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Abstract. In this paper, a fast algorithm for Euler’s elastica functional is proposed, in
which the Euler’s elastica functional is reformulated as a constrained minimization prob-
lem. Combining the augmented Lagrangian method and operator splitting techniques,
the resulting saddle-point problem is solved by a serial of subproblems. To tackle the
nonlinear constraints arising in the model, a novel fixed-point-based approach is pro-
posed so that all the subproblems either is a linear problem or has a closed-form solu-
tion. We show the good performance of our approach in terms of speed and reliability
using numerous numerical examples on synthetic, real-world and medical images for
image denoising, image inpainting and image zooming problems.
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1. Introduction

Suppose that the observed image u0 is the original image u perturbed by an additive
noise η

u0 = u+η.

The image denoising problems of recovering the image u from the noisy image u0 are
often solved by variational methods and optimization techniques. Among various vari-
ational denoising methods, the Rudin-Osher-Fatemi (ROF) method [31] is probably the
most successful one, which is defined by minimizing the following functional

min
u

∫

Ω

|∇u|+
µ

2

∫

Ω

(u− u0)
2, (1.1)
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where µ is a positive parameter and u is defined on a continuous domain Ω⊂ R2.
The success of the ROF model mainly relies on the total variation (TV) regularization,

which enables the ROF model to preserve sharp edges while removing noise. Due to its
nice properties, TV-based models have been further extended to vectorial models for color
image denoising [6,13] and several fast algorithms are proposed [9–11]. In spite of many
advantageous properties, TV-based methods have a common disadvantage: piecewise con-
stant images are favored over piecewise smooth images, which is the so-called staircasing
effect. To overcome this drawback, high order models [7,8,12,14,15,24,26,32] are pro-
posed to yield smoother results. As one of them, Euler’s elastica model, which is defined
based on the curvature of the level curves of images, was first introduced into computer vi-
sion by Mumford [28] and successfully applied to a number of applications, such as image
restoration [1–3,17], image segmentation [16,27,29] and image inpainting [4,5,14].

Euler’s elastica energy can be described by the curvature κ of a smooth curve Γ as the
following

E(Γ) =

∫

Γ

�
a+ b|κ|β(s)
�
ds, (1.2)

where s is the arc length and a, b are two positive parameters. In the functional (1.2),
the first term minimizes the total length and the second term minimizes the power of total
curvature. The power β can be set to either β = 1 as in [26], or β = 2 as in [14]. In
this work, we set β = 2, but the techniques developed below can be extended to the case
β = 1 without many efforts. The Euler’s elastica of all the level curves of an image u can
be expressed as

E =

∫ L

l=0

∫

γl :u=l

�
a+ b|κ|β(s)
�
dsdl, (1.3)

where γl is the level curve with u = l. Note that the curvature κ can be expressed as a
function of u

κ(u) =∇ ·
� ∇u

|∇u|

�
. (1.4)

Substituting above equation into (1.3) and using the co-area formula yields

E(u) =

∫

Ω

�
a+ b

���∇ ·
∇u

|∇u|

���
β�
|∇u|. (1.5)

For image denoising applications, the elastica energy (1.5) can be used as a regulariza-
tion term. Together with the data fitting term, we can formulate the minimization problem
to approximate the noisy image u0 by Euler’s elastica energy as follows

min
u

∫

Ω

�
a+ b
�
∇ ·
∇u

|∇u|

�2�
|∇u|+

µ

t

∫

Ω

|u− u0|
t , (1.6)

the choice of t is determined by the type of noise in u0: e.g., t = 1 for salt & pepper noise
and t = 2 for Gaussian white noise.
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The numerical solutions [14,26] of Euler’s elastica functional (1.6) are normally com-
plex and time consuming due to the high nonlinearity of the partial differential equa-
tions (PDEs). In [3, 21], graph-cuts methods are applied to the high order models and
Euler’s elastica. Recently, the operator splitting method is greatly studied to simplify
the optimization problems in image processing and the augmented Lagrangian method
(ALM) [30] has been successfully implemented to solve the generated constrained mod-
els; see [20, 34, 36–38]. Along the similar idea, [33] applies the ALM to Euler’s elastica
model (1.6), in which great efficiency is achieved by solving the subproblems emerging
from the augmented Lagrangian functional with the Fast Fourier Transform (FFT). In their
approach, a quadratic penalty term in the augmented Lagrangian functional is relaxed to
the first order and a frozen coefficient method with the FFT is used to solve the coupled
PDEs with the variable coefficient. The dependence of the FFT gives rise to a limitation
to apply the algorithm in [33] to more general problems such as the problems defined on
non-flat geometries [22]. To overcome this hurdle, [19] proposes an algorithm for the
elastica energy by replacing the FFT with the cheap arithmetic operation.

In this work, we use the operator splitting technique to propose a novel augmented
Lagrangian algorithm for Euler’s elastica model (1.6). We decompose the saddle-point
problem into subproblems to simplify the structure. Instead of disposing of the quadratic
term in the subproblem related to the normal vector, we apply a fixed-point method to
find a closed-form solution, which is different from [19]. Furthermore, in contrast to [33],
we introduce a new variable into the constrained problem to avoid solving the PDEs with
variable coefficients. In the proposed formulation, all subproblems are either linear which
can be solved efficiently by the iterative solver, or having closed-form solutions. There-
fore, the new method is computationally efficient in terms of both memory requests and
computational costs.

