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Abstract. In this paper, we present a surface reconstruction via 2D strokes and a vector

field on the strokes based on a two-step method. In the first step, from sparse strokes

drawn by artists and a given vector field on the strokes, we propose a nonlinear vector

interpolation combining total variation (TV) and H1 regularization with a curl-free con-

straint for obtaining a dense vector field. In the second step, a height map is obtained

by integrating the dense vector field in the first step. Jump discontinuities in surface

and discontinuities of surface gradients can be well reconstructed without any surface

distortion. We also provide a fast and efficient algorithm for solving the proposed func-

tionals. Since vectors on the strokes are interpreted as a projection of surface gradients

onto the plane, different types of strokes are easily devised to generate geometrically

crucial structures such as ridge, valley, jump, bump, and dip on the surface. The stroke

types help users to create a surface which they intuitively imagine from 2D strokes. We

compare our results with conventional methods via many examples.

AMS subject classifications: 65K10, 65D18, 65D17

Key words: Surface reconstruction from a sparse vector field, augmented Lagrangian method, two-

step method, curl-free constraint, total variation regularization, preservation of discontinuities in

surface normal vectors.

1. Introduction

Sketch-based interfaces for modeling (SBIM) has been substantially explored by many

researchers because of efficiency and intuitiveness, from the early systems like SKETCH [1]

and Teddy [2] to recent SmoothSketch [3] and FiberMesh [4]. A thorough review of SBIM

systems can be found in [5]. Without lighting or shading cues in photometric stereo [6–8]

∗Corresponding author. Email addresses: JooyoungHahn�gmail.om (J. Hahn), JQiu�ntu.edu.sg (J.

Qiu), eiji�ndesign.o.jp (E. Sugisaki), JIALEI�ntu.edu.sg (L. Jia), tai�math.uib.no (X.-C. Tai),ASHSSEAH�ntu.edu.sg (H. S. Seah)

http://www.global-sci.org/nmtma 297 c©2013 Global-Science Press



298 J. Hahn et al.

or shape-from-shading [9,10], or geometric constraints defined by 3D curve network [11],

the task of 3D model reconstruction from 2D line drawings is more challenging than image-

based 3D reconstruction. A lot of research results have been achieved towards this chal-

lenging task based on contours [2], hidden contours [3], symmetric sketch pairs [12], and

structured annotations [13]. The models created by these systems are limited in struc-

tures of shape. Moreover, surface details such as the crease structure are not considered

in these systems. Note that the crease structure can be added by surficial augmentation

techniques [14]. Motivated by the above mentioned works, we are targeting at a sketch-

based modeling system which can model complex 3D objects with simple sketches. As

the first attempt to this direction, we present our research achievement on surface height

reconstruction via 2D strokes and a vector field on the strokes.

Many surface reconstruction algorithms from surface gradients [15–18] enforce the

integrability for producing correct surface heights. For single-view modeling, the au-

thors [19] used a constrained optimization with many types of geometrical constraints.

The authors [20] showed that the method in [19] requires a lot of user interactions to

provide enough constraints for modeling a desirable surface. Another single-view mod-

eling system [21] used a close form method to reconstruct curved 3D surfaces based on

apparent contour, inflation constraints, and normal specification in the parameter space.

Recently, the authors [22] highlighted that the algorithms in [19–21] have difficulties in

solving three problems in surface-from-gradients: handling sparse gradients, preserving

sharp features, and preventing surface distortion. To solve these problems, Gaussian ker-

nel approach without discrete integrability enforcement is used in [22]. Our proposed

method is also capable of handling these problems because of TV regularization and curl-

free constraints imposed in a nonlinear vector interpolation. On the top of this, we provide

a very fast and efficient algorithm to solve the proposed energy functionals via augmented

Lagrangian method [23].

Based on the observation that humans are good at assigning local surface normals for

specifying local shape [24], the authors in [20, 25] achieved stroke-based surface recon-

struction in two steps. In the first step, dense surface normals are obtained from sparse

vectors on given strokes via linear vector interpolation methods. In the second step, the

dense normals are integrated for reconstructing a height map. In LUMO method [25], a

method of interpolating vectors is based on so-called Telegrapher’s equation (the damped

wave equation). In ShapePalettes [20], an energy functional minimization is used and the

main mechanism of interpolation is based on a parabolic type partial differential equation

(PDE) with the fourth order term related to a surface curvature. The advantage of LUMO

and ShapePalettes methods is that the governing equations are linear PDEs so that stan-

dard efficient numerical solvers such as the multigrid method or the fast Fourier transform

(FFT) can be applied. However, the disadvantage is that both models are based on the

Laplace operator which strongly enforces the smoothness in interpolated vector field. That

is, the assigned vectors on strokes are diffused into the whole domain and then eventually

averaged out in the final steady state. Therefore, interpolated vector fields from LUMO

and ShapePalettes simply yield smooth surfaces; see Figs. 12 and 13.

