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Abstract. We have developed a numerical method for simulating viscous flow
through a compliant closed tube, driven by a pair of fluid source and sink. As is

natural for tubular flow simulations, the problem is formulated in axisymmetric

cylindrical coordinates, with fluid flow described by the Navier-Stokes equations.
Because the tubular walls are assumed to be elastic, when stretched or compressed

they exert forces on the fluid. Since these forces are singularly supported along the

boundaries, the fluid velocity and pressure fields become unsmooth. To accurately
compute the solution, we use the velocity decomposition approach, according to

which pressure and velocity are decomposed into a singular part and a remainder
part. The singular part satisfies the Stokes equations with singular boundary forces.

Because the Stokes solution is unsmooth, it is computed to second-order accuracy

using the immersed interface method, which incorporates known jump discontinu-
ities in the solution and derivatives into the finite difference stencils. The remainder

part, which satisfies the Navier-Stokes equations with a continuous body force, is

regular. The equations describing the remainder part are discretized in time us-
ing the semi-Lagrangian approach, and then solved using a pressure-free projection

method. Numerical results indicate that the computed overall solution is second-
order accurate in space, and the velocity is second-order accurate in time.

AMS subject classifications: 65M06, 76D05, 76M20
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1. Introduction

Many biological systems involve viscous flow through contracting or compliant

tubes. Such examples include blood flow, food mixing and chyme movement in in-

testine, transport of spermatozoa in cervical canal, transport of bile in bile ducts, fluid

flow through the kidney’s collecting duct that is undergoing peristaltic contracts, etc.

The interactions between the moving tubular walls and the luminal fluid can give rise
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to complex fluid dynamics. It is natural to formulate such problems in cylindrical co-

ordinates. To lower computational cost while still capturing the 3D flow features, one

may assume axisymmetry.

Numerical approaches for simulating fluid-structure interactions can be grouped

into two main categories: conforming approaches, such as the Arbitrary Lagrangian

Eulerian (ALE) method [5–7, 18, 19, 23], and non-conforming approaches. A popular

non-conforming grid method is the immersed boundary method, which was originally

developed in [21] for solving the full incompressible Navier-Stokes equations with mov-

ing boundaries, originally for studying blood flow through a beating heart [20]. Moving

boundaries are represented by means of Lagrangian markers, at which boundary forces

are computed. These forces are then transferred to an underlying Cartesian fluid grid

via a regularization using discrete (smoothed) delta functions, and the Navier-Stokes

equations are solved on the Cartesian grid.

The immersed boundary method is generally first-order accurate. To improve so-

lution accuracy, especially near the immersed boundary, Li and co-workers developed

the immersed interface method [13, 14], which captures jump discontinuities in the

solution and its derivatives sharply, and generates approximations with second-order

accuracy. The higher accuracy is achieved by incorporating jumps in the solution or

its derivatives, which can be computed from boundary forces, into the finite difference

schemes. The immersed interface method has been developed for Stokes [11, 14] and

Navier-Stokes [16,24] flows, in Cartesian [14,16] and polar [10,17] coordinates.

Recently we developed a numerical method for simulating driven Stokes flows

through a compliant closed tube, driven by a pair of internal fluid source and sink [15].

Motivated by models of blood flow through vessels, the problem is formulated in ax-

isymmetric cylindrical coordinates. The method decomposes the pressure and velocity

fields into parts due to the tubular boundary force, which is singular, and due to the

source and sink, which have compact support. Each part is computed by means of an

appropriate method that is second-order accurate, and also efficient given that charac-

teristics of that part of the solution. The singular tubular boundary force induces jump

discontinuities in the solution and its derivatives. To compute this part of the solu-

tion, we use the immersed interface method, which has not been previously applied to

cylindrical coordinates, and for which we derived the jump conditions in axisymmet-

ric cylindrical coordinates. In contrast, the solution due to the fluid source and sink

is smooth. If one is interested only in tracking the tubular wall movements, then the

source/sink-driven solution can be efficiently calculated along the tubular surface via

a boundary integral. The method is second-order accurate and robustly captures the

jump discontinuities in the overall solution and its derivatives.

The method developed in [15] is limited to creeping flows or fluid with sufficiently

high viscosity. However, many biofluid applications, such as blood flow in arteries and

arterioles, have medium to high Reynolds number and are thus more appropriately

described as Navier-Stokes flow. In the present study, we aim to extend the method

to the Navier-Stokes equations, using the velocity decomposition approach [2]. That

approach is motivated by two observations: first, the jump conditions in the solution
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and some derivatives, arising from singular forces, are the same for Stokes and Navier-

Stokes equations; second, the immersed interface method is much easier to implement

for the Stokes than for the Navier-Stokes equations. Given these observations, the

velocity decomposition approach decomposes the overall solution into a singular piece

that satisfies the Stokes equations with singular forces, and a remainder piece given by

the Navier-Stokes equations with a continuous body force [2]. The singular piece can

be computed accurately using the immersed interface method or boundary integrals.

