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Abstract. A new numerical method based on locally modified Cartesian meshes is
proposed for solving a coupled system of a fluid flow and a porous media flow. The

fluid flow is modeled by the Stokes equations while the porous media flow is mod-
eled by Darcy’s law. The method is based on a Robin-Robin domain decomposition

method with a Cartesian mesh with local modifications near the interface. Some

computational examples are presented and discussed.
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1. Introduction

The coupled Stokes-Darcy system has recently attracted much attention among re-

searchers. Its applications include flows across interfaces between soil and surface,

in areas from oil extraction to bio-medicine. Although individually, the equations for

the Stokes-Darcy flows are straightforward and well established, when these two PDE

systems are coupled across an interface, there are challenges. The interface condi-

tions between these two systems are the key part. Several conditions have been pro-

posed [2, 8, 14]. In this paper, we consider the well accepted Beavers-Joseph-Saffman

(BJS) [8,9,14] interface condition. The existence and uniqueness of weak solutions for

the Stokes-Darcy system with BJS interface condition have been proven [10]. Consider
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the coupled Stokes-Darcy system on a bounded domain Ωp ∪ Ωf ∈ R
d. The motion of

the fluid in Ωf is modeled by the Stokes equations

− ▽ ·T(uf , pf ) = f , (1.1)

▽ · uf = 0, (1.2)

where uf is the fluid velocity, pf is the kinematic pressure, and f is the body force.

T(uf , pf ) = 2νD(uf )−pfI is the stress tensor and D(uf ) =
1

2
(▽uf+▽

T
uf ) is the strain

rate tensor. ▽ and ▽· represent gradient operator and divergence operator respectively.

The parameter ν > 0 in the stress tensor is the kinematic viscosity of the fluid.

In the porous media region Ωp, the fluid motion is modeled by Darcy’s law

up = −K▽φp, (1.3)

▽ · up = 0, (1.4)

where up is the fluid velocity, K is the hydraulic conductivity tensor, and φp is the

hydraulic head.

On Γ = Ωf ∩ Ωp, let nf denote the unit outward normal vector from Ωf at Γ and

np denote outward normal vector from Ωp at Γ. τ j (j = 1, · · · , d − 1) represents unit

tangential vectors on Γ following right hand rule. See Fig. 1 as an example of the

domain. Along the interface Γ, if we assume the nondimensional porosity of the Darcy

region is 1, we have the mass conservation condition across Γ:

uf · nf = −up · np. (1.5)

The second interface condition is the balance of normal stress across Γ:

−nf · (T(uf , pf ) · nf ) = gφp, (1.6)

where g is the acceleration parameter. As the fluid is viscous, a condition for tangential

fluid velocity is needed [10]. A simple assumption is free slippage along Γ, τ j ·uf = 0.

Figure 1: Sketch of a free flow region Ωf , a porous media region Ωp, and the interface Γ, the normal
direction nf and tangential direction τj , as well as boundary ∂Ω.
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But in [2], it is shown that boundary condition agrees with experimental evidence

when slip of velocity is proportional to shear stress along Γ. This leads to the full

Beavers-Joseph interface condition:

τ j · (uf − up) =

√

k̃j

να1

(−τ j · (T(uf , pf ) · nf )), (1.7)

where k̃j = τ j · νK · τ j, and α1 is some constant. It turns out that the term τ j · up

is much smaller compared with other terms [2]. In this way we can get the simplified

BJS interface condition [9,14] which is derived from a statistical approach:

−τ j · (T(uf , pf ) · nf ) = ατ j · uf . (1.8)

These interface conditions ensure the continuity of velocity and stress in the normal

direction across the interface, but the pressure can be discontinuous [6].

