respectively. It is obvious that

g (0 sy =0 v=21, 2 (2200
a & r
(a—mlg.){f}. ) == (igg){[}. ) (22

For any point P near O, there exists two real numbers ¢, ¢, such that P € { (¢, 2) |¢
=002 2 e} [N {2 [t =g,(x, 2') +¢,) . So we can define two functions ¢,

and ¢, such IF"ﬂE @ (P) =¢; =1, 2). We can see that g, are ¢ -smooth functions and

that
w;(t, 0, ') =t 1=1], 2 (2. 3)
7 t=mx,
(t=9,(x))
K
s
0 x, 0 oF
2z
R.I
(1=g,(0)
t=h,xX,
Fig. 4 -

Therefore, we define a transformation T

x o 2. 8
T =z
o
From (2. 3), ;.= 1, a—%iu D (i=12;=2 3, ..... m) .
For @, ==const. in =, (i = 1. 2) , w= have
Ei*-.:ﬂl ap; dt 35& Er
S et L =0. (¢t 2) E @
Hence,
S O ot 2 =0
E.‘rl E]:l',
a@; Jt 35’
Lt R, 2L i S 2.5
dx, |, dx, |4 ':EI o ( !
Therefare,
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T 3 2
a'—ﬁ:ﬁ=mja;’r? u—mx%=m,—mi (2. B)
LA ety I (2. 7)
T m‘E (0, M +m*3 l{[} 0}
L s E i R e (2. 8)
iy
az, _ 2. 9)
T 0 ':
ﬁt 99, = 35’* 2. 10)
3z azlm 0) IZEI 0
B (2. 11)
; Eij
So the Jacobian of .thn transformation is
- 99, 3¢, ) 12
J|o= (m, — miy) (Ei'.rlm’ 0y — A Eﬂ 0y =0 (2.12)

which verifies that (2. 4) is a local diffeomorphism in a neighbourhood of the origin.
From (2. 2. we let

i 0. 0y _Eit{ﬂl 0) =0 (2. 13)
Z; ax
witl?::uut loss of generality, hence
dx
e 2. 14)
da; ﬂ} 0 (

From the above reasoning, we have prow~1 that the half space {z,=0} is still
changed into the half space {z,—=0} and =, (i =1, 2) are changed into {7 = %, ) (6
=], 2). - t 1

Using Lemma 2.1, we change Z. and El
into {x, =¢} and {x = —¢} respectively. As the
problem (1. 1) and

{le, andey w|ccs i)

are known

(2. 10)

the solution can be obtained; the solution in I can

be obtained, for the existence region of the former
is dependent only upon the equation itself, the
value of ¥ on Et and . When = is sufficiently
small, the existence region is independent of v and
so contains the point @ . While the existence of the
solution to the problem (1. 1) & (2. 15) can be

deduced from the resulis in (7.
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For further simplification, we change 4, in (1. 1) into a diagonal matrix through a
linear transformation of the dependent variables :
A=A =diag (1, (t =z, A (6 ) (2. 16)
According to the discussion in section 2 of Chap. IV in [10), the admissible boundary
condition (1. 2) is in fact
#, (80 " =a, & ), 0, z°) (2. 17)
while the stable admissibility require
Aal4 A<D (2. 18)
Finally, we suppose the function f to be bounded. In fact, there is a suificiently small
neighbourhood of @ . jn which u is sufficiently small and so f iz bounded, as we only

consider the local behaviour of the solution. We suppose that f

by - s {] i
3. Estimate of Jumps

To get the a priori estimate of the solution, we must estimate the jumps of the

solution across the characteristic hypersurface 21 - Afier that, we can get the estimates
of all the derivatives of the solution u on Z: and then get the estimates of those on
D
S
Lemma 3.1 Al the jumps {37u} 5, of the piecewise smooth solution to the problem (1. 1)
& (1. 2) scross Z, can be estimated by the Jumps of wself across Et and the derivatives of u

ol El cwhere p =01, .....

Proof Denote

Ji = {3fu} ., (3. 1)
J* = {(3fu} ;. | (3. 2)
From the Transport Equations in[8), we have

Jy== (3. 3)

=¥ 1
(.J'I, + b, + ﬁ-a—;)J;‘ = g {3'F (u) }I_.‘ + e ET;""J‘ el (1 — ey (3. 4)

F B

M

I = w b + > ipw g (92

i =)

where b, is a scalar function, ,is a vector function, 7' and 7, are first-order differential
operators tangential to El ; and
X;=3,4+ 243, (=1 2) (3. 6)

(r. gy = (z, %)
e (z) =diag(l, O v ea A |
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If we know the value of Jlat {t =10, z — 0} . we can solve the Cauchy problem of
the ordinary differential equation (3. 4) to obtain J], while the former can be obtained
as follows: :

