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Abstract. Image fusion is an imaging technique to visualize information from mul-
tiple imaging sources in one single image, which is widely used in remote sensing,
medical imaging etc. In this work, we study two variational approaches to image
fusion which are closely related to the standard TV-L2 and TV-L1 image approxi-
mation methods. We investigate their convex optimization formulations, under the
perspective of primal and dual, and propose their associated new image decomposi-
tion models. In addition, we consider the TV-L1 based image fusion approach and
study the specified problem of fusing two discrete-constrained images f1(x) ∈ L1

and f2(x) ∈ L2, where L1 and L2 are the sets of linearly-ordered discrete values.
We prove that the TV-L1 based image fusion actually gives rise to the exact convex
relaxation to the corresponding nonconvex image fusion constrained by the discrete-
valued set u(x) ∈ L1 ∪ L2. This extends the results for the global optimization of
the discrete-constrained TV-L1 image approximation [8, 36] to the case of image
fusion. As a big numerical advantage of the two proposed dual models, we show
both of them directly lead to new fast and reliable algorithms, based on modern
convex optimization techniques. Experiments with medical images, remote sensing
images and multi-focus images visibly show the qualitative differences between the
two studied variational models of image fusion. We also apply the new variational
approaches to fusing 3D medical images.
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1. Introduction

Image fusion technologies have been developed to be an effective way to show

different image information, acquired through various sources, in one single image.

This is interesting in many areas, e.g. remote sensing [12, 30], medical imaging [28,

32] and synthesis of multi-focused images [19, 29]. More specifically, given two or

more imaging data which are from different information sources and properly aligned,

image fusion integrates all such data into one visualized image, mostly with higher

spatial or spectral resolution. For example, two images may capture the same scene

but with different focuses (see the left two images of Fig. 1), fusing these two images

clearly gives a better visual result (see the right two fused images of Fig. 1). In remote

sensing and satellite imaging, the fused image, which is merged from multispectral

data, effectively carries much more visual information than any single image [27, 30].

In medical imaging, both Magnetic Resonance (MR) and Computed Tomography (CT)

imaging are standard diagnostic tools providing complementary information. It is well-

known that a CT scan will adequately highlight the bone structure details while soft

tissue information is not clearly visible; on the other hand, a T2 weighted MR scan

produces significantly better details for images of soft tissues. In this respect, it is highly

desirable to have a combined view of CT and MR images, which illustrates significant

details both from both CT and MR inputs and assists clinical diagnoses.

(a) (b) (c) (d)

Figure 1: Multi-focus image fusion: (a) and (b) give two images exposed with different focuses; (c) and
(d) are the fused image computed by the proposed methods (2.1) and (2.3) in this work.

Parallel to the recent developments in image processing, many pixelwise image fu-

sion methods have been proposed to tackle the issues of combining multiple images

or informative data, e.g. the wavelet or contourlet based approaches [21, 23, 32],

high-pass filtering method [1, 27] etc. In this paper, we concentrate on the variational

approaches to image fusion, which were explored in [17,24,29]. Energy minimization

and variational methods have been developed to be a standard way to effectively and

reliably handle many practical topics of image processing and computer vision. Suc-

cessful applications include image denoising and restoration [9, 22, 26, 31, 36], image

decomposition [2, 20, 33] and image segmentation [9, 10, 34, 35] etc. With respect to

this, the total-variational based image fusion methods [17, 29] provide an elegant ap-
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proach in theory for the tradeoff between redundant imagery information and image

priors. In this paper, we propose the novel convex optimization approaches to the vari-

ational models under the novel duality-based perspective. We consider, in particular,

the exactness of the reduced convex relaxation model to the nonconvex TV-L1 based

image fusion with the pixelwise constraint of discrete values. We show that the pro-

posed dual models directly lead to new fast and reliable algorithms in numerics, which

can be easily implemented and sped up by the modern parallel computing platforms,

e.g. GPU.