The domain decomposition method has been studied by other researchers. The

domain decomposition method based on Dirichlet-Neumann type boundary condition

is discussed in [5], but it is shown that the method is sensitive to the choice of the

kinematic viscosity ν and the hydraulic conductivity tensor K [6]. The Robin-Robin

type domain decomposition method is proposed in [3, 4, 6]. In [6], the Robin-Robin

domain decomposition method has been applied to a simplified BJS interface condi-

tion. In [4], the parallel Robin-Robin domain decomposition method is carried out for

the BJS interface condition and convergence analysis is presented. In [3], the system

with BJ interface condition is analyzed, and both parallel and serial domain decom-

position methods are constructed. For some complicated domain structures, the mesh

generation process might be expensive. In this paper, we consider the locally modified

Cartesian mesh method [1, 15]. The main idea of this method is to modify the points

at the interface and make them nodal points. Only the points around the interface will

be altered and the corresponding mesh will become body fitted. More importantly, the

mesh generation cost is negligible as the mesh is transformed from a Cartesian mesh.

This method has several applications such as conforming and non-conforming finite el-

ement method for elasticity interface problems [7, 11–13]. The objective of this paper

is to discuss the feasibility of the Robin-Robin domain decomposition method based on

a locally modified mesh and compare the efficiency of unstructured mesh with locally

modified mesh.

The paper is organized as follows. In Section 2, we introduce the Robin-Robin

domain decomposition method. In Section 3, we discuss the method of locally modified

mesh. Finally, in Section 4, some computational examples are presented.

2. Weak formulation and Robin-Robin domain decomposition method

We assume φp and uf are 0 on the boundary ∂Ω and define the following functional

spaces
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Hf = {vf ∈ (H1(Ωf ))
d |vf = 0 on ∂Ωf\Γ}, (2.1)

Q = L2(Ωf ), (2.2)

Hp = {ψp ∈ H1(Ωp) |ψp = 0 on ∂Ωp\Γ}. (2.3)

The following bilinear forms are defined as

af (uf ,vf ) = 2ν(D(uf ),D(vf )) on Ωf , (2.4)

ap(φp, ψp) = (K▽φp,▽ψp) on Ωp, (2.5)

bf (vf , pf ) = −(▽ · vf , pf ) on Ωf . (2.6)

From [3, 4, 6], the weak formulation of the coupled system becomes: finding (uf , pf)

∈ Hf ×Q, φp ∈ Hp such that

af (uf ,vf ) + bf (vf , pf ) + gap(φp, ψp) + 〈gφp,vf · nf 〉

− 〈guf · nf , ψp〉+ α〈Pτuf ,Pτvf 〉 = (f ,vf ) ∀vf ∈ Hf , ψp ∈ Hp, (2.7)

bf (uf , qf ) = 0 ∀qf ∈ Q, (2.8)

where (·, ·) denotes L2 inner product, 〈·, ·〉 denotes L2 inner product along the interface

Γ, and

Pτuf =

d−1
∑

j=1

(uf · τj)τj , (2.9)

where Pτ denotes projection onto tangential space following right hand rule. vf , qf
and ψp are the corresponding test functions.

Next, we will introduce the Robin-Robin domain decomposition method which is

constructed by imposing Robin boundary conditions for the coupled Stokes-Darcy sys-

tem on the interface. We put tildes above some variables to distinguish them from

previous notations.

First, let’s consider the Robin boundary condition for the Stokes system

nf · (T(ũf , p̃f ) · nf ) + γf ũf · nf = ηf on Γ, (2.10)

where γf > 0 is a constant, ηf is a function evaluated on Γ. With the boundary con-

dition on Γ, the weak formulation of the Stokes equations becomes: finding (ũf , p̃f ) ∈
Hf ×Q, ηf ∈ L2(Γ) such that

af (ũf ,vf ) + bf (vf , p̃f ) + γf 〈ũf · nf ,vf · nf 〉

+ α〈Pτ ũf ,Pτvf 〉 = (f ,vf ) + 〈ηf ,vf · nf 〉 ∀vf ∈ Hf , (2.11)

bf (ũf , qf ) = 0 ∀qf ∈ Q. (2.12)