The pioneering work for surface reconstruction from sparse information based on an
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(a) (b) (c) (d)Figure 1: Phoenix example: (a) is a line drawing by an artist, referring to an anient Chinese phoenixshape. (b) is the automatially assigned default initial vetors (needle map). () is the dense vetorsobtained by the proposed nonlinear vetor interpolation from the sparse vetors in (b). (d) is thereonstruted surfae.
energy minimization approach is the visible-surface representations in [26]. An weighted

H1 norm of data and its gradient with discrete fidelities control the local smoothness of

reconstructed surface. However, it is still difficult to approximate a proper weight function.

More advanced method to deal with local smoothness is to use TV norm of data [27]. As

jump discontinuities under TV norm of data are easily preserved without weight functions,

discontinuities of surface gradient such as valleys or ridges are also recovered by TV norm

of data gradient. We explore even further to devise a method for stroke-based surface

reconstruction via a combination of TV and H1 norm. The combination gives artists more

freedom to create various types of surface geometries.

We use the same procedure proposed in [20] which generates a surface height map

from sparse strokes and a vector field on the strokes. The procedure with the results from

our method is illustrated in Fig. 1. In the drawing stage (a), an artist first draws basic 2D

shapes with strokes. In [20], vectors on the strokes are manually assigned based on a 3D

reference model. However, we provide automatic assignment for initial vectors orthogonal

to the strokes tangents with a constant magnitude; see Fig. 1-(b). The vectors can be easily

adjusted by the artist according to a more detailed surface shape. Considering assigned

vectors as a projection of surface normal vectors onto the plane, different types of strokes

are easily devised to generate geometrically crucial structures such as ridge, valley, jump,

bump, and dip on the surface.

In this paper, the proposed method for surface reconstruction is divided into two steps:

vector interpolation and height map reconstruction. In the interpolation stage in Fig. 1-

(c), we propose a nonlinear vector interpolation to obtain the dense normal vectors from

sparsely distributed vectors in (b). The TV regularization in the vector interpolation can

preserve discontinuities in the vector field. While the assigned vectors are interpolated

in the domain, the integrability constraint is well imposed almost everywhere. Moreover,

this constraint does not introduce any distortion on a reconstructed surface. In the re-

construction stage in Fig. 1-(d), a height map is reconstructed via integrating the dense

normal vectors obtained in the interpolation stage. The TV regularization in height map

reconstruction can preserve jump discontinuities on a reconstructed surface without over-

shooting or undershooting.
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The main contributions of our research are summarized as follows:

• Strokes are categorized to create crucial structures such as ridge, valley, jump, bump,

and dip on the surface. The stroke types help users to create a surface which they

intuitively imagine from 2D strokes; see Figs. 10-(d) and 14.

• A nonlinear vector interpolation and height map reconstruction method are proposed

based on minimization of energy function. The interpolated vector field satisfies

the integrability condition almost everywhere, which makes more desirable results

corresponding to given strokes and vector settings; see Figs. 7 and 6.

• A combination of TV and H1 regularization can present geometrically crucial struc-

tures; see Figs. 8 and 10-(b).

• Even though the nonlinear process is used in both vector interpolation and height

map reconstruction, very fast and efficient numerical solvers are proposed based on

augmented Lagrangian method [23,28].

The paper is organized as follows. In Section 2, we classify strokes into several types

and describe the meaning of vectors on the strokes. In Section 3, our proposed functionals

for nonlinear vector interpolation and height map reconstruction are introduced. Then, we

explain the proposed numerical solvers which are fast and practically easy to implement in

Section 4. In Section 5, we compare with the existing state-of-the-art applications in terms

of quality and demonstrate many examples. The conclusion and future work are described

in Section 6.

2. Vector settings on strokes

2.1. Stroke definition

In terms of sketch-based modeling for surface reconstruction, it would be better to use

simple line drawings which capture the characteristics of surface. The strokes in our paper

have the style of silhouette drawing as cleaned-up vectorized strokes in Fig. 1-(a). Shading,

highlighting, hatching strokes, and stippling are not considered.