In the present study, the version of the immersed interface method we developed for

the axisymmetric cylindrical coordinates [15] is used to compute the singular piece.

The remainder piece, which is regular, is computed using standard finite difference

methods and the projection method.

Numerical tests indicate that the method developed in the present study is second-

order accurate in space, and second-order in time for the velocity. The sharp jumps in

the solution and its derivatives are preserved robustly.

2. Model equations

We describe the model formulation and a computational method for simulating

driven Navier-Stokes flow in a three-dimensional elastic tube. The computational

method is based, in part, on the immersed interface method [14], which requires that

the immersed boundary or surface be closed. Thus, we model the tubular wall, denoted

by Γ, as a closed surface, e.g., an ellipsoid or a closed tube. To represent inflow and

outflow conditions in this closed domain, we incorporate a pair of internal fluid source

and sink, located near the two ends of the tube. The tube is immersed in a fluid which

fills the domain Ω = [−R,R] × [0, 2π] × [−L,L], given in cylindrical coordinates. The

tube is assumed to be impermeable; that is, there is no transmural fluid flux. Fluid flow

is assumed to be axisymmetric, and fluid characteristics (i.e., density and viscosity) are

assumed to be identical throughout Ω, inside and outside of the tube. (A model tube,

configured using parameters for Example 2, is shown in Fig. 1.)

In axisymmetric cylindrical coordinates (which implicitly assumes that the velocity

in the θ-direction is 0), the Navier-Stokes equations are

∂u

∂t
+ ~v · ∇u = −

∂p

∂r
+ µ

(

∇2 −
1

r2

)

u+ F1, (2.1)

∂w

∂t
+ ~v · ∇w = −

∂p

∂z
+ µ∇2w + F3, (2.2)

∇ · ~v = g, (2.3)

where ~v = (u,w) is the velocity, with u and w denoting the r- and z-components,

respectively; p is the pressure, and µ is the viscosity. The force ~F = (F1, F3) is given by

a surface integral over Γ,

Fi =

∫

Γ

fi(s, θ, t)δ(~x− ~X(s, θ, t)) dS
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for i = 1, 3, where ~x = (r, z), and ~f = (f1, f3) denotes the body force density (singularly

supported on Γ). ~X denotes the position of the tubular boundary, and (s, θ) are ma-

terial coordinates that parameterize the tubular surface. g represents the sink/source

strength (see below).

The vector operator notation refers to the following standard definitions

∇p =

(

∂p

∂r
,
1

r

∂p

∂θ
,
∂p

∂z

)

,

∇ · (u, v, w) =

(

u

r
+

∂u

∂r

)

+

(

1

r

∂v

∂θ

)

+
∂w

∂z
,

∇2u =
1

r

∂

∂r

(

r
∂u

∂r

)

+
1

r2
∂2u

∂θ2
+

∂2u

∂z2
.

Given the axisymmetry assumption, the θ-terms drop out.

Homogeneous Dirichlet boundary conditions are assumed for the velocity field

along ∂Ω. No-slip boundary conditions are imposed along Γ, so that the tubular walls

move at the velocity of the local fluid, i.e.,

∂ ~X

∂t
= ~v

(

~X, t
)

. (2.4)

2.1. Definition of source, sink and external source/sink

Rather than enforcing incompressibility everywhere, Eq. (2.3) includes the source/sink

term g that drives flow through the tube. The function g is compactly supported in three

separate regions: one simulates a fluid source and another simulates a fluid sink. These

two regions are located inside the tube, close to its two ends. A third region, located

outside the tube, is used to maintain overall fluid incompressibility in Ω.

We first describe the two interior fluid sink/source terms. The source term, denoted

g1, is compactly supported in a cylindrical region denoted by Ssource, which is centered

at the point (r1, z1), such that |r − r1| ≤ κ and |z − z1| ≤ κ, for fixed width κ. The sink

term, denoted g2, is compactly supported in Ssink, which is centered at (r2, z2), and is

similarly defined.

The source g1 and sink g2 are defined as

g1(r, z, t) = A1(t)γ1(r, z), (2.5)

g2(r, z, t) = A2(t)γ2(r, z), (2.6)

γ1(r, z) =

{

h1(r)k1(z), (r, z) ∈ Ssource,

0, otherwise,
(2.7)

γ2(r, z) =

{

h2(r)k2(z), (r, z) ∈ Ssink,

0, otherwise,
(2.8)
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where, for i = 1, 2, hi(r) and ki(z) satisfy the following properties

∫ 2π

0

∫ ri+κ

ri

hi(r) · r dr dθ = 1, (2.9)

∫ κ

−κ

ki(z) dz = 1. (2.10)

Eqs. (2.9) and (2.10) do not uniquely define hi and ki. We assume that hi and ki are

scaled cosine functions

hi(r) = β

(

1 + cos

(

π(r − ri)

κ

))

, (2.11)

ki(z) =
1

2κ

(

1 + cos

(

π(z − zi)

κ

))

, (2.12)

where the constant β is chosen such that Eq. (2.9) is satisfied.