Next consider the Robin boundary condition for Darcy’s law

γpK▽φ̃p · np + gφ̃p = ηp on Γ, (2.13)
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where γp > 0 is a constant and ηp is a function defined similar to ηf unless on Ωp. The

weak formulation of Darcy’s law becomes: finding φ̃p ∈ Hp, ηp ∈ L2(Γ) such that

γpap(φ̃p, ψp) + 〈gφ̃p, ψp〉 = 〈ηp, ψp〉 ∀ψp ∈ Hp. (2.14)

We combine these weak formulations together. If ηf and ηp are given, there exists a

unique solution (ũf , p̃f) ∈ Hf ×Q, φ̃p ∈ Hp such that

af (ũf ,vf ) + bf (vf , p̃f ) + γf 〈ũf · nf ,vf · nf 〉

+ γpap(φ̃p, ψp) + 〈gφ̃p, ψp〉+ α〈Pτ ũf ,Pτvf 〉

= (f ,vf ) + 〈ηf ,vf · nf 〉+ 〈ηp, ψp〉 ∀vf ∈ Hf , ∀ψp ∈ Hp, (2.15)

bf (ũf , qf ) = 0 ∀qf ∈ Q. (2.16)

Finally, to determine appropriate values of functions ηf and ηp, we refer back to

Eqs. (2.7), (2.8), which are the weak formulations of the Stokes-Darcy system with BJS

interface condition. Eqs. (2.7), (2.8) and (2.15), (2.16) are consistent, i.e., uf = ũf ,

pf = p̃f and φp = φ̃p. By subtracting (2.7), (2.8) and (2.15), (2.16), we can get the

following equation

γf 〈uf · nf ,vf · nf 〉+ γpap(φp, ψp) + 〈gφp, ψp〉 − gap(φp, ψp)− 〈gφp,vf · nf 〉

=〈ηf ,vf · nf 〉+ 〈ηp, ψp〉 ∀vf ∈ Hf , ∀ψp ∈ Hp. (2.17)

We obtain

〈ηf − γfuf · nf + gφp,vf · nf 〉 = 0 ∀vf ∈ Hf , (2.18)

〈ηp − gφp, ψp〉 − (γp − g)ap(φp, ψp) = 0 ∀ψp ∈ Hp. (2.19)

Note that ηp and ηf satisfy

ηf = γfuf · nf − gφp, (2.20)

ηp = γ′puf · nf + gφp, (2.21)

where γ′p = γp − g. We can simply evaluate γ′p as γp without loss of generality and we

deduce

ηf = γfuf · nf − gφp, (2.22)

ηp = γpuf · nf + gφp. (2.23)

Therefore, we have the following algorithm of Robin-Robin domain decomposition

method [3,4,6]:

1: For k = 1, 2, · · · , solve the Stokes system (2.11), (2.12) and the Darcy system (2.14) sepa-
rately, i.e., finding (uk

f , p
k
f ) ∈ Hf ×Q, φkp ∈ Hp such that

af (u
k
f ,vf ) + bf(vf , p

k
f ) + γf 〈u

k
f · nf ,vf · nf 〉+ α〈Pτu

k
f ,Pτvf 〉

= (f ,vf ) + 〈ηkf ,vf · nf 〉 ∀vf ∈ Hf , (2.24)

bf (u
k
f , qf ) = 0 ∀qf ∈ Q, (2.25)

γpap(φ
k
p , ψp) + 〈gφkp, ψp〉 = 〈ηkp , ψp〉 ∀ψp ∈ Hp. (2.26)
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2: ηf and ηp are updated at each loop as

ηk+1

f =
γf
γp
ηkp +

(

− 1−
γf
γp

)

gφkp, (2.27)

ηk+1
p = −ηkf + (γf + γp)u

k
f · nf . (2.28)

Initial values of ηp and ηf are chosen arbitrarily. Conditions (2.27), (2.28) are necessary
for the convergence of this algorithm. Convergence analysis of this algorithm can be found
in [3, 4, 6]. We refer readers to that elegant proof.