2.2. Stroke classification

Inspired by a recent study on where artists draw lines to convey 3D shapes [29], hu-

man vision easily detects jump, ridge or valley, bump or dip on surfaces. Therefore, we

classify strokes into different types to reconstruct distinctive structures. Note that jump

discontinuity is regarded as discontinuity of surface height which appears to be a step-like

structure. Fig. 2 shows examples of stroke types and corresponding surface structures.

Different types of strokes are illustrated as regular (black solid line), ridge (gray dashdot

line), valley (black dashdot line), jump (black dotted line), bump (gray dashed line), and

dip (black dashed line).
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(a) Ridge or valley strokes (b) Bump or dip strokes (c) Jump strokesFigure 2: E�ets of the di�erent types of strokes.
2.3. Vector settings

The main reason why we can reconstruct a proper height map indicated by different

types of strokes is that we assign geometrically meaningful vectors on the strokes and we

adopt a nonlinear vector interpolation to obtain a dense normal vector field which satisfies

the integrability condition.

In this subsection, the meaning of vectors on different strokes is explained and we

demonstrate how easy it is to slightly modify initial vectors for obtaining more desirable

surfaces. The modification is very intuitive as long as one can understand the geometrical

meaning of assigned vectors on each stroke, which is explained as follows.

In our method, the default initial vectors on given strokes are orthogonal to the stroke

tangents with a constant magnitude. We regard the assigned vectors as the projection of

3D surface normals with desired height map z = I(x1, x2) onto a 2D plane. That is, since

the direction of surface normal vector is

(−∂1I ,−∂2 I , 1),

the assigned vectors n∗ on all strokes (except jump strokes) are considered as −∇I ≡
(−∂1I ,−∂2 I).

The direction of vector n∗ indicates that the height of surface I is decreasing along the

direction. The magnitude of vector n∗ controls the rate of change in surface height. If the

magnitude of the vector becomes larger, the change of the surface height becomes steeper.

Note that the assigned vectors on jump strokes are not regarded as the projection of 3D

surface normals but the magnitude of assigned vectors represents the size of the jump.
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(a) (b) (c) (d)Figure 3: HSV vetor representation and vetor needle map for initial vetors on strokes: (a) HSV olormap, (b) default vetor setting, () User-de�ned setting, and (d) T-juntion handling.
For efficiently illustrating vectors on strokes, we adopt the HSV color map with the

value V = 1 in Fig. 3-(a). A default initial vector setting on all strokes is shown as nee-

dle map with HSV color map in Fig. 3-(b). Artists can easily change the direction and

magnitude of vectors flexibly, for example in Fig. 3-(c). The magnitudes of vectors near

the T-junctions along the visible part of the occluded contour are automatically reduced to

avoid affecting the vectors specified for the contour occluding it, as shown in Fig. 3-(d).

Regular strokes are most commonly used to make an overall shape of reconstructed

surface. Default initial vectors on regular strokes generate a default height map accord-

ingly; see Figs. 1-(d) and 4-(a). The only user interaction is to slightly modify magnitudes

or directions of vectors for reconstructing more desired surface. The effect of modification

is easily expected. In Fig. 4-(b), increasing vector magnitudes on strokes of nose creates

(a) (b) (c)Figure 4: The hanges of the magnitude or diretion of vetor settings a�et the shape of surfaes: (a)Default initial vetor. (b) Inreasing vetor magnitudes on strokes of nose makes the nose higher. ()Rotating the vetor diretions on strokes of ears twists the shape of surfae.
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(a) Jump (b) Bump (c) DipFigure 5: Base stroke and strokes of interest (SOI) on jump, bump, and dip strokes: The blak, blue andred arrows indiate the normal diretions for the regular stroke, surfae, and base stroke, respetively.The �rst, seond, and third rows are oneptual drawings. The �rst and third rows show the surfaeswithout and with jump, bump, and dip strokes, respetively. The seond row shows the hange of thesurfae normals on the base stroke. The vetors on the SOIs are same as the projetion of the givensurfae normal. The fourth row shows the reonstruted surfaes. The indiated strutures by jump,bump, and dip strokes are well reonstruted on the top of the given surfae shape.
a higher nose than (a). In Fig. 4-(c), rotating the directions of vectors on strokes of ears

(anti-clockwise for 15 degrees) creates twisted shape of surface. Note that we apply the

rotation of vectors only to regular strokes. Although the rotation of vectors on other types

of strokes changes the geometry of reconstructed surface, the practical effect is not very

intuitive. For making the system user-friendly, we simply ignore the rotation of vectors on

other types of strokes.