For the same reason as (3. 3). we have also
'{ul}f} =0

Because u is piecewise smooth,

E ‘{”u}_ﬂ, =25

e
= {ﬂllu—ﬂ}:—ﬂ
=a,(0, ¥ {u.]._a}.ms
2
=|!I1|:D, Elr} E{ul}i-‘l-li—ﬂ

i f
S0, 8t (=0 2= 0]}
Ji= {u}z |-me
=a, (0, y}{uz}rtlt-«-ﬂ
i8 known. Hence we have estimated J° on E, :

From (3. 5) we get.J;.
For the piecewise-smoothness of u |

z {Eiﬂ:}ﬂjlt—ﬁ

e {aiul r;—n}r-u

= {arﬂ]) {ﬂ, E"} {ﬂglf_g};_u"‘l"ﬂl{ﬂl 3}']' {agualx—ﬂ}t—ﬁ

z
= (da,) (0, ¥) E{ua}x_rl:-n

j—:l
-3
+ a, (0, ¥ E {a‘ut}rfl’-“
Jm]
Henee,
]
== {arﬂl}ﬂ.lr—ﬂ

] )
= @) (0, ) D> {y)p |emat 0,0 9 > {30) 5 1o

: FE j-H-l
— {axuj}z.'il.:—u
which is known. So we can solve J' by 3. £ and (3. 5.

Repeating the above steps, we can get all the jumps J*.



4. Proof of the Main Theorem

bBar convenience, we define a norm for piecewise smooth functions:

el = E SUp | &% |

lal=ttr per*tin ez, Uy

t4. 1)
Ii'fl utiffff == 50 sup |3 |

lor| =k 7. g3 Eﬂ‘ﬁtrznlh:

where u® (z, y) = wu (g, B Y o G ¥) =Ax,iz) .

Lemma 4. 1

value of u din the region IV can be comtrolled by the initial dain

Il < gucll o= Jf,) 4. 2)
where v, is a positive inleger related to ko .
Proof Seeing (2, 18) we write the system (1. 1) as
Xty + ZH;J,.EH-!—T{AJ},:J,H:JPL (4. 3)
i=—z demz
iﬂﬁ—E{A}“azx D M=, (4. 4
S Fum
Then we make an energy integral over v, : t
J. (4. 3bu, 4+ (4. 4y, Zr{-r“ﬂ'
w:-
- and by Green' s formula we have
-1 : g
Jlr;ffﬂf‘r}f:? == f %fﬂ-,uH Aegtiz) ;,
l 2 2 : —
2\~ et + R aut ) ~x
fﬂ': Fig. 6
+(J- L{ VoguiA (4, et Az p
=Sie et L JEuL P a&zl:- =il e} )
L
=
e ._JI."I.' ( lJl:.l—'_uEfg_'_ Ifar..-‘ l:l z-l: _j_ fﬂ -l'-'g:] '%’ug
s
L b - . =,
+ 2} 3 l=:""I:;'::Iltﬂi"! +3 |:.."'1_}13_1£:+|5 I:q'fjjiauluj)) {'::Il"'-:':l
oz

AS we only consider local solutions,

Téspect to ¥ . So ( J- = r‘ ) =0 . when ¥ iz sufficiently large. From the admissible
r=Y

o o —— )

We suppose that » has compact support with

boundary condition,

= f %ml-ﬂf el J. %{j.lfef—}—ﬂ.gilz:;:i

Ty

G

Ifu is a plecewise smooth sotution to the problem ¢1.1) & (1. 2). then the




According to the results of J. Rauch & M. Reed in (7], the values of u on E: can be
controlled by the initial data and by Lemma 3. 1, the jumps of z across »,  can also be
controlled by the initial data. So, the values of u on | |+: can be controlled by the initial

s 0

data. Then, from (4. 5, we have

| et e [t +adien,) . 6
‘G :"'ﬂ
By Gronwall’ 5 Inequality we get
| @itu <gidie by 4.7
Ta

We will then estimate the derivatives of » . Because the boundary {z =1} is
noncharacteristic, the operator P can be continued (cf. [12]). S0, there exists a complete
system of tangential operators {0} (p=0,1, ..., M), such that

(P, D) =PD,—D.P

A
= >t w WD, .t 7 NP (4. 8)

p=1
where D, =14 .