2. Augmented Lagrangian method for Euler’s elastica model

In this section, we propose an augmented Lagrangian formulation for Euler’s elastica
energy (1.6). First, we introduce two extra variables p and n to (1.6) and cast it into the
following constrained minimization problem

min
u,p,n

∫

Ω

�
a+ b(∇ · n)2
�
|p|+

µ

t

∫

Ω

|u− u0|
t ,

s.t. p =∇u; n =
p

|p|
. (2.1)

The second constraint in (2.1) is equivalent to p = |p|n if p 6= 0. Therefore, the cor-
responding augmented Lagrangian functional for the constrained optimization problem
(2.1) is defined as follows:

L(u, p,n;λ1,λ2) =

∫

Ω

�
a+ b(∇ · n)2
�
|p|+

µ

t

∫

Ω

|u− u0|
t +

∫

Ω

(p − |p|n) ·λ1

+
r1

2

∫

Ω

(p − |p|n)2 +

∫

Ω

(p −∇u) ·λ2 +
r2

2

∫

Ω

(p −∇u)2, (2.2)
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where λ1, λ2 are the Lagrange multipliers and r1, r2 are positive penalty parameters. We
aim to seek a saddle-point of the augmented Lagrangian functional (2.2), which satisfies

Find (u∗, p∗,n∗;λ∗1,λ∗2),

s.t. L(u∗, p∗,n∗;λ1,λ2)≤ L(u∗, p∗,n∗;λ∗1,λ∗2)≤ L(u, p,n;λ∗1,λ∗2),

∀(u, p,n;λ1,λ2). (2.3)

The rest of the paper is organized as follows. In Section 3, we first review the ex-
isting algorithm in [33] for solving the minimization problem (2.1). In Section 4, we
modify the augmented Lagrangian functional (2.2) by introducing another new variable.
We also illustrate the advantages of the proposed algorithm compared to the existing al-
gorithm in [33]. In Section 5, the numerical solution to each subproblem emerging from
the augmented Lagrangian functional is discussed separately. In Section 6, we carry out
numerical experiments with our method for dealing with problems in image denoising,
image inpainting and image zooming to demonstrate its efficiency.

3. The existing algorithm

In this section, we give a brief review of the augmented Lagrangian method applied
to Euler’s elastica in the Tai-Hahn-Chung (THC) formulation [33]. It is difficult to solve
the augmented Lagrangian functional (2.2) efficiently because of the non-differentiable
quadratic term involved |p|. Therefore, the authors introduce one more variable into the
constrained problem (2.1), which satisfies

m = n and |m| ≤ 1.

The constrained optimization problem (2.1) is reformatted as the following structure

min
u,p,n,m

∫

Ω

�
a+ b(∇ ·n)2
�
|p|+

µ

t

∫

Ω

|u− u0|
t ,

s.t. p =∇u; n =m; |p| =m · p; |m| ≤ 1. (3.1)

By the constraint |m| ≤ 1, there exists the relationship |p|−m ·p ≥ 0, a.e., in Ω. Therefore,
the quadratic penalty term

∫
Ω
(|p| −m · p)2 in (2.2) can be relaxed to a first order penalty

term. Then, the augmented Lagrangian functional for the constrained problem (3.1) is
defined as follows

L(u, p,n, m;λ1,λ2,λ3)

=

∫

Ω

�
a+ b(∇ · n)2
�
|p|+

µ

t

∫

Ω

|u− u0|
t +

∫

Ω

(|p| −m · p)λ1 + r1

∫

Ω

(|p| −m · p)

+

∫

Ω

(p −∇u) ·λ2 +
r2

2

∫

Ω

|p −∇u|2 +

∫

Ω

(n −m) ·λ3 +
r3

2

∫

Ω

(n−m)2 +δR(m), (3.2)
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where λ3 is the Lagrange multiplier, r3 is the positive constant and the set R := {m ∈
L2(Ω)||m| ≤ 1a.e. in Ω} and δR is the indicator function defined by

δR(m) :=

¨
0, m ∈ R,
+∞, otherwise.

In [33], the energy functional (3.2) is decomposed into a number of subproblems as fol-
lows:

ε1(u) =
µ

t

∫

Ω

|u− u0|
t −

∫

Ω

∇u ·λ2+
r2

2

∫

Ω

(p −∇u)2, (3.3a)

ε2(p) =

∫

Ω

�
a+ b(∇ · n)2
�
|p|+

∫

Ω

(|p| −m · p)λ1+ r1

∫

Ω

(|p| −m · p)

+

∫

Ω

p ·λ2 +
r2

2

∫

Ω

(p −∇u)2, (3.3b)

ε3(n) =

∫

Ω

b|p|(∇ · n)2 +

∫

Ω

n ·λ3+
r3

2

∫

Ω

(n −m)2, (3.3c)

ε4(m) = −(λ1+ r1)

∫

Ω

p ·m −

∫

Ω

m ·λ3 +
r3

2

∫

Ω

(n−m)2 +δR(m). (3.3d)

The above subproblems are solved alternatively in one iteration of the algorithm. For the
u-sub problem, since its Euler-Lagrange equation is a linear PDE, it is solved efficiently by
the FFT. There are closed-form solutions for both the p-sub and m-sub problems referred
to [33]. In the existing algorithm of THC, the most difficult and time-consuming part is to
solve the Euler-Lagrange equation of n-sub problem, which is

−2∇(b|p|∇ · n) + r3(n−m) +λ3 = 0. (3.4)

The coefficient of ∇ ·n is a variable in (3.4), which makes it difficult to handle. Aimed
to use the FFT, a frozen coefficient method is applied to the coupled PDEs in [33]. How-
ever, there are some drawbacks caused by this method. First, the method needs the inner
iterations. Since the coefficient of ∇ ·n is fixed artificially in each iteration inner iteration,
it may require more iterations to achieve the convergence. Second, to solve the coupled
PDEs (3.4), two FFT algorithms are necessary in an inner iteration. Considering the FFT
used in u-sub problem, three times of the FFT are involved at least in one outer iteration of
the algorithm in [33]. The above points will increase the computational costs of the algo-
rithm in [33]. Besides, there exist cases that the domain or boundary condition assigned
to the minimization problem (1.6) is not applicable to the FFT. Therefore, we consider to
find a better way to solve the augmented Lagrangian functional (2.2).