If the source/sink strengths A1 and A2 cancel, i.e., if A1(t)+A2(t) = 0 for all time t,
then overall fluid volume is conserved. To impose overall incompressibility for the case

where A1+A2 6= 0, we follow the approach in Ref. [1] and add an external source/sink

outside of the tube, such that its strength is given by

A3(t) = −A1(t)−A2(t). (2.13)

Similar to the internal source and sink, the external source/sink is assumed to be com-

pactly supported on Sext, which is a region centered at (r3, z3) with radius κ3. The

external source/sink term g3 is defined by

g3(r, z, t) = A3(t)γ3(r, z), (2.14)

γ3(r, z) =

{

h3(r)k3(z), (r, z) ∈ Sext,

0, otherwise,
(2.15)

with h3(r) and k3(z) satisfying

∫ 2π

0

∫ r3+κ3

r3

h3(r) · r dr dθ = 1, (2.16)

∫ κ3

−κ3

k3(z) dz = 1, (2.17)

where h3(r) and k3(z) are assumed to be scaled cosine functions analogous to Eqs. (2.11)

and (2.12).

In the current model, the strength A1(t) is prescribed, whereas A2(t) can be ob-

tained by the Hagen-Poiseuille equation

A2(t) =
p2 − p̄2(t)

R2

. (2.18)
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This relation assumes that the tube is attached to a downstream resistor R2, at the end

of which pressure is fixed at p2. The resistance R2 and end pressure p2 are assumed

known. p̄2 is the difference between average pressure over Ssink and over Sext, i.e.,

p̄2(t) =

∫

Ω

p(r, z, t)
(

γ2(r, z) − γ3(r, z)
)

dV. (2.19)

Taken together, the sink/source term g is given by

g(r, z, t) = g1(r, z, t) + g2(r, z, t) + g3(r, z, t). (2.20)

3. Computational method

We aim to compute fluid velocity and pressure on a fixed, Eulerian grid, and to use

a moving, Lagrangian frame of reference to track the location of the interface Γ over

time. Owing to the assumption of axisymmetry, we compute the solution field only for

the right half of the domain Ω, i.e., r ≥ 0; this subdomain is denoted Ω̂. And we enforce

symmetry for the left half, i.e., r < 0.

To discretize the model equations on Ω̂, we impose the following boundary condi-

tions along r = 0 as implied by symmetry

u(0, z) = 0,
∂w

∂r
(0, z) = 0,

∂p

∂r
(0, z) = 0. (3.1)

The axisymmetric assumption also allows us to represent the surface Γ by its cross

section at θ = 0 (or any given θ). We will call the boundary (curve) associated with

this cross section Γ as well, with the distinction between curve Γ and surface Γ made

clear by the context. Even though we only compute solution in the right half Ω̂ of

the domain, we keep Γ as a closed curve so we can impose periodicity. Thus, Γ spans

over the entire cross-section of Ω. The curve Γ is represented by markers that move

independently of the fixed fluid grid, interpolated by periodic cubic splines [14].

To compute the solution field, we follow the velocity decomposition approach of

[2]. Recall that the velocity decomposition approach is motivated by the key obser-

vation that the jump conditions for the solution and its derivatives, for given singular

forces, are the same for Stokes and Navier-Stokes equations (albeit the actual solutions

differ). Thus, we decompose the overall solution into a “Stokes” (or “singular”) part

and a “remainder” (or “regular”) part

~v = ~vs + ~vreg, (3.2)

p = ps + preg. (3.3)

Here the subscripts “s” and “reg” denote the Stokes and remainder parts, respectively.

The Stokes solution ~vs and ps satisfy the Stokes equation with the singular forces. Thus,

the jump discontinuities are “captured” by the Stokes solution. The remainder solution

~vreg and preg satisfy the Navier-Stokes equations with a continuous body force. More

details are given below. This decomposition allows us to extend the method that we

previously developed for Stokes [15] to Navier-Stokes flow.
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3.1. Stokes part

As previously noted, the Stokes part of the solution satisfies the Stokes equations

with the boundary force and divergence-free condition

µ

(

∇2 −
1

r2

)

us −
∂ps
∂r

+ F1 = 0, (3.4)

µ∇2ws −
∂ps
∂z

+ F3 = 0, (3.5)

∇ · ~vs = 0. (3.6)

Note that Eq. (3.6) does not contain the source/sink term g. Along r = 0, as implied

by symmetry, homogeneous Neumann boundary conditions are imposed on ps, ws,

and homogeneous Dirichlet boundary conditions on us. These boundary conditions

are analogous to Eq. (3.1). Across the other three sides of Ω̂, homogeneous Dirichlet

boundary conditions are assumed for all three variables.