1.1. Contributions

We summarize our contributions as follows:

• We study the convex optimization model of image fusion based on standard tech-

nique of TV-L2 image approximation and extend it to the TV-L1 based image

fusion model. We propose their novel equivalent convex formulations under the

perspective of primal and dual. We show the studied image fusion models actu-

ally result in two new image decompositions of the weighted input image, with

the help of the proposed new dual formulations.

• In addition, we prove the TV-L1 based image fusion method actually gives an

exact convex relaxation model to the corresponding image fusion problem con-

strained by a linearly-ordered discrete-value set to each pixel, i.e. it solves such

nonconvex image fusion problem globally and exactly. This result properly ex-

tends the convex relaxation models of TV-L1 image approximation, proposed by

Chan et al. [8] and Yuan et al. [36], to the application of TV-L1 based image

fusion.

On the other hand, direct and global solvers to such discrete-constrained image

fusion, especially over a large number of linearly-ordered discrete values in med-

ical imaging, definitely result in a high memory and computation load and make

them inapplicable in practice, e.g. graph-cuts method [5,16] and the continuous

min-cut method [3]. To this end, the convex relaxation approach proposed in

this work leads to a much more efficient and reliable way to tackle the studied

discrete-constrained optimization problem, with a much lower memory load.

• We also derive fast multiplier-based algorithms to the two studied image fusion

methods directly through the proposed dual formulations. In numerics, the algo-

rithms avoid nonsmoothness of the energy functions and lead to simple and effi-

cient numerical implementations. We demonstrate their numerical performances

with both CPU and GPU.

2. Convex optimization models

Given two input images f1(x) and f2(x), a total-variation based method for image

fusion was proposed by Wang et al. [29] such that
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min
u∈BV (Ω)

1

2

∫

Ω
w1 (u− f1)

2 dx +
1

2

∫

Ω
w2 (u− f2)

2 dx + α

∫

Ω
|∇u| dx, (2.1)

where the functions ω1(x) and ω2(x) are the pixelwise weight functions such that

ω1(x) + ω2(x) = 1, ω1,2(x) ≥ 0; ∀x ∈ Ω. (2.2)

In this work, we extend (2.1) to the convex optimization model with the L1-normed

data fidelity term:

min
u

∫

Ω
w1 |u− f1| dx +

∫

Ω
w2 |u− f2| dx + α

∫

Ω
|∇u| dx. (2.3)

A similar formulation to (2.3) was also studied in [17] where the weight functions are

given as constants.

Clearly, both models (2.1) and (2.3) formulate the integration of two input images

as the problem of convex optimization which can be generalized as follows

min
u

∫

Ω
w1D1(f1 − u) dx +

∫

Ω
w2D2(f2 − u) dx + α

∫

Ω
|∇u| dx, (2.4)

where D1(·) and D2(·) are positive convex functions. In this work, we call (2.4), along

with (2.1) and (2.3), the primal model.

In the following parts, we investigate (2.4) under the perspective of primal and

dual and build up its connections to variational image decomposition.

2.1. Equivalent convex formulations

Let D∗
1(q) and D∗

2(q) be the respective conjugate of the convex function D1(v) and

D2(v) such that

D1(v) = max
q1

{vq1 −D∗
1(q1)} , D2(v) = max

q2
{vq2 −D∗

2(q2)} . (2.5)

For the model (2.1) where the functions D1 and D2 are in quadratic forms, i.e. D1(v) =
D2(v) = v2/2, we have

D∗
1(q) = D∗

2(q) =
1

2
q2. (2.6)

For the problem (2.3) where both D1 and D2 are absolute functions, i.e. D1(v) =
D2(v) = |v| , we have

D∗
1(q) = D∗

2(q) = Iδ(q ∈ [−1, 1]), (2.7)

where Iδ(q ∈ [−1, 1]) is the characteristic function of the convex set q ∈ [−1, 1].
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We also recall that the dual formulation of the total-variation function [15]