4. The proposed algorithm

In this section, we propose a more efficient algorithm to solve the augmented La-
grangian functional (2.2). Unlike the algorithm in [33], we keep the two constraints
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in the optimization problem (2.1) and introduce one more variable to denote the mean
curvature, which is

h=∇ · n.

We use the variable h to remove the variable coefficient in the n-sub problem (3.3c) in
Tai-Hahn-Chung formulation [33]. Therefore, the Euler’s elastica model (1.6) is reformu-
lated as the following constrained optimization problem in our work

min
u,p,n,h

∫

Ω

(a+ bh2)|p|+
µ

t

∫

Ω

|u− u0|
t ,

s.t. p =∇u; p = |p|n; h=∇ ·n. (4.1)

We use the augmented Lagrangian method in [34] to rewrite the constrained problem
(4.1) into an unconstrained minimization problem. We define the augmented Lagrangian
functional for (4.1) as follows

L(u, p,n,h;λ1,λ2,λ3)

=

∫

Ω

(a+ bh2)|p|+
µ

t

∫

Ω

|u− u0|
t +

∫

Ω

(p − |p|n) ·λ1 +
r1

2

∫

Ω

(p − |p|n)2

+

∫

Ω

(p −∇u) ·λ2+
r2

2

∫

Ω

(p −∇u)2 +

∫

Ω

(h−∇ ·n)λ3 +
r3

2

∫

Ω

(h−∇ · n)2. (4.2)

We apply an iterative algorithm to solve the saddle-point problem corresponding to the
augmented Lagrangian functional (4.2); see Algorithm 4.1.Algorithm 4.1: Augmented Lagrangian method for the Euler's elastia model1. Initialization: u0, p0, n0, h0 and λ0

1, λ0
2, λ0

3.2. For k = 0,1,2, · · · , ompute (uk, pk,nk,hk) as an approximate minimizer of the augmentedLagrangian funtional with the Lagrange multiplier λk−1
1 , λk−1

2 and λk−1
3 , i.e.,

(uk, pk,nk,hk)≈ arg min L(u, p,n,h;λk−1
1 ,λk−1

2 ,λk−1
3 ). (4.3)3. Update the Lagrange multipliers:

λ
k
1 = λ

k−1
1 + r1(p

k − |pk|nk), (4.4a)

λ
k
2 = λ

k−1
2 + r2(p

k −∇uk), (4.4b)

λk
3 = λ

k−1
3 + r3(h

k −∇ · nk). (4.4c)

Since the variables u, p, n, h are coupled together in the minimization problem (4.3),
it is difficult to solve all the variables simultaneously. Therefore, we use the decomposition
technique to separate the problem (4.3) into a number of sub minimization problems. The
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energy functionals corresponding to each variable are given separately as follows:

E1(u) =
µ

t

∫

Ω

|u− u0|
t −

∫

Ω

∇u ·λ2 +
r2

2

∫

Ω

(p −∇u)2, (4.5a)

E2(p) =

∫

Ω

(a+ bh2)|p|+

∫

Ω

(p − |p|n) ·λ1+
r1

2

∫

Ω

(p − |p|n)2 (4.5b)

+

∫

Ω

p ·λ2 +
r2

2

∫

Ω

(p −∇u)2,

E3(n) = −

∫

Ω

|p|n ·λ1+
r1

2

∫

Ω

(p − |p|n)2 −

∫

Ω

λ3∇ · n +
r3

2

∫

Ω

(h−∇ · n)2, (4.5c)

E4(h) =

∫

Ω

b|p|h2+

∫

Ω

λ3h+
r3

2

∫

Ω

(h−∇ ·n)2. (4.5d)

All subproblems (4.5a) to (4.5d) are efficiently solved by either closed-form solution or
fast iteration method. For the minimization of (4.3), we alternatively solve the minimizer
to each subproblem by using Algorithm 4.2.Algorithm 4.2: Alternating minimization method for (4.3)1. Initialization: eu0 = uk−1, ep0 = pk−1, en0 = nk−1 and eh0 = hk−1.2. For l = 0,1,2, · · · , L and �xed Lagrange multipliers λ1 = λ

k−1
1 , λ2 = λ

k−1
2 and λ3 = λ

k−1
3 :Compute eul from (4.5a), ep l from (4.5b), en l from (4.5) and ehl from (4.5d).3. (uk, pk,nk,hk) = (euL, ep L , enL ,ehL).

Here L can be chosen using some convergence test techniques. In this paper, we simply
set L = 1. We will discuss the specific solution to each subproblem in the forthcoming
section.

5. Numerical solutions for subproblems

In this section, we explain how to find the minimizer of each subproblem. We use a
staggered grid system as in Fig. 1 to solve the energy functional minimization (4.5a) to
(4.5d) and update the Lagrange multipliers from (4.4a) to (4.4c).

5.1. Notations

We first give some basic notations at the beginning. An image u is regarded as a
function

u : {1, · · · , M} × {1, · · · , N},

where M , N ≥ 2.



54 Y. Duan, Y. Wang and J. Hahn

Figure 1: Grid de�nition. The rule of indexing variables in the augmented Lagrangian funtional (2.2):
u, h and λ3 are de�ned on •-nodes. The �rst and seond omponent of p, n, λ1 and λ2 are de�ned on
◦-nodes and �-nodes, respetively.

We denote the Euclidean space RM×N as V and define another inner product vector
space: Q = V × V . For a given (i, j) ∈ [1, M]× [1, N], we see that

u ∈ V, u(i, j) ∈ R, and p ∈Q, p(i, j) = (p1(i, j), p2(i, j)) ∈ R2.

We also equip the space V and Q with the standard Euclidean inner products as follows

(u, v)V =
∑

i, j

u(i, j)v(i, j) and (p,q)Q = (p1,q1)V + (p2,q2)V .