A ridge (or valley) stroke generates a sharp ridge (or valley) on the reconstructed

height map. It is composed of two adjacent parallel regular strokes. For sharp ridge (or

valley) structure, initial vector settings on two parallel regular strokes have repulsive (or

attractive) directions and they are orthogonal to stroke tangents. The same idea is sug-

gested in ShapePalettes [20]. Since we do not change the directions of vectors on ridge

and valley strokes, the user interaction allowed is to change the magnitudes of vectors.

The larger magnitude of assigned vectors creates steeper ridge (or deeper valley) structure

in the reconstructed surface.

Jump, bump, and dip strokes are utilized to generate more exquisite structures on the

top of the given surface shape. Each type of them is composed of a base stroke and strokes

of interest (SOI); see Fig. 5.
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Jump stroke has two SOIs which are parallel and adjacent to its base stroke in Fig. 5-

(a). The magnitude of vector on the base stroke indicates the size of jump. The surface

height on the base stroke is suddenly decreased along the directions of vectors on the base

stroke. Note that the magnitudes of vectors on the base stroke are not projected surface

gradients. The vectors on SOIs are chosen to be the projection of given surface normals at

the position of SOIs to reflect the given surface structure. If there is no given surface, the

vectors on SOIs are initialized as zero.

A bump (or dip) stroke has one SOI which is parallel and adjacent to its base stroke

in Figs. 5-(b) and (c). The vectors on SOI are chosen as same as the projection of given

surface normals at the position of SOI. If there is no given surface, the vectors on SOIs are

initialized as zero. The magnitudes of vectors on the base stroke have same meaning as

those of vectors on regular strokes.

A procedure of using different strokes is as follows. First of all, artists draw a rough

shape of desired surface by regular strokes. Ridge or valley strokes can also be drawn. The

default setting of assigned vectors generates a default surface. Artists can easily modify the

magnitude or direction of vectors for obtaining more desirable surfaces. For reconstructing

more detailed structures, jump, bump, or dip strokes are provided.

3. Proposed method

In this section, we present a reconstruction of height function z = I(x1, x2) on a com-

putational domain Ω ⊂ R2 from sparse strokes Γ ( Ω and a vector field n∗ = (n∗1, n∗2)
T

on Γ. From the proposed nonlinear vector interpolation in Subsection 3.1, we obtain the

dense normal vector n = (n1, n2)
T on Ω. After obtaining the vectors, we find a surface I

whose gradient field fits the dense vector field n in Subsection 3.2.

3.1. Nonlinear vector interpolation

First of all, we review a theorem in vector calculus. If the domain Ω ⊂ R2 is simply

connected,

∇× n≡ ∂1n2 − ∂2n1 = 0

if and only if ∃I : Ω→ R s.t. ∇I = n.

Since we reconstruct a height map I whose gradient fits the interpolated vectors n, the

curl-free condition on the vector field n should be guaranteed. Note that the curl-free

condition is usually known as the integrability condition in visible surface reconstruction.

Now, for obtaining a dense curl-free vector field n from a given vector field n∗ on the

strokes Γ, we propose an energy minimization functional:

min
n

¨

Ev(n)≡
∫

Ω

(1− g)|∇n|F + g|∇n|2F +η
∫

Γ

|n− n∗|, with ∇× n= 0

«

, (3.1)
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where η is a positive constant, g is an indicator function, | · | is the Euclidean norm in R2,

and | · |F is the Frobenius norm:

|∇n|2F =
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�
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�

�
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∂ jni

�2
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Note that the integration domain Γ should include all SOIs and base strokes in jump, bump,

and dip strokes. The first term (weighted TV regularization) of Ev(n) in (3.1) generates

nonlinear diffusion. It preserves discontinuities in the vector field such as creases or jumps.

The second term (weighted H1 regularization) yields linear diffusion. That is, it smears

out discontinuities in the vector field. The third term is the penalty to preserve n∗ on Γ in

the interpolated vector field n.