α

∫

Ω
|∇u| dx = max

p∈Cα

∫

Ω
udiv p dx, (2.8)

where Cα is a convex set defined by

Cα := {p | p ∈ C1
c (Ω,R

2), |p(x)| ≤ α, ∀x ∈ Ω}. (2.9)

By simple computation, in view of (2.5) and (2.8), the generalized problem (2.4)

can be equally rewritten as

min
u

max
q1,q2

max
p∈Cα

∫

Ω
w1 (q1f1 −D∗

1(q1)) dx +

∫

Ω
w2 (q2f2 −D∗

2(q2)) dx

+ 〈div p− (w1q1 + w2q2), u〉 . (2.10)

In this paper, we call (2.10) the equivalent primal-dual model of (2.4).

Observe that u is unconstrained and the convex formulation (2.10) suffices the

minimax theorem [13,14] for our cases (2.1) and (2.3) in this study, the min and max

operators of (2.10) are interchangeable. The minimization of (2.10) over u, therefore,

leads to the linear equality

w1q1 + w2q2 = div p, (2.11)

and the corresponding linear-equality constrained maximization problem:

max
q1,q2

max
p∈Cα

∫

Ω
w1 (q1f1 −D∗

1(q1)) dx +

∫

Ω
w2 (q2f2 −D∗

2(q2)) dx

s.t. w1q1 + w2q2 = div p. (2.12)

Similarly, we call (2.12) the equivalent dual model of (2.4).

2.2. Variational image decompositions

With the help of the conjugates (2.5), we will see that the optimum of the gener-

alized image fusion model (2.4) actually proposes the decomposition of the weighted

input image f(x) := (w1 f1 +w2 f2)(x), ∀x ∈ Ω, such that

Proposition 2.1. Given the optimal primal-dual pair (q∗1 , q
∗
2 , p

∗, u∗) to the primal-dual

model (2.10), (q∗1, q
∗
2 , p

∗, u∗) just gives rise to the decomposition of the weighted input

image (w1f1 + w2f2)(x), ∀x ∈ Ω, as follows

f ( := w1f1 + w2f2) = u∗ + v∗, (2.13)

where

v∗ = w1v
∗
1 +w2v

∗
2 , v∗1 ∈ ∂D1(q

∗
1), v∗2 ∈ ∂D2(q

∗
2).
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Proof. Observe the conjugate formulations (2.5), we have

f1 − u∗ = v∗1 ∈ ∂D1(q
∗
1), f2 − u∗ = v∗2 ∈ ∂D2(q

∗
2).

Recall that w1(x) + w2(x) = 1 for ∀x ∈ Ω, then we have

w1v
∗
1 + w2v

∗
2 = w1(f1 − u∗) + w2(f2 − u∗) = (w1f1 + w2f2)− u∗.

Then (2.13) simply follows. �

2.2.1. Image decomposition by TV-L2 image fusion (2.1)

Consider the conjugates (2.6) and Proposition 2.1, the TV-L2 based image fusion prob-

lem (2.1) results in the following image decomposition:

Corollary 2.1. Given the optimal prima-dual pair (q∗1 , q
∗
2, p

∗, u∗) to the equivalent primal-

dual model (2.10) associated to (2.1), (q∗1, q
∗
2 , p

∗, u∗) just gives rise to the decomposition

of the weighted input image (w1f1 + w2f2)(x), ∀x ∈ Ω, such that

f ( := w1f1 + w2f2) = u∗ + div p∗. (2.14)

Proof. In view of (2.6), we have

f1 − u∗ = q∗1, f2 − u∗ = q∗2.

Therefore, it follows that

f := w1f1 + w2f2 = (w1q1 + w2q2) + u∗.

In view of the linear equality constraint (2.11), i.e. w1q
∗
1 + w2q

∗
2 = div p∗, then we

have

f := w1f1 + w2f2 = u∗ + div p∗.

This completes the proof. �

Consequently, we have

Corollary 2.2. The image fusion problem (2.1) is equivalent to

min
p∈Cα

‖(w1f1 +w2f2)− div p‖2 , (2.15)

i.e. the projection of the weighted input image (w1f1 + w2f2)(x), x ∈ Ω, to the convex set

divCα.