3. Local modified Cartesian meshes

In this section, we explain how to get a locally modified Cartesian mesh from a

uniform Cartesian mesh. The idea of this method is to perturb the triangulations while

keeping the number of nodal points unchanged. The procedure is easy to follow and is

shown below:

1: Generate a Cartesian grid. For simplicity, in this paper, we consider a rectangular grid and
take the step size the same in both x and y direction.

2: Locate the intersection of the interface and the grid line. Fig. 2 shows the grid lines and the
location of the interface. If the intersection lies between [xi−h/2, xi+h/2]× [yi−h/2, yi+
h/2], we call the point [xi, yi] an irregular point. Otherwise, we call it a regular point.

3: For each irregular point, replace it with an intersection point as a new nodal point. If there
is more than one intersection point, the one with smallest distance to the irregular point will
be taken. In Fig. 3, the grid point P is an irregular point because the intersection point is
within the small dashed rectangle. P1 and P2 are the intersection points. As the distance
d(P, P1) < d(P, P2), we take P1 as a new nodal point as demonstrated in Fig. 4.

4: Use the modified nodal points to build triangulations and form a body fitted mesh.

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
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Figure 2: Sketch of the grid lines and the interface without mesh modifications.
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P1

P2P

Figure 3: An example of an irregular point and the interface. P1 and P2 are the two points of the intersection
between interface Γ and grid lines within the small dashed square [xi −h/2, xi +h/2]× [yi −h/2, yi +h/2]
of irregular point P. The area on the left of Γ is Ωf , on the right is Ωp.

P1

Figure 4: An example of a modified point. Point P is replaced by point P1 and the total number of nodal
points remains unchanged.

It has been proven in [1] that if the interface Γ ∈ C2, the accuracy of the approximation

of the interface Γ is O(h2). Fig. 5 is an example of the locally modified mesh in which

the interface is a circle. We can see that only the points around the circular interface

are altered and the total number of nodal points remain unchanged.

4. Numerical examples

In this section we present two numerical examples of the coupled nondimensional

Stokes-Darcy system with a circular interface. Consider a case in R
2. Let Ωf be a unit

circle centered at (0, 0) with radius 1. Ωp is the square of [−2, 2] × [−2, 2] outside the

unit circle. See Fig. 6 as an illustration. The unstructured mesh is shown in Fig. 7 while

the locally modified mesh is constructed and is shown is Fig. 5. For simplicity, choose
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Figure 5: A locally modified mesh example where step number n = 32 (32 points on each side of the square)
in both x and y direction. The triangulations are built using the modified nodal points.

Figure 6: A computational example with circular interface Γ.

ν = 1, g = 1, K = I, α = 1. An analytic solution of (2.7), (2.8) is given by

u1 = y(x2 + y2 − 3), u2 = −x(x2 + y2 − 3), pf = x2 + y2,

f1 = −8y + 2x, f2 = 8x+ 2y, φp = 1. (4.1)

The boundary conditions on ∂Ω are determined accordingly. These analytic solutions

satisfy the Stokes-Darcy system with circular interface as well as the BJS interface con-

dition. For the finite element approximation, the Taylor-Hood element pair is used for

the Stokes equations which is quadratic in velocity and linear in pressure. A linear

finite element space is used for Darcy’s law. The dimension of finite element space of

the coupled Stokes-Darcy system is consistent on the interface. As discussed in [3,4,6],

we choose γf = 3γp for convergence of the algorithm. In Table 1, the H1 norm error

of velocity uf , and the L2 norm error of uf , pf and φp are reported. Table 2 shows
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Figure 7: An unstructured mesh example where step number n = 32 in both x and y direction.

Table 1: An error report of unstructured mesh method with various step numbers.