The jump conditions for ps and ~vs, which have been derived in [15], are similar to

those in Cartesian coordinates

[ps] = fn,

[

∂ps
∂n

]

=
1

r

∂(fτr)

∂s
, (3.7)

[

µ
∂us
∂n

]

= fτ sinα,

[

µ
∂ws

∂n

]

= −fτ cosα. (3.8)

Here fn and fτ are the normal and tangential boundary force densities, respectively,

and α denotes the angle between the normal- and r-directions. The Stokes solution can

be computed by means of the immersed interface method described in [15]. In that

approach, Eqs. (3.4)-(3.6) are reduced into a sequence of three Poisson problems, one

for each variable. For the pressure,

∇2p = ∇ · ~F , (3.9)

which can be solved by incorporating the jump conditions for pressure and its deriva-

tives (Eq. (3.7)) into the finite difference stencils, and then neglecting the dipole source

and solving the homogeneous version of the above equation. Once p is computed,

Eqs. (3.4) and (3.5) are independent Poisson problems for u and w, respectively.

3.2. Remainder part

Taking the difference of Eqs. (2.1)-(2.3) and Eqs. (3.4)-(3.6), one obtains the equa-

tion for the regular part of the velocity and pressure

∂ureg
∂t

+ ~v · ∇ureg = −
∂preg
∂r

+ µ

(

∇2 −
1

r2

)

ureg + Fb1, (3.10)

∂wreg

∂t
+ ~v · ∇wreg = −

∂preg
∂z

+ µ∇2wreg + Fb3, (3.11)

∇ · ~vreg = g, (3.12)
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where Fb1 and Fb3 are the body forces given by the material derivative of the Stokes

velocity

Fb1 = −
∂us
∂t

− ~v · ∇us, (3.13)

Fb3 = −
∂ws

∂t
− ~v · ∇ws. (3.14)

Note that the advection terms in Eqs. (3.10), (3.11), (3.13), and (3.14) involve the

overall velocity ~v, not the remainder or Stokes velocity.

Given the boundary conditions we have chosen for ~vs, the boundary conditions

imposed on ~vreg are the same as those of ~v.

To avoid discretizing ∇ · ~vreg, we solve Eqs. (3.10) and (3.11) using the semi-

Lagrangian method [3, 22], which integrates backward along fluid trajectories and

computes function values at mesh points for each time level. In the semi-Lagrangian

discretization, the advection term is incorporated into the material derivative, which

yields

dureg
dt

= −
∂preg
∂r

+ µ

(

∇2 −
1

r2

)

ureg + Fb1, (3.15)

dwreg

dt
= −

∂preg
∂z

+ µ∇2wreg + Fb3. (3.16)

The body forces are also similarly written as material derivatives

Fb1 = −
dus
dt

, Fb3 = −
dws

dt
. (3.17)

To discretize Eqs. (3.15) and (3.16), we use the second-order backward difference

formula,

3un+1
reg − 4ũnreg + ũn−1

reg

2∆t
= −

∂pn+1
reg

∂r
+ µ

(

∇2 −
1

r2

)

un+1
reg + Fn+1

b1 , (3.18)

3wn+1
reg − 4w̃n

reg + w̃n−1
reg

2∆t
= −

∂pn+1
reg

∂z
+ µ∇2wn+1

reg + Fn+1
b3 . (3.19)

In Eq. (3.18), ũnreg and ũn−1
reg denote the r-component of the velocity at the upstream po-

sitions (~xn, tn) and (~xn−1, tn−1), respectively. Analogous notation is used in Eq. (3.19)

for w. The same discretization is also applied to evaluate the body forces Fb1 and Fb3.

To evaluate ũnreg and ũn−1
reg , we first estimate ~xn and ~xn−1, given by the initial value

problem
d~x(t)

dt
= ~v
(

~x(t), t
)

, ~x(tn+1) = ~x0, (3.20)

where the initial points ~x0 is a regular mesh. We estimate the upstream points ~xn

and ~xn−1 by integrating Eq. (3.20) backward in time over the integral [tn+1, tn] and
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[tn+1, tn−1], respectively, using the midpoint method

~x∗ = ~x0 −
∆t

2
~v

(

~x0 −
∆t

2
~un+

1

2 , tn+ 1

2

)

, ~xn = ~x0 −∆t ~v
(

~x∗, tn+ 1

2

)

, (3.21)

~x∗∗ = ~x0 −∆t ~v(~x0 −∆t ~vn, tn), ~xn−1 = ~x0 − 2∆t ~v(~x∗∗, tn). (3.22)

Because ~v values are required at off-mesh points, spatial interpolations are required

(explained below).