The curl-free constraint on the interpolated vector n is not only a necessary and suffi-

cient condition to find a surface I with ∇I = n but also gives an extra force to interpolate

sparse vectors over a large domain; see inpainting examples in [30]. In Figs. 6 and 7, we

illustrate the crucial effect of curl-free constraint which makes a clear difference in practi-

cal examples. In Fig. 6-(a), an implicit meaning around T-junctions in drawn strokes on 2D

usually represents a hierarchical structure of height field in 3D. That is, our vision system

tends to perceive the region A is higher than the region B around T-junctions (red dots)

because a part of B is occluded by the region A. It is difficult to observe such structures

in (b) because H1 regularization without curl-free constraint is simply average of vectors

on strokes. However, it is easily to see the curl-free constraint reflects an implicit meaning

around T-junctions in (a) into a reconstructed surface in (c). In Fig. 7, if we do not impose

curl-free constraint, initial vector setting does not effectively affect reconstructed surface;

see the comparison between (c) and (e) (or (d) and (f)). The difficulty in applying the

curl-free constraint is that the constraint can not be satisfied within all over the domain Ω

because it is violated at discontinuities in the vector field. In Subsection 4.1, we propose

an algorithm to satisfy the curl-free constraint almost everywhere based on augmented

Lagrangian method.

(a) (b) ∇× n 6= 0 (c) ∇× n= 0Figure 6: E�et of integrability ondition: (a) is strokes drawn by an user. (b) and () are results of
H1 regularization without and with url-free onstraint, respetively. It is lear to see that the url-freeonstraint re�ets an impliit meaning (olusion) around T-juntions (red dots) in 2D sketh in (a);see details in Subsetion 3.1.
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(a) (b)

(c) (d)

(e) (f)Figure 7: The e�et of url-free onstraint: (a) is regular strokes and (b) is an initial vetor setting.() and (d) are the results from H1 and TV regularization without url-free onstraint, respetively. (e)and (f) are the results from H1 and TV regularization with url-free onstraint, respetively. Comparingthese results, we an observe that url-free onstraint yields reonstruted surfaes whih are morereasonably a�eted by initial vetor setting.
The reason why we combine TV and H1 regularization in the proposed functional is

that the combination can generate various kinds of geometries in reconstructed surfaces.

The TV norm preserves discontinuities in an interpolated vector field while the H1 norm

forces smoothness in the vector field; see Figs. 7-(f) or 8-(d) (TV norm) and 7-(e) or 8-

(e) (H1 norm). That is, discontinuities in an assigned vector field on the strokes are well

interpolated in the domain under the TV regularization, but they are smeared into the

domain under the H1 regularization. If there is extra information to indicate where such

discontinuities are located in Ω, the algorithm in [22] can also preserve the discontinuities.

However, it is a very difficult task to find possible locations of discontinuities in a whole

domain just from the vectors on strokes. The TV regularization does not need to have

extra information to preserve discontinuities in the vector field. Considering the difference

between TV and H1 regularization, it is reasonable to set the indicator function g = 0 on
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(a) (b) (c)

(d) g = 0 (e) g = 1 (f)Figure 8: The role of indiator funtion g in (3.1): (a) is regular strokes and (b) is the vetor settingon the strokes. Diretion of assigned vetors on the ross shape in the retangle is parallel to stroketangent. In (), g = 0 in the textured region and g = 1 elsewhere. (f) shows a ombination of (d) and(e) aording to the indiator funtion g in ().
jump, ridge, valley, bump, and dip strokes. Moreover, if artists want to preserve disconti-

nuities of surface gradients in a specific region, it is simply achieved by setting g = 0 in the

region; see Figs. 8-(c) and 10-(a).

In Fig. 8, we illustrate an example shown in [31] to show clear difference between

TV and H1 regularization. In this paper, we demonstrate that the combination of them

generates reasonable surface reconstruction to merge two different surface structures. (a)

is regular strokes and (b) is the initial vector setting on the strokes. Note that direction

of assigned vectors on the cross shape in the rectangle is parallel to stroke tangent. The

initial vector field has seven discontinuous points indicated by the arrows in (b). (d) is

the result of TV regularization (g = 0 in (3.1)). As we expected, the discontinuities in the

initial vector field are well interpolated and it is shown as sharp ridges in the reconstructed

surface. (e) is the result of H1 regularization (g = 1 in (3.1)) which yields a smooth

surface. By setting g = 0 in the textured region and g = 1 elsewhere in (c), we can obtain

a reasonable combination of (d) and (e) as shown in (f). The part of surface in (f), which

corresponds to the textured region in (c), is similar to the surface in (d). The rest of the

surface in (f) is similar to the shape in (e).