We will use the discrete backward and forward differential operators for u ∈ V , which
are defined with periodic boundary condition as follows:

∂ −x u(i, j) =

¨
u(i, j)− u(i − 1, j), 1< i ≤ M ,

u(1, j)− u(M , j), i = 1,

∂ −y u(i, j) =

¨
u(i, j)− u(i, j − 1), 1< j ≤ N ,

u(i, 1)− u(i, N), j = 1,

∂ +x u(i, j) =

¨
u(i + 1, j)− u(i, j), 1≤ i < M ,

u(1, j)− u(M , j), i = M ,

∂ +y u(i, j) =

¨
u(i, j + 1)− u(i, j), 1≤ j < N ,

u(i, 1)− u(i, N), j = N .

The discrete forward and backward gradient operator ∇ : V →Q are given as follows:

∇u(i, j) := (∂ +x u(i, j),∂ +y u(i, j)).

The corresponding discrete backward and forward adjoint operator div : Q → V of −∇ is
obtained:

div p(i, j) := ∂ −x p1(i, j) + ∂ −y p2(i, j).
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When a variable defined on ◦-nodes (or �-nodes) needs to be evaluated at (i, j) ∈
�-nodes (or ◦-nodes), for example p = (p1, p2), we use the average operators:

A�
i, j(p1) =

p1(i, j+ 1) + p1(i− 1, j + 1) + p1(i, j) + p1(i − 1, j)

4
,

A◦
i, j(p2) =

p2(i+ 1, j) + p2(i, j) + p2(i + 1, j − 1) + p2(i, j − 1)

4
,

where p1 and p2 are defined on ◦-nodes and �-nodes respectively. We need to define a
special operator to measure the magnitude of p at (i, j) ∈ •-nodes as follows:

|A|•i, j(p) =
�� p1(i, j) + p1(i− 1, j)

2

�2
+
� p2(i, j) + p2(i, j − 1)

2

�2� 1
2
.

We compute the divergence of p at (i, j) ∈ •-nodes using the following operator:

div•i, j(p) = p1(i, j)− p1(i − 1, j) + p2(i, j)− p2(i, j − 1).

5.2. Subproblems

In the following, for each subproblem, we denote the fixed Lagrange multipliers in the
previous (k− 1)th iteration as λ1 = λ

k−1
1 , λ2 = λ

k−1
2 and λ3 = λ

k−1
3 .

5.2.1. The u-sub problem

We denote a fixed variable ep l−1 as p. For the u-sub problem (4.5a), the choice of t is either
t = 1 or t = 2 for different applications. We discuss the minimization of u according to the
value of t separately:

Case 1: t = 1

For this case, we introduce a new variable v into the u-sub problem and rewrite it as a
constrained problem as follows

min
u,v
µ

∫

Ω

|v− u0| −

∫

Ω

∇u ·λ2 +
r2

2

∫

Ω

(p −∇u)2, s.t. v = u. (5.1)

We apply the augmented Lagrangian method to (5.1) and obtain the following saddle-
point problem

L(u, v;λ4) =µ

∫

Ω

|v− u0| −

∫

Ω

∇u ·λ2+
r2

2

∫

Ω

(p −∇u)2

+

∫

Ω

λ4(v − u) +
r4

2

∫

Ω

(v− u)2, (5.2)

where λ4 is the Lagrange multiplier and r4 is a positive constant. We can regard (5.2) as a
self-contained minimization problem and use the following iterative algorithm to solve the
variables u, v and λ4; see Algorithm 5.1.



56 Y. Duan, Y. Wang and J. HahnAlgorithm 5.1: Augmented Lagrangian method for the u-sub problem1. Initialization: u0 and v0.2. For k = 0,1,2, · · · , ompute (uk, vk) as an approximate minimizer of the augmented La-grangian funtional with the Lagrange multiplier λk−1
4 , i.e.,

(uk, vk)≈ arg min L(u, v;λk−1
4 ). (5.3)3. Update the Lagrange multipliers:

λk
4 = λ

k−1
4 + r4(v

k − uk). (5.4)

Algorithm 5.1 can be easily incorporated into Algorithm 4.1. Let us consider the mini-
mization (5.3) under the structure of Algorithm 4.1. Therefore, for fixed ep, we aim to find
eul and ev l in Algorithm 4.2. We denote the fixed Lagrange multiplier λk−1

4 as λ4 for ease of
the explanation. To minimize u and v, we separate the functional (5.2) into the following
two subproblems:

min
u

∫

Ω

∇u ·λ2+
r2

2

∫

Ω

(p −∇u)2 −

∫

Ω

λ4u+
r4

2

∫

Ω

(v− u)2, (5.5)

for a given v, and

min
v
µ

∫

Ω

|v − u0|+

∫

Ω

λ4v+
r4

2

∫

Ω

(v − u)2, (5.6)

for a given u.
First, the Euler-Lagrange equation of (5.5) gives us a linear PDE

(r4 − r2∆)u= λ4 + r4v −∇ ·λ2 − r2∇ · p. (5.7)

The PDE problem (5.7) can be solved efficiently by a wide range of linear iterative
methods, such as Jacobi method, Gauss-Seidel method. In this work, we use one sweep of
the Gauss-Seidel iteration to approximate the solution eul .

On the other hand, we consider the solution to the v-sub problem. Let w = u−λ4/r4.
We can rewrite (5.6) as follows

min
v
µ

∫

Ω

|v− u0|+
r4

2

∫

Ω

(v−w)2. (5.8)

The optimal value of the variable v in (5.8) can be easily computed by using the shrink-
age operator. For fixed u, we simply compute

ev l(i, j) =max
n

0,1−
µ

r4|w(i, j)− u0(i, j)|

o
·
�
w(i, j)− u0(i, j)

�
+ u0(i, j).
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Case 2: t = 2

For this case, the minimization problem related to u can be simplified as

min
u

µ

2

∫

Ω

(u− u0)
2−

∫

Ω

∇u ·λ2 +
r2

2

∫

Ω

(p −∇u)2. (5.9)

Therefore, the optimal condition of (5.9) gives us a linear equation of u, which is

(µ− r2∆)u= µu0 −∇ ·λ2− r2∇ · p. (5.10)

Similarly, for fixed p, we use one sweep of the Gauss-Seidel iteration to compute the
updated eul .