Eqs. (3.12), (3.18), and (3.19) are solved by means of a second-order pressure-free

projection method [9]. We first solve the Helmholtz-type equations for the intermediate

velocity ~v∗

(

3

2∆t
− µ

(

∇2 −
1

r2

))

u∗ =
−4ũnreg + ũn−1

reg

2∆t
+ Fn+1

b1 , (3.23)

(

3

2∆t
− µ∇2

)

w∗ =
−4w̃n

reg + w̃n−1
reg

2∆t
+ Fn+1

b3 , (3.24)

with the following boundary conditions

u∗(0, z) = 0,
∂w∗

∂r
(0, z) = 0,

and along the other three sides of Ω̂ [4]

~v∗ · n̂ = 0, ~v∗ · t̂ = ∆t∇φn · t̂,

where n̂ and t̂ denote the normal and tangential directions on ∂Ω̂.

To project ~v∗ onto the divergence-free space, we compute φn+1 which satisfies

~vn+1
reg = ~v∗ −∆t∇φn+1. (3.25)

Taking the divergence of Eq. (3.25), we get

∆t∇2φn+1 = ∇ · ~v∗ − gn+1. (3.26)

Note that from Eq. (2.20), gn+1 depends on gn+1
2 (and thus An+1

2 ), which is a function

of pn+1, see Eq. (2.18). Because pn+1 has yet to be computed, the right-hand-side of

Eq. (3.26) is unknown. To compute φn+1, instead of solving Eq. (3.26) directly, we

decompose φn+1 into three parts

φn+1 = φn+1
1 +An+1

1 φ2 +An+1
2 φ3, (3.27)

where An+1
1 φ2 and An+1

2 φ3 are due to the source and sink forcings, respectively, and

φn+1
1 is the remainder part. From Eq. (2.13), gn+1 can be rewritten as

gn+1 = An+1
1 (γ1(r, z) − γ3(r, z)) +An+1

2 (γ2(r, z) − γ3(r, z)). (3.28)
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Therefore, φn+1
1 , φ2, and φ3 satisfy the following equations

∆t∇2φn+1
1 = ∇ · ~v∗, (3.29)

∆t∇2φ2 = γ1(r, z) − γ3(r, z), (3.30)

∆t∇2φ3 = γ2(r, z) − γ3(r, z). (3.31)

Homogeneous Neumann boundary conditions are imposed on φ1, φ2, and φ3. Because

φ2 and φ3 depend only on time-independent functions δ1, δ2, and δ3, those two φ’s are

independent of time. This implies that Eqs. (3.30) and (3.31) only need to be solved

once.

After evaluating φn+1
1 , the regular pressure at tn+1 is obtained by

pn+1
reg =

3

2
φn+1 − µ∆t∇2φn+1 (3.32)

=
3

2

(

φn+1
1 +An+1

1 φ2 +An+1
2 φ3

)

− µ(∇ · ~v∗ − gn+1). (3.33)

Note that whenever An+1
2 depends on pn+1

reg , the above equation defines pn+1
reg implicitly,

and needs to be solved for pn+1
reg .

3.3. Advancing boundary position

To advance the boundary configuration Γ from tn to tn+1, we update the boundary

markers as follows

~Xn+1 = ~Xn +∆t

(

3

2
~vn( ~Xn)−

1

2
~vn−1( ~Xn−1)

)

. (3.34)

The boundary velocity values ~v( ~X) are approximated by means of bilinear spatial in-

terpolation, with care taken near Γ, switching to extrapolation so that the interpolation

stencils never cross the boundary.

4. Numerical examples

4.1. Convergence test 1: A relaxing ellipsoid

To demonstrate the second-order spatial accuracy of our method, we first consider

a simple example in which a spherical, elastic surface is deformed into an ellipsoidal

shape. This example does not include source and sink; i.e., ∇ · ~v = 0 throughout Ω.

At a given plane angle θ, the boundary of the ellipsoid is described parametrically by

(0.8 cos(θ), 0.6 sin(θ)). The equilibrium shape for this cross-section boundary is a circle

of radius 0.6, centered at the origin. The fluid is initialized to be at rest. Fluid viscosity

µ is 0.1.
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The ellipsoid boundary Γ is assumed to be elastic. As it is stretched or compressed,

an elastic tension force ~f is induced

~f =
∂T

∂t̂
t̂− 2Tκn̂, (4.1)

where T (s, t) is the tension

T (s, t) = T0

(∣

∣

∣

∣

∣

∂ ~X

∂s0

∣

∣

∣

∣

∣

− 1

)

,

where s0 denotes the material coordinate. We use elasticity constant T0 = 0.2. A

derivation for the tension force in cylindrical coordinates can be found in Ref. [12].

In this example, the fluid computational domain is Ω̂ = [0, 1.5] × [−1.5, 1.5]. The

solution field is computed with uniform grid spacing h = 1.5/N , for N = 160, 320,

and 640. A time-step of ∆t = 0.001 was used to integrate the system from t = 0
to t = 0.3. The immersed boundary is discretized using 88 markers. We use the

solution computed on a high-resolution grid (N = 1280) as the reference solution to

estimate errors. Key convergence results are displayed in Table 1, where we estimate

the dependence of solution errors on spatial discretization by computing the solution

errors, and then dividing the errors by h2. Results in Table 1 show that the resulting

ratio is approximately constant (in particular, non-increasing), which indicates second-

order spatial accuracy.