Dencting u = (Dx". Daut, ... Dyu™) T, we get an enlarged system of # :
1 |

M
p(Du) =— S p2 (D) + (D,—q)F C(o=0, 1, c. M) (4. 9

i = )

The continued boundary condition corresponding to it is

ﬂl':!"t::# O s x) E 38 (d. 10}

e,
MDu=10 on a2 (411

and
MDDy 4+ (DM (Da =1, an a0 (d- 12D

Using the notation in section 2, this becomes
w, (6 0 ¥ =a 0 u. & 0, 1) (4. 117
and :

(Daud ¢ 0, ) =a, & ¢ (Du) @ 0,
-+ (Doap & wru, & 0, 3 (4. 12°)

Replacing D, with ¢ » D, and seeing (4. 11') e (4. 125y, we find the summation

M )

Z E‘j';' {u‘;} ! {where u = L) to be

prmil jemi
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kg
gy 20wl 30 (O, o+ (Doa) up P A, () % (4. 13

=l
which is positively definite when & is sufficiently small. Therefore, (4. 10) is still an
admissible boundary condition.

Ag wc-havc done in (4. 5), we make an energy integral with respect to the enlarged
system (4. 8) and then get an estimate of the tangential derivatives of % . Because X , and
Xy are all transversal to the boundary, we can get the estimate of the normal derivative |
by (4. 3)and (4. 4). Hence, we have

3 j %= 5l v |

fo | =4

b= (4. 14)

Appl;vir_]g the above steps inductively we have in general

3| Il <. e iz . 15)
fal=m It
According to Sobolev' s Imbedding Theorem, we verify (4. 2).

Define two difference operators FERSI

: - he ;) — . y—h :
{LJJ:I“:] & =z E.l'_} L E{AJ-:I : :.I' (B _I?.ll'_‘ hﬂ'}} wo{t a ¥ _'_E;._i}_ ¢d, JE}

=g 2k
- (f he,) —ut, =, yw—he,)
(L2wy (2. z i) =§ E“Ij}1|ﬂ x, ¥+ fRe, E.&u : Y 2 n
Lemma 4. 2 Iru* = uy) satisfics
(X, - E ':f‘lj-:] i t‘:?rl,::l Hﬁl - Lf”u"; = f, i P e, (4. 18)
i==12
(ot 3 APy @, )i+ LPY = £, &, o p) ¢d. 19)
; A EE ]
2| e =u ey = 0" (d. 20)
and the boundary condition (2. 17); then u* can be controfied by the initial data wniformdy, i. e.
It e < gu ) 22 1, (4. 21)

where ¢, i3 inde pendent i 2 i
Proof All the steps of the proof of this lemma repeat that of Lemma 4. 1 except
for two points:
1° Fori=1,2; L®» 4 (L) * is bounded linear operators,
2° For the estimate of the jumps, the tangential differential operators in the
Transport Equations will be replaced by the corresponding difference operators, |
while, in fact, the latter can be controlled by the former uniformls.
The justification of these two points is not difficult.
Proof of the Main Theorem Considering the initial-boundary wvalue problemy (4.
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18, 4. 19, 4. 200 and (2. 17). we can prove the existence of the solution u" by
:intcgraﬁcan over characteristic curves and by the contraction mapping principle. By Lemma
4. 2, " is uniformly bounded with respect to h . According te Arzela-Ascoli's theorem,

:there exists a subsequence {u* )", which converges to a function u in C*. That is the very

golution.
5. Orders of the Singula;ities

Finally, we give the proof of the later part of the main theorem.

For k = {0, we have already in section 3 that :
Sl

{u)s, =0, i%£ 5
.‘""5 u is piecewise smooth,
{ﬂl}ﬂtlfr-ﬂ:.. L e {”1}ztlz-u
= {8t]:motimo
= a, ({ua} 5, + {2}z lamo=0 5. 2)

Hence, {u}y =0, 1. uE C".
For k= 0, we prove it by contradiction. Suppose that there existed an index a,( | a,l

= 5t <= k) such that
(@} s 20 )

while for any 8 ¢| g <m)
{9%u)p, =0 (5. 4)

We make any one of the tangential derivatives ¢ of Z}L act on the two sides of (5.

4), getting

{ﬁaﬁu}rl =0 (5 B)
and make 3% act on the two sides of (4. 4), getting
(8%}, =0, ¥ a(|a| =m) (5. 6)
S0,
{8%utp |ams

= ‘IL":'!#"THl:-u}.!mu“' {au"'ﬁl}rllx-—n
= dadlen, |y

— ﬂl. I:'S:-aﬂ-nui}l'Ll.r-ﬂl]_F {'Z-:]'”"'i'f-.a}sfi‘_““:! —|_ aree
=0 (5. 7}

By the Transport Equations in 77,
: {@%u }p =0 (3 E.:I
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Summing (5. 6) and (5. 8) up, we have

(9%u) =0

which is a contradiction.

£5]

C73

£al

™
L
L

L1037

C113

£123

i)
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