Step number n L2 error of uf H1 error of uf L2 error of pf L2 error of φp

16 7.83e-2 2.02e-1 5.34e-2 1.61e-2

20 5.11e-2 1.45e-1 4.31e-2 1.26e-2

32 2.02e-2 8.29e-2 2.09e-2 8.02e-3

40 1.29e-2 6.80e-2 1.31e-2 6.20e-3

64 5.01e-3 5.02e-2 4.11e-3 3.84e-3

80 3.25e-3 4.34e-2 3.08e-3 3.11e-3

128 1.28e-3 3.53e-2 2.41e-3 2.02e-3

Table 2: An error report of locally modified mesh method with various step numbers.

Step number n L2 error of uf H1 error of uf L2 error of pf L2 error of φp

16 3.74e-2 1.14e-1 4.21e-2 1.07e-2

20 2.73e-2 9.71e-2 2.71e-2 1.06e-2

32 1.18e-2 6.36e-2 1.20e-2 6.36e-3

40 6.90e-3 5.40e-2 7.61e-3 5.26e-3

64 2.50e-3 4.11e-2 3.40e-3 2.94e-3

80 1.75e-3 3.74e-2 2.91e-3 2.57e-3

128 6.70e-4 2.90e-2 2.01e-3 1.71e-3

the error report based on locally modified mesh method. We compare the two methods

(Table 3) for a locally modified mesh of 2048 elements and an unstructured mesh of

2100 elements (260 Stokes, 1840 Darcy). The two methods have comparable error.

Therefore the method of locally modified mesh is not only free of mesh generation, but

also provides comparable accuracy. Table 4 compares convergence order as the slope
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Table 3: A comparison of the two methods based on a similar number of triangulations.

Method Elements L2 error of uf H1 error of uf L2 error of pf L2 error of φp

unstructured mesh 2100 1.43e-2 7.11e-2 5.74e-3 6.70e-3

locally modified mesh 2048 1.18e-2 6.36e-2 1.20e-3 6.36e-3

Table 4: A comparison of the convergence order of unstructured mesh and locally modified mesh.

Unstructured mesh Locally modified mesh

Quantity Norm Slope R2 Slope R2

uf L2 1.98 0.99 1.97 0.99

uf H1 0.83 0.96 0.67 0.98

pf L2 1.67 0.97 1.44 0.96

φp L2 1.01 0.99 0.94 0.99

of the log-log plots of error against grid fineness n. As usual, the H1 norm error of uf

is approximately one order less than the L2 norm error of uf . Fig. 8 shows the velocity

computed using the locally modified mesh for the example (4.1).
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Figure 8: A plot of the fluid velocity in the coupled Stokes-Darcy system for the example (4.1). As Φp=1,
the fluid velocity in porous media region Ωp, in this case, outside the unit circle, is 0.

We now provide a more realistic example. In Fig. 9, a simulation of the Stokes-

Darcy interaction is shown by assuming the fluid velocity on the boundary is (0,−1).
The parameter values ν, g, K and α are set the same as in the previous example. The

overall flow is downwards with faster flow in the Stokes region due to the coupling at

the interface, corresponding to flow in a void in a porous medium such as soil.
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Figure 9: A simulation of the Stokes-Darcy interaction with parameters ν = 1, g = 1, K = I and α = 1.
The fluid of Darcy’s law moves downwards and interacts with the fluid of Stokes equations.

5. Conclusions

In this paper we discussed the Stokes-Darcy system. A set of analytic solutions is

constructed for the coupled system with a circular interface. The methods of locally

modified mesh and unstructured mesh are compared and the Robin-Robin domain de-

composition with locally modified mesh provides comparable accuracy and conver-

gence order to that with an unstructured mesh. For the Stokes-Darcy system with

complex domain structures, the Robin-Robin domain decomposition method based on

a locally modified mesh might be more efficient then a potentially costly unstructured

mesh. For future research, the full Navier-Stokes equations coupled with Darcy’s law

shall be an interesting topic.
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