Table 1: Convergence results for pressure and velocity, obtained for the relaxing ellipsoid. Approximations
exhibit second-order convergence. (err1 and err∞ denote the L1 and L∞ errors, respectively.)

p u w

N err1/h2 err∞/h2 err1/h2 err∞/h2 err1/h
2 err∞/h2

160 4.082e-1 2.571 1.243e-2 3.160e-1 2.937e-2 3.184e-1

320 2.516e-1 1.903 1.204e-2 3.224e-1 1.556e-2 2.727e-1

640 1.598e-1 1.378 1.013e-2 2.351e-1 1.596e-2 2.350e-1

4.2. Convergence test 2: Flow through an elastic tube

In the previous example, the ellipsoid relaxes to its equilibrium shape of a sphere.

Because after a sufficiently long simulation, the fluid settles to rest, that problem is not

ideal for studying the temporal error of the method. To more thoroughly understand

the accuracy of our method, we perform a second convergence test using an elastic tube

with oscillating source and sink. Fig. 1 shows the configuration of the tube. The source

and sink are centered at (0.0, 2.0) and (0.0,−2.0), respectively, with radius parameter

κ = 0.0225.

At equilibrium, the top of the tube is the upper half of the circle with radius 0.2

centered at the source, and similarly, the bottom of the tube is the lower half of the
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0.5

1

Figure 1: Tube configuration. A cross section of the fluid region Ω is shown, which corresponds to the larger

rectangle. Darker region denotes the computational domain Ω̂. Fluid source, Ssource; sink, Ssink; external
source/sink, Sext.

circle with radius 0.2 centered at the sink. The left and right walls of the tube are the

line segments r = 0.2 and r = −0.2 between z = −2.0 and z = 2.0.

The boundary force along Γ consists of two parts

~f = ~fe + ~ft.

The elastic tension force ~fe has two components. The first component ~fe1 arises from

tension along the z-direction and is given by Eq. (4.1), with the elasticity constant T0

set to 0.2. The second component ~fe2 points in the radial direction and arises from

circumference tension and is defined as

f r
e2 = m (r(s, t)− LT ) r̂, (4.2)

where r̂ denotes the unit vector in the r-direction. Here LT is the equilibrium width of

the tube, and m is the force constant. In this example, LT = 0.4 and m = 100.

To prevent the tube from moving along with the flow, we add the tether force ~ft

~ft = −k( ~X − ~Xeq),

with spring force k = 100, and ~Xeq the equilibrium position described above.

The strength of the driving source is given by the periodic function

A1(t) = 0.005(1.0 + sin(ωt)). (4.3)

In this example we assume that the sink strength is prescribed to be opposite to the

source, i.e. A2(t) = −A1(t). Because the sink and source cancel, an external sink/source

term is not necessary, i.e., A3(t) = 0. The driving frequency ω is set to 30. The system is

integrated from t = 0 to t = 0.3, which approximately corresponds to ten periods. The

fluid is initialized to be at rest, and the tube at the equilibrium shape. Fluid viscosity µ
is 0.1.

The fluid domain is Ω̂ = [0, 0.9] × [−3.6, 3.6]. Fluid solution is computed with uni-

form grid spacing h = 3.6/N , for N = 160, 320, and 640. The immersed boundary
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is discretized with 320 markers. We use the solution computed on a high-resolution

grid (N = 1280) as the reference solution to estimate errors. A time-step ∆t = 0.001
was used. The ratios of solution errors over h2 are displayed in Table 2. Those ra-

tios, which are approximately constant (mostly non-increasing), indicate second-order

spatial accuracy.

Table 2: Results for pressure and velocity for spatial convergence test 2. Approximations exhibit second-order
convergence. (err1 and err∞ denote the L1 and L∞ errors, respectively.)

p u w

N err1/h
2 err∞/h2 err1/h2 err∞/h2 err1/h2 err∞/h2

160 19.32 214.3 1.941e-1 4.043 3.031e-1 6.643

320 24.72 253.2 9.740e-1 3.752 3.784e-1 5.990

640 20.71 217.9 6.260e-2 5.532 2.615e-1 5.674

We also conduct a time convergence test. A fixed spatial grid of N = 320 is used;

solutions are computed for ∆t = 0.004, 0.002, and 0.001. The error is assessed at time

t = 0.2. We use the solution computed using ∆t =0.0005 as the reference solution. The

ratios of solutions errors over ∆t2 are displayed in Table 3. The ratios corresponding to

u and w are approximately constant, which indicate second-order temporal accuracy.