5.2.2. The p-sub problem

We denote fixed variables eul , en l−1 and ehl−1 as u, n and h, respectively. For the p-sub
problem, it is difficult to solve the Euler-Lagrange equation of (4.5b) due to the non-
differentiability element |p| in the quadratic term. To avoid this situation, we consider to
apply a fixed-point formulation to the constraint p = |p|n in the kth iteration, which gives

p = |pk−1|n.

To get rid of the nonlinearity and non-differentiability term, we use p − |pk−1|n to
replace p − |p|n in the quadratic penalty term in (4.5b). Therefore, we reformulate the
energy functional of the variable p as follows

E2(p) =

∫

Ω

(a+ bh2 − n ·λ1)|p|+
r1 + r2

2

∫

Ω

�
p −

r1|p
k−1|n + r2∇u−λ1 −λ2

r1 + r2

�2
.

For the simplicity, let

c = a+ bh2 − n ·λ1 and q = r1|p
k−1|n + r2∇u−λ1 −λ2.

Here, c can be either positive or negative. For each case, there is the closed-form solution
for solving p-sub problem. If c is positive, then we have the following closed-form solution
for p

p(i, j) =
1

r1 + r2
max
n

0,1−
c

|q(i, j)|

o
· q(i, j).

And if c is negative, the solution for p is

p(i, j) =
1

r1 + r2

�
1−

c

|q(i, j)|

�
· q(i, j),

which belongs to the case when c is positive.
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Therefore, for fixed u, n and h, the closed-form solution for p in (4.5b) can be summa-
rized as

ep l =
1

r1 + r2
max
n

0,1−
c

|q |

o
· q . (5.11)

According to the rule of indexing variables in Fig. 1, the first and second component of
p, n, λ1 and λ2 are defined on ◦-nodes and �-nodes, respectively. The discretization of c
and q at (i, j) ∈ ◦-node is obtained as follows:

c(i, j) = a+ b
�h(i + 1, j) + h(i, j)

2

�2
− λ11(i, j)n1(i, j)− A◦

i, j(λ12)A
◦
i, j(n2),

q1(i, j) = r2

�
u(i + 1, j)− u(i, j)

�
+ r1|p

k−1|n1(i, j)− λ11(i, j)−λ21(i, j),

q2(i, j) =
r2

2

�u(i + 1, j + 1) + u(i, j+ 1)

2
−

u(i+ 1, j − 1) + u(i, j− 1)

2

�

+ r1|p
k−1|A◦

i, j(n2)− A◦
i, j(λ12)− A◦

i, j(λ22).

Similarly, a discretization of c and q at (i, j) ∈ �-node is obtained as follows:

c(i, j) = a+ b
�h(i, j+ 1) + h(i, j)

2

�2
− A�

i, j(λ11)A
�

i, j(n1)−λ12(i, j)n2(i, j),

q1(i, j) =
r2

2

�u(i + 1, j + 1) + u(i+ 1, j)

2
−

u(i− 1, j + 1) + u(i− 1, j)

2

�

+ r1|p
k−1|A�

i, j(n1)− A�
i, j(λ11)− A�

i, j(λ21),

q2(i, j) = r2

�
u(i, j+ 1)− u(i, j)

�
+ r1|p

k−1|n2(i, j)− λ12(i, j)−λ22(i, j).

5.2.3. The n-sub problem

We denote fixed variables ep l and ehl−1 as p and h, respectively. For the n-sub problem, the
Euler-Lagrange equation for the energy (4.5c) is the following linear coupled PDEs

−r3∇(∇ · n) + r1|p|
2n = r1p|p|+λ1|p| − r3∇h−∇λ3. (5.13)

Note that the operator ∇(∇·) is singular. Due to the possibility of |p| = 0, we add a
quadratic penalty term to (4.5c) to avoid the singularity. Therefore, we rewrite E3(n) as
follows

E3(n) = −

∫

Ω

λ1 · |p|n+
r1

2

∫

Ω

(p − |p|n)2 −

∫

Ω

λ3∇ · n

+
r3

2

∫

Ω

(h−∇ ·n)2 +
γ

2

∫

Ω

(n − nk−1)2, (5.14)

where γ is a positive constant. In the experiments, γ could be chosen to be a very small
number.
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We have the following optimality condition for the n-sub problem (5.14) by its Euler-
Lagrange equation
�
γ+ r1|p|

2− r3∇div
�

n = γnk−1 + r1p|p|+λ1|p| − r3∇h−∇λ3. (5.15)

Eq. (5.15) is coupled PDEs of the variable n = (n1, n2). When we compute the compo-
nent n1, we use the n2 in previous iteration

(γ+ r1|p|
2− r3∂

2
x )n1 = γn

k−1
1 + r3∂x∂y n2 + r1p1|p|+λ11|p| − r3∂xh− ∂xλ3,

and vice versa, when solve n2, we use the n1 in previous iteration

(γ+ r1|p|
2− r3∂

2
y )n2 = γn

k−1
2 + r3∂y∂x n1+ r1p2|p|+λ12|p| − r3∂yh− ∂yλ3.

Similarly to the u-sub problem, the one sweep Gauss-Seidel iteration gives the updated
en l . Compared to the frozen coefficient FFT method in [33], the proposed method for the
n-sub problem is easy to implement and solves the PDEs with low computational cost.

5.2.4. The h-sub problem

We denote fixed variables ep l and en l as p and n, respectively. For the h-sub problem, we
have the Euler-Lagrange equation of the functional (4.5d) as follows

(2b|p|+ r3)h= r3∇ · n −λ3. (5.16)

We can obtain a closed-form solution of h by solving the first-order equation (5.16).
For fixed p and n, the minimizer of E4(h) is solved as follows

ehl =
r3div•i, j(n)−λ3

2b|A|•
i, j(p) + r3

.