Proof directly follows from the image decomposition model of Corollary 2.1 and

(2.6).

Clearly, the results of Corollary 2.1 and Corollary 2.2 are similar to the image de-

composition and projection formulations derived from TV-L2 image approximation pro-

posed in [2,7].
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2.2.2. Image decomposition by TV-L1 image fusion (2.3)

Likely, the TV-L1 based image fusion model (2.3) results in image decomposition as

follows:

Corollary 2.3. Given the optimum (q∗1 , q
∗
2, p

∗, u∗) of the equivalent primal-dual model

(2.10) which is equivalent to (2.3), (q∗1 , q
∗
2 , p

∗, u∗) just gives rise to the decomposition of

the weighted input image (w1f1 + w2f2)(x), x ∈ Ω, such that

f := w1f1 + w2f2 = u∗ + v∗, (2.16)

where

v∗ = w1v
∗
1 + w2v

∗
2 , v∗1 ∈ ∂IS(q

∗
1), v∗2 ∈ ∂IS(q

∗
2),

IS is the characteristic function of the set S = {q | q(x) ∈ [−1, 1], ∀x ∈ Ω}.

Its proof directly follows by the conjugates (2.7) and Proposition 2.1.

3. Global and exact optimization

Now we focus on the TV-L1 based approach (2.3); in particular, we consider the

specified discrete-valued non-convex optimization problem

min
u(x)∈L

∫

Ω
w1 |u− f1| dx +

∫

Ω
w2 |u− f2| dx + α

∫

Ω
|∇u| dx, (3.1)

where we assume the two input images f1(x) and f2(x) take discrete values which are

linearly ordered such that

fi(x) ∈ Li

(

:= {li1, · · · , l
i
ni
}
)

, li1 < li2 < · · · < lini
; i = 1, 2, (3.2)

and L = L1 ∪ L2 is the combination set of L1 and L2. In this regard, we also assume

the set L includes n discrete values which is linearly ordered such that

L = {l1, · · · , ln}, l1 < l2 < · · · < ln. (3.3)

We show that the TV-L1 based image fusion problem (2.3) amounts to the exact

convex relaxation model of the above integer-constrained non-convex optimization

problem (3.1), i.e. the optimum of the convex optimization problem (2.3) results in

the global and exact integer-valued optimum of (3.1). A similar result was recently

proposed by [36], where the authors proved that the convex TV-L1 image approxima-

tion does give global and exact optima to the corresponding discrete-constrained TV-L1

approximation.

To this end, we define the γ-upper level set Uγ of the given function u(x), for each

constantγ, as follows:

Uγ(x) =

{

1, when u(x) > γ,
0, when u(x) ≤ γ,

x ∈ Ω. (3.4)

Then we directly state our result as the following proposition.
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Proposition 3.1 (Thresholding Rule). Given the optimum u∗(x) to (2.3) and the set of

discrete values L = {l1, · · · , ln}, l1 < · · · < ln, which is the combination of two sets

(3.2) of discrete image values given in f1(x) and f2(x), then for any given n− 1 values γi,
i = 1, · · · , n− 1, such that

l1 < γ1 < l2 < · · · < γn−1 < ln, (3.5)

we define the image function uγ(x) by the n− 1 upper level sets of u∗(x):

uγ(x) = l1 +

n−1
∑

i=1

(li+1 − li)U
γi(x), (3.6)

where Uγi(x) is defined by (3.4). Therefore, uγ(x) ∈ L (:= {l1, · · · , ln}) gives an exact

and global optimum of (3.1).

The detailed proof can be derived by the same way as [36], which relies on a

sequence of propositions as follows:

Proposition 3.2 (Extremum Principle). Given the image functions fi(x) ∈ Li, i = 1, 2,

as (3.2) and the set L of discrete values as (3.3), each minimum u∗(x) of (2.3) suffices

l1 ≤ u∗(x) ≤ ln, almost everywhere of Ω.