However, the ratios corresponding p exhibits graduate increase, although they don’t

double as ∆t is doubled. These results suggest super-linear temporal convergence for

pressure.

Table 3: Results for pressure and velocity for temporal convergence test 2. Velocity exhibits second-order
convergence in time whereas pressure exhibits super-linear convergence. (err1 and err∞ denote the L1 and
L∞ errors, respectively.)

p u w

∆t err1/∆t2 err∞/∆t2 err1/∆t2 err∞/∆t2 err1/∆t2 err∞/∆t2

0.004 1.564e-1 1.328 1.836e-3 4.344e-1 4.165e-3 2.187e-1

0.002 2.749e-1 1.834 1.854e-3 4.422e-1 4.355e-3 2.705e-1

0.001 3.727e-1 2.164 1.542e-3 3.288e-1 4.183e-3 2.663e-1

4.3. Flow characteristics study

We conduct a set of simulations to study the characteristics of flow along the elastic

tube. In the previous example, the sink strength is assumed known a priori. In this

example, we assume the same source strength A1(t) (Eq. (4.3)), but compute the sink

strength using Eq. (2.18). Because the sink and source strengths do not necessarily

cancel, an external source/sink, given by Eq. (2.13), is applied outside of the tube to

ensure incompressibility. The external source/sink is centered at (0.55, 0.0) with radius

parameter κ3 = 0.1. The downstream resistance and pressure used to compute the sink

strength A2 are set to R2 = 8.2542 and p2 = −2.
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4.3.1. Poiseuille characteristics

We first study the flow characteristics of our model. In particular, we assess the extent

to which the tubular flow generated by the oscillating sink can be approximated by

Poiseuille flow. We perform a simulation in which we set the driving frequency of the

oscillating source to ω = 20, and access the velocity field and shear stress after the

system reaches equilibrium. Cross sections, at z = 0.99, of the z-component of the

velocity field and shear stress are shown in Figs. 2 and 3. Results are qualitatively

similar at the other cross sections. The approximately parabolic shape of the z-velocity

(Fig. 2) and the V-shaped shear stress (Fig. 3) are both consistent with Poiseuille flow,

a result that is expected for laminar flow through an approximately circular pipe. Note

also that the jump discontinuity in the velocity derivative is captured robustly by our

numerical method.
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Figure 2: Velocity in the z-direction at z = 0.99. The approximately parabolic profile is characteristic of
Poiseuille flow.
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Figure 3: Shear stress at z = 0.99. V-shape is characteristic of Poiseuille flow.
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Figure 4: Pressure drop from z = 1.8 to z = −1.8 for different µ. An approximately linear relation,
characteristic of Poiseuille flow, is observed.

We also perform a set of simulations using the same parameters as above, but varied

fluid viscosity µ over the range 0.01–0.15. For each value of µ, we computed the

pressure drop along the tube, from position (0, 1.8) to (0,−1.8). Results, shown in

Fig. 4, indicate that pressure drop is an approximately linear function of fluid viscosity,

a prediction that is again consistent with Poiseuille flow.

4.3.2. Frequency-amplitude study

In the next set of simulations, we study the response of the fluid at driving frequen-

cies ω over the range 5–80 and measure the pressure and velocity of the generated

flow. Due to the oscillations of the driving force, fluid pressure and flow oscillate in

time as well. Fig. 5 shows the maximum and minimum pressure values recorded over

one period (1/ω) at position (0, 1.8) as a function of driving frequency ω. Solution

at other locations exhibit qualitatively similar responses (not shown). Our model pre-

dicts a nonlinear dependence of pressure amplitude on frequency: pressure amplitude

decreases as ω increases from 5 to between 10–20, and then increases as ω further

increases. Note that the amplitude of the forcing oscillations is fixed.

Fig. 6 shows the maximum and minimum flow velocity values, obtained by integrat-

ing w at (0, 0.99) in time over one oscillation period (1/ω). For all driving frequencies,

fluid flows in the −z direction, i.e., no flow reversal. The flow amplitude in Fig. 6

exhibits similar (nonlinear) trends as the pressure amplitude, although the flow ampli-

tude increase is not as substantial as that for pressure.

4.3.3. Viscosity-amplitude study

In the last set of numerical simulations, we consider the effect of fluid viscosity on flow

characteristics. For a fixed driving frequency ω = 20, we vary viscosity over the range
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Figure 5: Minimum and maximum of pressure cycle at (r, z) = (0, 1.8) for driving frequency 5 ≤ ω ≤ 80.
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Figure 6: Minimum and maximum of flow across z = 0.99 for driving frequency 5 ≤ ω ≤ 80.

0.01–0.15, and compute average pressure and velocity values at (0, 1.8). Average ve-

locity is measured by integrating the z-component at (0, 0.99) over one period (1/ω).