5.2.5. Update Lagrange multipliers

We update Lagrange multipliers λ1, λ2, λ3 and λ4 using the staggered grid as shown in
Fig. 1. The discretized form of equations from (4.4a) to (4.4c) and (5.4) is written as:

λk
11 = λ

k−1
11 + r1(p

k
1 − |p

k|nk
1) at ◦ -nodes,

λk
12 = λ

k−1
12 + r1(p

k
2 − |p

k|nk
2) at �-nodes,

λk
21 = λ

k−1
21 + r2(p

k
1 − ∂

+
1 uk) at ◦ -nodes,

λk
22 = λ

k−1
22 + r2(p

k
2 − ∂

+
2 uk) at �-nodes,

λk
3 = λ

k−1
3 + r3(h

k − div•i, j(n)) at • -nodes,

λk
4 = λ

k−1
4 + r4(v

k− uk) at • -nodes.

We summarize the solutions to subproblems of both the existing algorithm in [33] and
the proposed algorithm in Table 1.
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Subproblem Our proposed algorithm The existing algorithm in [33]

v-sub problem closed-form solution closed-form solution
u-sub problem GS of linear PDE FFT of linear PDE
p-sub problem closed-form solution closed-form solution
n-sub problem GS of coupled linear PDEs FFT of coupled linear PDEs

h/m-sub problem first order equation closed-form solution

6. Numerical examples

In this section, we present the numerical results to demonstrate the efficiency of the
proposed algorithm. Although we emphasis image denoising in our work, the examples of
image inpainting and zooming are also included. In all the experiments, we set γ = 0.01.
The system is a 2.4 GHz CPU and 4GB memory.

During the iterations, we define the relative error of the solution {uk|k = 1,2, · · · } and
we stop the iteration when the relative error is less than the given error tolerance, that is

‖uk − uk−1‖L1

‖uk−1‖L1

≤ ε. (6.1)

We also define the numerical energy of the Euler’s elastica model as follows

Ek =

∫

Ω

�
a+ b(hk)2
�
|pk|+

µ

2

∫

Ω

(vk− u0)
2. (6.2)

We monitor the relative residuals of variables in (4.3), which are defined as

(Rk
1,Rk

2,Rk
3,Rk

4)

=
�‖pk − |pk|nk‖L1

|Ω|
,
‖pk −∇uk‖L1

|Ω|
,
‖h−∇ · n‖L1

|Ω|
,
‖v − u‖L1

|Ω|

�
. (6.3)

Correspondingly, the relative errors of the Lagrange multipliers are obtained by

(Lk
1, Lk

2 , Lk
3 , Lk

4)

=
�‖λk

1 −λ
k−1
1 ‖L1

‖λk−1
1 ‖L1

,
‖λk

2 −λ
k−1
2 ‖L1

‖λk−1
2 ‖L1

,
‖λk

3 −λ
k−1
3 ‖L1

‖λk−1
3 ‖L1

,
‖λk

4 −λ
k−1
4 ‖L1

‖λk−1
4 ‖L1

�
. (6.4)

In addition, we use the signal-to-noise ratio (SNR) to estimate the difference between
restored image u and original image uc for image denoising applications

SNR(uk,uc) = 10 log10

� ∑
i, j(u

k(i, j)− a1)
2

∑
i, j(|u

k(i, j)− uc(i, j)| − a2)
2

�
, (6.5)

where a1 and a2 are the average of uk and uk − uc, respectively.
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In the Euler’s elastica functional (1.6), there are three parameters: a, b and µ. By
using the augmented Lagrangian method, we have four more parameters r1, r2, r3 and
r4 associated with Lagrange multipliers λ1, λ2, λ3 and λ4, respectively. We set the values
of these parameters according to different applications. Most notably, the parameter µ is
chosen to be quite different for image denoising, inpainting and zooming examples. We
will indicate the choice of these parameters in each example.

6.1. Image denoising

In this subsection, we explore the numerical results of the proposed algorithm for image
denoising applications. We consider denoising examples with Gaussian white noise and
Salt & pepper noise.

6.1.1. Comparison examples with the existing algorithm (THC)

In the first place, we compare the proposed algorithm with the existing algorithm (THC)
in [33]. Our algorithm is implemented in C++ and THC algorithm is implemented in
Matlab environment. For a fair comparison, we set a = 1, b = 10, µ = 100 and r1 = 2 for
both algorithms and stop the iteration if the relative error of the solution {uk|k = 1,2, · · · }
satisfies the same error tolerance. In Fig. 2, we choose two test images: Test (Row one) and
Shapes (Row two) and add Gaussian white noise with mean zero and standard deviation
10 to them. We use ε = 3×10−4 for example Test and ε= 2×10−4 for example Shapes and
display the results from the Euler’s elastica energy (1.6) in Fig. 2. We list the comparison
results of the computational time, SNR and iteration number in Table 2.Table 2: The omputational time (se) of our proposed algorithm is ompared with the method (THC)in [33℄ for the results in Fig. 2. The omputational time is measured in seonds.