The proof is similar as the Extremum Principle proved in [36]. We list the main

ideas as follows:

Let u∗ be the minimum of (2.3), which is actually the global optimum due to the

convexity of (2.3). If u∗(x) > ln at some area Ω̃ ⊂ Ω, then we define the function u′

which just thresholds the value u∗(x) to be not larger than ln, i.e.

u′(x) =

{

ln, at x ∈ Ω̃,

u∗(x), at x ∈ Ω\Ω̃.

Therefore, we have

∫

Ω

(

w1 |u
∗ − f1|+ w2 |u

∗ − f2|
)

dx

=

∫

Ω\Ω̃

(

w1 |u
∗ − f1|+ w2 |u

∗ − f2|
)

dx +

∫

Ω̃

(

w1 |u
∗ − f1|+ w2 |u

∗ − f2|
)

dx

=

∫

Ω

(

w1

∣

∣u′ − f1
∣

∣+ w2

∣

∣u′ − f2
∣

∣

)

dx +

∫

Ω̃

(

w1 |ln − f1|+w2 |ln − f2|
)

dx

>

∫

Ω

(

w1

∣

∣u′ − f1
∣

∣+ w2

∣

∣u′ − f2
∣

∣

)

dx. (3.7)

By the coarea formula of the total variation term:

TV(u) =

∫ +∞

−∞
Lγ(u) dγ,
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where Lγ(u) is the length of the γ-upper level set of u, it follows that

TV(u′) < TV(u∗), (3.8)

because the ln-upper level set of u′ is thresholded to vanish.

Consider (3.7) and (3.8), we must have
∫

Ω

(

w1

∣

∣u′ − f1
∣

∣+ w2

∣

∣u′ − f2
∣

∣

)

dx + αTV(u′)

<

∫

Ω

(

w1 |u
∗ − f1|+ w2 |u

∗ − f2|
)

dx + αTV(u∗).

This is in contradiction to the fact that u∗ is the global minimum of (2.4).

Likewise, we can also prove u∗(x) ≥ l1 x ∈ Ω in a similar way. In consequence, we

prove that each minimum u∗(x) of (2.4) must suffice u∗(x) ∈ [l1, ln].

Proposition 3.3. Given a bounded scalar function l1 ≤ u(x) ≤ ln, ∀x ∈ Ω, if an optimal

vector field p∗ maximizes the integral
∫

Ω udiv p dx over the convex set p ∈ Cα of (2.9),

i.e.
∫

Ω
|∇u| dx =

∫

Ω
udiv p∗ dx,

then in view of (3.4), for every γ−upper level set Uγ(x) of u(x) with γ ∈ [l1, ln), p
∗ also

maximizes the integral
∫

Ω Uγ div p dx over the convex set p ∈ Cα and

∫

Ω
Uγ div p∗ dx = |∂Uγ | ,

which gives the perimeter of the level set Uγ(x).

The proof of Proposition 3.3 is given in [36].

Proposition 3.4. Given a bounded scalar function l1 ≤ u(x) ≤ ln, ∀x ∈ Ω, and n − 1
different values γi, i = 1, · · · , n − 1, such that l1 < γ1 < · · · < γn−1 < ln, if an optimal

vector field p∗ maximizes the integral
∫

Ω udiv p dx over the convex set p ∈ Cα, then for

the image function

uγ(x) = l1 +

n−1
∑

i=1

(li+1 − li)U
γi(x),

p∗ also maximizes the integral
∫

Ω uγ div p dx over the convex set p ∈ Cα, i.e.

∫

Ω
|∇uγ | dx =

∫

Ω
uγ div p∗ dx.

The proof of Proposition 3.4 is given in [36].