Average pressure is computed analogously. Again, the model predicts that both pres-

sure and velocity amplitudes depend nonlinearly on fluid viscosity. As shown in Figs. 7

and 8, average pressure and flow values initially decrease as µ increases from µ = 0.01
to µ ∼ 0.04–0.06. Afterward, as µ increases, so do pressure and velocity.

5. Discussion

We present a numerical method for computing fluid flow through an elastic tube.

The method is an extension of our previous work on Stokes flow [15] and is based

on the velocity decomposition approach [2]. The method yields approximations that

exhibit approximately second-order accuracy (except for temporal accuracy for pres-

sure, which is super-linear), as suggested by the numerical examples, even though grid
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Figure 7: Pressure amplitude at (r, z) = (0, 1.8) for viscosity 0.01 ≤ µ ≤ 0.15.

0 0.05 0.1 0.15
1

2

3

4

5

6

7

8
x 10

−4

viscosity µ

fl
o
w

 a
m

p
lit

u
d
e

Figure 8: Amplitude of flow across z = 0.99 for viscosity 0.01 ≤ µ ≤ 0.15.

values of the fluid quantities are corrected near the interface only for the Stokes part

of the solution. We consider this a great advantage, since these corrections are much

simpler to make than those for the full problem. It is noteworthy that even though

the velocity decomposition approach essentially “extends” a Stokes solution to one that

satisfies the Navier-Stokes equations, it does not require the Stokes and Navier-Stokes

solutions to be sufficiently similar (or, that the remainder solution be sufficiently small).

Consequently, the approach is applicable even at high Reynolds numbers.

Our method is computationally efficient: at each time step, the most costly com-

putations are the solution of the three Poisson problems associated with the Stokes

problem (e.g., Eq. (3.9)), and the solution of the Helmholtz-type equations (3.23) and

(3.24) and the projection step (Eq. (3.25)) in the Navier-Stokes problem. Those solu-

tions are computed using fast sine or cosine transforms (depending on the boundary

conditions), and thus cost O(N2 logN).

It is assumed in this work that the fluid is the same inside and outside of the inter-

face. If instead the interface separates two Navier-Stokes fluids with different viscosities
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and densities, the corresponding velocity component in the r-direction will no longer

be regular, although the right hand side of its evolution equation will be less singu-

lar than the interfacial force. It remains to be seen whether the decomposition would

reduce the difficulty of the two-fluid problem.

How the flow fluctuation amplitude varies as a function of the driving force depends

on a number of factors, including fluid properties, forcing frequency, how the ampli-

tude, elastic properties of the tube, etc. In our previous simulation study of Stokes

flows [15], the model predicted pressure and flow fields that settle (i.e., fluctuation

amplitudes decrease) as the pumping speed increases. In contrast, the Navier-Stokes

model of the present study predicts a nonlinear depends on flow oscillations on forcing

frequency, such that at sufficiently high forcing frequency, the amplitude of pressure

and flow velocity oscillations increases as forcing frequency increases (see Figs. 5 and

6). These contrasting results highlight the qualitatively different behaviors of Stokes

and Navier-Stokes flows.

Simulation studies by other groups (e.g., [8]) have demonstrated pumped flow that

changes nonlinearly with forcing function frequency, even reversing direction for cer-

tain frequency ranges. In contrast, while our model predicts a nonlinear dependence,

none of our simulations generate reversed flow. The discrepancy between the results of

the present study and Ref. [8] may be attributed to the different means by which fluid

flow is driven: in Ref. [8] the active contractions of the elastic tube pumps fluid along,

whereas the present model drives flow via a pair of internal fluid sink and source.

Our principal goal of developing the present method is to simulate water trans-

port along compliant biological tubules, such as the contracting collecting ducts in the

kidney, which have been mentioned in the Introduction. Because the epithelial walls

of these tubules are water permeable, and because transepithelial water fluxes can be

driven by hydrostatic pressure, it is crucial that pressure jumps across the tubular wall

be computed accurately. Indeed, that requirement is our motivation for developing the

present method, which computes second-order accurate solution and, perhaps more

importantly, captures their jumps sharply. In contrast, the immersed boundary method

smears out the pressure jumps and exhibits O(1) errors for pressure near the interface.

Another contribution of the present study is to show that fluid flow along an elastic

tube can be reasonably approximated by Poiseuille flow. That is true provided that the

tube does not deviate substantially from a cylinder. That condition is likely satisfied by

some biological tubes, such as those in the kidney, which are tightly packed and held in

place by the interstitial matrix, so that tubular dilation or constriction is limited. This

observation implies that for a complex model of a biological system, tubular flows may

be described by Poiseuille flow, rather than Navier-Stokes flow in an elastic tube. The

former, which is much cheaper computationally but yields flow characteristics similar

to a more sophisticated immersed boundary problem, will allow the overall model to be

computationally tractable. It is important for mathematical models to have reasonable

computational cost, inasmuch as in modeling studies one frequently conducts param-

eter sensitivity studies that involve computing model solutions for many different sets

of model parameters.
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