Images Size Our proposed algorithm The existing algorithm (THC)
SNR Iteration Time SNR Iteration Time

Test 60× 60 26.60 113 1.16 25.60 134 30.68
Shapes 100× 100 26.17 111 3.03 26.30 145 94.77

In comparison to the existing algorithm in [33], our algorithm can usually save the
outer iteration to achieve the same relative error; see Table 2. Besides, the subproblem
for the variable n in THC requires inner iterations for the convergence, while the inner
iteration is only once for u-sub problem and n-subproblem in the proposed Euler’s elastica
formulation. Therefore, our algorithm can save computational cost in both inner iteration
and outer iteration, which makes it superior to the previous algorithm in [33]. In Fig. 3,
plots of relative error, numerical energy and residuals versus iteration numbers are shown
for Test and Shapes in Table 2. From these plots, we can see that the relative error in
uk (6.1), numerical energy (6.2) and residuals (6.3) of the proposed algorithm converge
more stable compared to THC algorithm, which demonstrate that the proposed algorithm
is more reliable and efficient in practice.
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(a) Clean image (b) Noisy image (c) Our Algorithm (d) THCFigure 2: Denosing omparison results. For Test (Row one), we set r2 = 500, r3 = 100 in proposedalgorithm and r2 = 2, r3 = 600 in THC. For Shapes (Row two), we set r2 = 500, r3 = 10 in proposedalgorithm and r2 = 50, r3 = 100 in THC.
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(f) Residuals from ShapesFigure 3: Plots of (6.1), (6.2) and (6.3) values versus iteration numbers for examples shown in Fig. 2.In eah pair, the left one is from our proposed algorithm and the right one is from THC.
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6.1.2. Examples on synthetic and real-world images

In Figs. 4 and 5, we show the denoising results of our proposed algorithm for synthetic
images and real-world images, respectively. We add the Gaussian white noise with mean
zero and the standard deviation 10 to the test images and use the L2 data fitting term
(t = 2) to remove the noise. In Fig. 4, we display the noisy images and the restored
images and in Fig. 5, from left to right, we show the noisy images, the restored images

(a) (b)

(c) (d)Figure 4: Euler's elastia based image denoising for Gaussian noise. We set a = 1, b = 2, µ = 100,
r1 = 2, r2 = 200 and r3 = 20. The tolerane is 1.2 · 10−4 for (a), 1 · 10−4 for (b), () and 3.5× 10−4 for(d).

(a)

(b)Figure 5: Euler's elastia based image denoising for Gaussian noise. We set a = 1, b = 2, µ = 180,
r1 = 2, r2 = 200 and r3 = 20. The tolerane is 3.5× 10−4.
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(a) Example in Fig. 4 (d)
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(b) Example in Fig. 5 (a)Figure 6: Plots of (6.1), (6.2), (6.3) and (6.4) values versus iteration numbers for examples shown inFig. 4 (d) and Fig. 5 (a).
and the superimposed differences between the noisy images and the restored images. We
summarize the size of images, SNR, number of outer iteration k and computational time
in Table 3 for the test images in Figs. 4 and 5.Table 3: The size of images and the SNR for images in Figs. 4 and 5 are shown. The omputationaltime is measured in seonds.

Images Size SNR # of iteration Time (sec)
Fig. 4(a) 60× 60 21.54 92 0.99
Fig. 4(b) 100× 100 26.20 104 2.92
Fig. 4(c) 100× 100 23.12 83 2.33
Fig. 4(d) 128× 128 25.59 93 4.27
Fig. 5(a) 256× 256 18.81 67 12.10
Fig. 5(b) 332× 216 17.40 93 18.14

Based on synthetic image (d) in Fig. 4 and real image (a) in Fig. 5, we plot the rel-
ative error in uk (6.1), numerical energy (6.2), relative residuals (6.3), relative errors of
Lagrange multipliers (6.4) and SNR (6.5) versus the outer iterations k in Fig. 6. Here, all
the graphs are drawn up to 1000 iterations. By doing so, we can easily observe that our
algorithm converges well in the numerical experiments.
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(a)

(b)Figure 7: Euler's elastia based image denoising for salt & pepper noise. We set a = 5, b = 20, µ = 5,
r1 = 1, r2 = 10, r3 = 1 and r4 = 20 for both (a) and (b). The tolerane is 1.7×10−3 for (a) and 1.8×10−3for (b).

In Fig. 7, we show the numerical results for image denoising applications with images
corrupted by the salt & pepper noise. We add the salt & pepper noise with a noise density
0.4 to both test images. For this case, we use the L1 data fitting term (t = 1) in the
functional (1.6). We display the noisy images and restored images in Fig. 7 and list the
size of images, SNR, number of outer iteration k and computational time in Table 4.Table 4: The size of images and the SNR for images in Fig. 7 are shown. The omputational time ismeasured in seonds.

Images Size SNR # of iteration Time (sec)
Fig. 7(a) 700× 512 19.53 50 51.87
Fig. 7(b) 420× 400 19.51 54 26.16

In these experiments, for both L1 and L2 data fidelity term, the proposed algorithm
can produce the restored results of good quality within 100 iteration in most cases. In
comparison to the previous algorithms for handling Euler’s elastica, our algorithm has the
advantages of fast convergence, which is very crucial for solving the high order model.

6.1.3. Examples on medical images

It is well-known that noise exists in computed tomography (CT) images. We conduct two
experiments of Euler’s elastica model on really liver CT data. Two slices of liver CT images
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(a)

(b)Figure 8: Euler's elastia based image denoising for CT liver images. We set a = 1, b = 10, µ = 50,
r1 = 2, r2 = 200 and r3 = 10 for both (a) and (b). The tolerane is 6× 10−4 for (a) and 1.3× 10−3 for(b).
are selected from two data set, which are displayed in the fist column of Fig. 8. We use
the L2 data fidelity term (t = 2) in (4.1) for both experiments. The restored images and
the superimposed differences between original images and restored images are shown in
the second and third column of Fig. 8, respectively. As illustrated by these two experi-
ments results, our Euler’s elastica model can successfully remove the noise containing in
CT images.

6.2. Image inpainting

In this subsection, we illustrate the efficiency of the proposed algorithm via examples
in image inpainting. Suppose an image u0 has a local patch damaged or missing, the
desirable task of inpainting is to reconstruct the domain by using the information from
surrounding areas. For the inpainting domain D ⊂ Ω, we use the Euler’s elastica energy to
interpolate the image values by solving the following minimization problem

min
u

∫

Ω

�
a+ b
�
∇ ·
∇u

|∇u|

�2�
|∇u|+

µ

t

∫

Ω

|u− u0|
t , (6.6)

where µ is defined as µ times an indicator function

µ =

¨
µ, if u ∈ Ω\D,
0, if u ∈ D.