Then, in view of Proposition 3.4 and the fact that the thresholded function uγ(x)
does not change the sign for the absolute function, i.e. given q∗1 and q∗2 in Corollary 2.3

maximizing the integrals
∫

Ωw1q1(u
∗−f1) dx and

∫

Ωw2q2(u
∗−f2) dx respectively, q∗1 and
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q∗2 also maximize the integrals
∫

Ω w1q1(u
γ − f1) dx and

∫

Ω w2q2(u
γ − f2) dx respectively,

we conclude that the TV-L1 fusion energies of (2.3) for u∗(x) and uγ(x) are equivalent,

i.e.
∫

Ω
w1 |u

∗ − f1| dx +

∫

Ω
w2 |u

∗ − f2| dx + α

∫

Ω
|∇u∗| dx

=

∫

Ω
w1 |u

γ − f1| dx +

∫

Ω
w2 |u

γ − f2| dx + α

∫

Ω
|∇uγ | dx. (3.9)

Since u∗(x) gives the global minimum of the TV-L1 fusion energy, uγ(x) is also a

global minimum of the TV-L1 fusion optimization problem (2.3). Consequently, Propo-

sition 3.1 is proved.

4. Duality based algorithms

In this section, we propose fast numerical algorithms to image fusion problems

(2.1) and (2.3) through their respective dual formulations.

4.1. Projection algorithm to TV-L2 image fusion (2.1)

By Corollary 2.2, we observe that the image fusion problem (2.1) corresponds to

the projection of the image w1f1 + w2f2 to the convex set divCα. It directly leads to

the same duality-based algorithm as [7] proposed by Chambolle. We list its iterative

projected-gradient descent steps for computing the dual variable p as follows:

pi+1 = ProjCα

(

pi + τ∇
(

(w1f1 + w2f2)− div pi
)

)

,

where τ > 0 gives the step-size at each iteration.

4.2. Multiplier-based algorithm to TV-L1 image fusion (2.3)

With the help of (2.7) and (2.10), the TV-L1 based image fusion problem (2.3) can

be equivalently written as the following primal-dual formulation:

min
u

max
q1,q2

max
p∈Cα

∫

Ω
q1f1 dx +

∫

Ω
q2f2 dx + 〈div p− (q1 + q2), u〉 (4.1)

s.t. q1(x) ∈ [−w1(x), w1(x)], q2(x) ∈ [−w2(x), w2(x)]. (4.2)

Also in view of (2.12), its equivalent dual model can be formulated as

max
q1,q2

max
p∈Cα

∫

Ω
q1f1 dx +

∫

Ω
q2f2 dx (4.3)

s.t. q1(x) ∈ [−w1(x), w1(x)], q2(x) ∈ [−w2(x), w2(x)],

q1 + q2 = div p. (4.4)
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We see that the image u(x) in the primal-dual formulation (4.1), which is what

we wish to obtain, just works as the multiplier function to the linear equality con-

straint (4.4) of the dual model (4.3). In addition, the energy function of (4.1) gives

the corresponding Lagrangian function to the dual formulation (4.3). Through these

observations, we define its augmented Lagrangian function as

Lc(q1, q2, p, u) = 〈q1, f1〉+ 〈q2, f2〉+ 〈div p− (q1 + q2), u〉 −
c

2
‖div p− (q1 + q2)‖

2 ,

where c > 0.

In this work, we apply the classical augmented Lagrangian algorithm [4, 25, 31]

through its augmented Lagrangian function Lc(q1, q2, p, u) (see Algorithm 4.1 for de-

tails).

Algorithm 4.1 Multiplier-Based Algorithm to TV-L1 Image Fusion

The algorithm includes the following steps at k-th iteration:

1. Optimize qk+1
1 by fixing qk2 , p

k and uk, which gives

qk+1
1 := argmax

|q1(x)|≤w1(x)

〈q1, f1〉 −
c

2

∥

∥q1 − (div pk − qk2 − uk/c)
∥

∥

2
.

It can be computed by the following step in a close form:

qk+1
1 = Proj|q1(x)|≤w1(x)(f1/c+ (div pk − qk2 (x)− uk/c)). (4.5)

2. Optimize qk+1
2 by fixing qk+1

1 , pk and uk, which gives

qk+1
2 := argmax

|q2(x)|≤w2(x)

〈q2, f2〉 −
c

2

∥

∥q2 − (div pk − qk+1
1 − uk/c)

∥

∥

2
.

It can be computed by the following step in a close form:

qk+1
2 = Proj|q2(x)|≤w2(x)(f2/c+ (div pk − qk+1

1 (x)− uk/c)). (4.6)

3. Optimize pk+1 by fixing qk+1
1 , qk+1

2 and uk, which gives

pk+1 := arg min
p∈Cα

∥

∥div p− (qk+1
1 + qk+1

2 + uk/c)
∥

∥

2
. (4.7)

It is the projection of (qk+1
1 + qk+1

2 + uk/c) to the convex set divCα.

4. Update uk+1 by

uk+1 = uk + c (qk+1
1 + qk+1

2 − div pk+1); (4.8)

and let k = k + 1, repeat until convergence.

Algorithm 4.1 gives a splitting optimization framework over each dual variables q1,
q2 and p respectively, by exploring projections to their corresponding convex sets. To

this end, we call it the multiplier-based algorithm to TV-L1 image fusion. It explores
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three simple sub-steps: (4.5), (4.6) and (4.7) at each iteration, which properly avoids

tackling the nonsmooth terms in (2.3) in a direct way. The substeps of (4.5) and (4.6)

are easy and cheap to compute. For the projection substep (4.7), we can use one or

a few steps of the iterative projected-gradient decent algorithm to approximately solve

(4.7) as follows:

pi+1 = ProjCα

(

pi + τ∇
{

div pi −
(

(qi+1
1 + qi+1

2 ) + ui/c
)}

)

. (4.9)

Interestingly, our experiments show that just one single step of the above iteration

(4.9), with a proper step-size τ , is needed to make the algorithm converge! This imple-

ments the algorithm in a very fast way, which mostly convergences superlinearly.

5. Experiments

We implement the algorithms in both C and CUDA GPU programming. All experi-

ments were computed by a Windows desktop with an i7 CPU (2.67 GHz) and a Nividia

Tesla C1060 GPU, unless otherwise noted. For the experiments shown in Figs. 1, 2,

3 and 4, the computation of both TV-L2 and TV-L1 based methods, performed on the

CPU, finishes within a couple of seconds, while the TV-L2 algorithm is faster than the

TV-L1 algorithm due to less complexity. By GPU implementation, the computation of

both methods takes around hundreds of mili-second, depending on data, which speeds

up the algorithms more than 10 times in practice; especially for the 3D fusion experi-

ments of medical imaging.

In this section, we first fuse two binary images to show the fundamental differences

between (2.1) and (2.3). Then experiments for both medical imaging and remote

sensing are given for qualitative comparisons of the TV-L2 and TV-L1 based methods.

We also demonstrate the numerical performance of both methods over 3D MRI brain

image fusion.

5.1. Fusing binary images

Given two binary images (see the two images on the leftside of Fig. 2), i.e. f1,2(x) ∈
{0, 1}, we computed the fused image by both approaches: (2.1) and (2.3), where the

weighted functions w1(x) and w2(x) are computed based on image edges. For the TV-L2

based method (2.1), we set α = 3 and its fused result u(x) is shown by the 3rd image

of Fig. 2. For the TV-L1 based method (2.3), we set α = 1 and its fused result u(x) is

shown by the last image of Fig. 2. Clearly, the TV-L1 based method gives the binary

optimum which takes the value either 0 or 1 nearly everywhere. This is in contrast to

the result of the TV-L2 based approach.