(6.7)
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For image inpainting, we can use either the L1 (t = 1) or L2 (t = 2) data fitting term
in the functional (6.6). Compared to the image denoising case, the difference lies in the
v-sub problem if the L1 data fitting is used otherwise the difference exists in the u-sub
problem when the L2 data fitting is concerned. More specifically, we give the solution to
the v-sub problem and the u-sub problem under these two cases as follows:

• t = 1:
In the discrete setting, for a grid point (i, j) ∈ Ω\D, the minimizer of v(i, j) is

v(i, j) = shrink
�

u(i, j)−
λ4(i, j)

r4
− u0(i, j),

µ

r4

�
+ u0(i, j).

For a grid point (i, j) ∈ D, the minimizer of v(i, j) is

v(i, j) = u(i, j)−
λ4(i, j)

r4
.

• t = 2:
For a grid point (i, j) ∈ Ω\D, the minimizer of u(i, j) is solved by the equation

(µ− r2∆)u(i, j) = µu0(i, j)− r2divp(i, j)− divλ2(i, j).

For a grid point (i, j) ∈ D, the minimizer of u(i, j) is

−r2∆u(i, j) = −r2divp(i, j)− divλ2(i, j).

Similar to the case of the n-sub problem, we avoid the singularity of the above linear
system by adding a quadratic penalty term to the energy functional.

In Figs. 9 and 10, we display the inpainting results from the elastica energy (6.6) with
t = 1 and t = 2, respectively. Since we need u to be close to u0 in Ω\D, we set µ to be 1000
for the test images in Figs. 9 and 10. In Table 5, we show the number of unknowns in the
inpainting domain, the size of images, SNR, number of outer iteration k and computational
time corresponding to the results in Figs. 9 and 10.

From these experiments, we can see that Euler’s elastica energy can successfully recover
the shapes for the inpainting domain even when the portion of unknown pixels are very
large in the test images, i.e., 84.9% in Fig. 9 and 69.96% in Fig. 10.Table 5: The number of unknowns in the inpainting domains, the size of images and the SNR for imagesin Figs. 9 and 10 are shown. The omputational time is measured in seonds.

Images Size Unknowns
# of
iteration

Time
(sec)

Percentage of
unknown pixels

Fig. 9 (a) 100× 100 8496 213 6.04 84.96%
Fig. 9 (b) 300× 235 42114 137 26.55 59.74%
Fig. 10 (a) 100× 100 6996 105 2.88 69.96%
Fig. 10 (b) 484× 404 14258 197 103.40 7.29%
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(a)

(b)Figure 9: Euler's elastia based image inpainting with t = 1 in (6.6). We set a = 10, b = 20, µ = 1000,
r1 = 1 and r2 = 50, r3 = 20, r4 = 30 for (a); r2 = 50, r3 = 10, r4 = 30 for (b). The tolerane is 1.8 · 10−3for (a) and 9× 10−4 for (b).

(a)

(b)Figure 10: Euler's elastia based image inpainting with t = 2 in (6.6). We set a = 5, b = 20, µ = 1000and r1 = 1, r2 = 20, r3 = 5 for (a); r1 = 1, r2 = 1, r3 = 20, r4 = 2 for (b). The tolerane is 4 ·10−3 for (a)and 1.5× 10−4 for (b).
6.3. Image zooming

Image zooming is an interpolation problem of changing a given image into a higher or
lower resolution image. Suppose the initial image u0 of size [1, M1]× [1, M2] is enhanced
by the factor r ∈ N , which means that the domain is interpolated onto the domain Ω =
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(a) (b) (c) (d)Figure 11: Euler's elastia based image zooming. (b), () and (d) are resized by a fator of 4 from (a).(b) is obtained by the linearization interpolation. () and (d) are obtained by Euler's elastia with L1and L2 data �tting term, respetively. We set r1 = 30, r2 = 10, r3 = 1, r4 = 10 for () and r1 = 30,
r2 = 10, r3 = 5 (d). The tolerane is 3.5 · 10−3 for () and 4× 10−3 for (d).
[1, r × M1] × [1, r × M2]. The interpolation methods for image zooming problems are
studied and discussed in [18, 23, 25, 35]. By using Euler’s elastica energy, we solve the
following minimization problem

min
u

∫

Ω

�
a+ b
�
∇ ·
∇u

|∇u|

�2�
|∇u|+

µ

t

∫

Ω

|u− u0|
t , (6.8)

where µ is defined as (6.7) and u0 is obtained by

u0(i, j) =





u0

� i
r

,
j

r

�
, if (i, j) ∈ Ω\D,

0, if (i, j) ∈ D.
(6.9)

The values in zooming domain D is interpolated via Euler’s elastica energy. Similarly,
the energy functional (6.8) with both t = 1 and t = 2 are tested in the experiment. We
choose the input image with size 64×64 and enlarge the image by a factor of 4. In Fig. 11,
we show the zooming result of the linear interpolation in (b) and results of the proposed
algorithm with L1 and L2 data fitting term in (c) and (d), respectively. We can see the
superiority of Euler’s elastica in preserving corners and shapes for image zooming. For this
experiment, we set a = 2, b = 20, µ = 100 for both cases with t = 1 and t = 2 and we
have

• t = 1: Iteration: 300 and Time: 57.24s.

• t = 2: Iteration: 299 and Time: 56.71s.

7. Conclusions

In this work, we proposed a simple and efficient augmented Lagrangian approach for
Euler’s elastica. The operator splitting method and decomposition technique are used
to solve the saddle-point problem arising in the augmented Lagrangian formulation. We
applied the fixed-point method to one subproblem to get a closed-form solution. All the
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subproblems in our method can be solved efficiently by fast iterative methods. As the
numerical results of image denoising, image inpainting and image zooming demonstrated,
our method yields better results in terms of computational time than the algorithm in [33]
in the same error setting.
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