5.2. Applications to medical imaging and remote sensing

Besides the fusion experiment of multi-focused images (shown in Fig. 1), we also

conducted experiments using medical images and remote-sensing images. Except one
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(a) (b) (c) (d)

Figure 2: Fusing binary images: (a) and (b) give the two input binary images; (c) and (d) show the results
computed by the TV-L2 and TV-L1 based methods respectively.

additional step of (4.5) and (4.6), its algorithmic scheme has the same complexities

as the fast TV-L1 method proposed in [36]. All the images are adjusted into the

same grayscale range for comparisons. Fig. 3 shows the fusion experiment of medi-

cal imaging, which integrates the images from CT and MRI (see Fig. 3). The TV-L1

based method performs visually better than the TV-L2 based method in preserving high-

contrast and details (see the enlarged image patches for comparisons). Fig. 4 shows

the image fusion experiment of remote sensing, where two images from different spec-

tral channels are fused by the studied two methods respectively. Detailed comparison

of the enlarged patches (see the images at 2nd row of Fig. 4) clearly indicates better

visual result by the TV-L1 based method.

Figure 3: Fusing medical images. Top row: the left two images show two inputs, a CT of the head and
an MRI image of the head respectively. The results by TV-L2 based method and TV-L1 based method
are given by the third and fourth images respectively. (2.1) and (2.3) respectively. Bottom row: the left
two images show the zoomed image patches cropped by the red lines on the same position of CT and MRI
images respectively; the right two images show the fused results at the patched area computed by (2.1) and
(2.3) respectively.
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Figure 4: Fusing images from two spectral bands. Top row: the left two images show the input images
of remote sensing images from two different spectral channels; the right two images show the fused images
computed by (2.1) and (2.3) respectively. Bottom row: the left two images show the zoomed image
patches cropped by the red lines on the same position of the input images respectively; the right two images
show the fused results at the patched area computed by (2.1) and (2.3) respectively.

5.3. Application to 3D medical image fusion

In this section, we show the numerical performance of the two proposed algorithms

for fusing 3D image-volumes. The simulated T1 and T2 3D MRI volumes were used,

which were downloaded from the brain-web database [6, 11, 18]. This volume has

217 × 181 × 181 equally sized voxels, each 1mm cubed. The fused 3D image volumes

can provide an additional view of the patient to support disease diagnosis. We list the

number of iterations and the computation time in Table 1. The computation results

are shown in Fig. 5, visualized in saggital, axial and coronal views. Clearly, the TV-L1

based fusion method is slower than the TV-L2 based method, due to more numerical

complexities.

Table 1: Computational times and iterations to convergence for the brain image fusion.

Computation Time (s) Iteration to Convergence

TVL1 - GPU 7.551 122

TVL1 - CPU 61.745 122

TVL2 - GPU 0.848 15

TVL2 - CPU 35.607 15

6. Conclusion and future directions

In this work, we consider two variational approaches to image fusion, which are

related to TV-L2 and TV-L1 image approximation. We propose their new equivalent
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Figure 5: Fusing 3D brain MRI image volumes (T1 and T2): Top Row Axial Views; Middle Row Coronal
Views; Bottom Row Sagittal Views; From left to right in each row: Leftmost shows the T1 volume, 2nd
from left shows the T2 volume, 3rd from left shows the fused volume by the TV-L2 based method;
Rightmost shows the fused volume by the TV-L1 based method.

convex formulations in terms of primal and dual and show their resulting new image

decompositions. We focus on the TV-L1 based image fusion approach and consider fus-

ing two discrete-valued images. In this regard, we prove that the TV-L1 based image

fusion actually gives the exact convex relaxation to its corresponding image fusion sub-

ject to the specified discrete-valued constraint, which greatly simplifies the optimiza-

tion problem and results in significantly efficient solvers in numerics to the associated

challenging combinatorial optimization problem. This extends recent developments for

global optimization of the discrete-constrained TV-L1 image approximation [8, 36] to

the case of image fusion.

The proposed dual models lead to fast and reliable algorithmic schemes based on

the standard convex optimization theory. Experiments show the TV-L1 based image

fusion method outperforms the TV-L2 based method by preserving better contrast and

more details. Further experiments of 3D medical image fusion demonstrate the nu-

merical performance of the two proposed approaches in practice, and confirm their

applicabilities to the practical image fusion tasks.
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