3.2. Height map reconstruction

After the dense normal vector field n is obtained by the proposed nonlinear vector

interpolation (3.1), the height map is reconstructed via the minimization of energy func-
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tional:

min
I

¨

Eh(I) =

∫

Ω

(1− h)|∇I −n|+
∫

Ω

h|∇I − n|2+ ξ
∫

Σ

|I − I0|
«

, (3.2)

where I0 is known height values on Σ ⊂ Ω and h is an indicator function. If there is no

prior height information, we use ξ= 0.

The major difference between TV type norm
∫

|∇I−n| and H1 type norm
∫

|∇I−n|2 is

whether the jump discontinuities are allowed in the reconstructed height map or not. The

TV type norm reconstructs the jump discontinuities without surface distortion. However,

the H1 type norm enforces the C0 continuity of the height map because the second term

in (3.2) yields the Laplace operator in the Euler-Lagrange equation. If we apply the H1

type norm to a whole domain, a reconstructed height map easily encounter overshooting

or undershooting problem on the jump strokes. Considering the different effects from TV

and H1 type norm, the value of the indicator function h is 0 on the jump strokes and 1

elsewhere. Since the jump strokes are known as prior information, the settings of h is

automatically determined.

More importantly, when there is no prior height information and no given jump strokes,

h ≡ 1 on Ω is chosen and the proposed functional in (3.2) simply has H1 type norm. In

this case, a solution of Poisson equation is a reconstructed height map whose gradient fits

n. It is justified by the curl-free constraint imposed in (3.1).

4. Proposed numerical solvers

We propose an algorithm for efficiently solving minimization of energy function (3.1)

in Subsection 4.1 and (3.2) in Subsection 4.2. Since the algorithms for (3.1) and (3.2) are

very similar, it is enough to explain the proposed algorithm for (3.1) in detail.

4.1. Minimization of (3.1)

First of all, using a variable splitting method with two variables P and s, we change (3.1)

into a constraint minimization problem:

min
n

∫

Ω

(1− g)|P|F +
∫

Ω

g|P|2F +η
∫

Γ

|s− n∗|,

with P =∇n, s= n, and ∇× n= 0.

In order to solve the above constraint minimization, we introduce the augmented La-

grangian functional Lv(s,n,P;λ f ,λc,Λr):

Lv(·)≡
∫

Ω

(1− g)|P|F + g|P|2F +η
∫

Γ

|s− n∗|+
∫

Ω

Λr · (P−∇n) +
cr

2

∫

Ω

|P−∇n|2F

+

∫

Ω

λ f · (s− n) +
c f

2

∫

Ω

|s−n|2 +
∫

Ω

ωcλc(∇× n)+
cc

2

∫

Ω

(∇× n)2, (4.1)
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where c f , cc, and cr are positive penalty parameters, λ f , λc, and Λr are the Lagrangian

multipliers. If g ≡ 1 on Ω, it is not necessary to use cr , Λr , and P and the algorithm

becomes much simpler.

The weight functionωc is automatically chosen depending on the geometrical structure

on given strokes. That is, ωc = 0 is used on ridge, valley, bump, dip, and jump strokes and

ωc = 1 elsewhere because the interpolated vector field n violates the curl-free constraint at

known discontinuous points in surface height and its gradient. If crease structures (which

violate the curl-free constraint) are generated in the region with ωc = 1, TV regularization

prevents surface distortion; see Fig. 8-(d). One may think that weight function ωc may not

be crucially necessary because of TV regularization. However, the augmented Lagrangian

method (4.1) without ωc makes a problem of choosing substantially small penalty param-

eter cc for examples with strokes which violate the curl-free constraint. The small cc causes

slow convergence and it is not practically useful. Note that we apply the Gaussian linear

filtering with scale parameter 2 to obtain smooth ωc, g in (3.1), and h in (3.2).Algorithm 4.1: Augmented Lagrangian method for (4.1)1. Initialization: s0, n0, P0, λ0
f
, λ0

c
, and Λ0

r
.2. For k ≥ 1, ompute an approximate minimizer �sk,nk,Pk

� of the augmented Lagrangianfuntional with the �xed Lagrange multipliers λk−1
f

, λk−1
c

, and Λk−1
r

:
�

sk,nk,Pk
�

≈ arg minLv

�

s,n,P;λk−1
f

,λk−1
c

,Λk−1
r

�

. (4.2)3. Update Lagrange multipliers
λk

f
= λk−1

f
+ c f

�

sk − nk
�

, (4.3)

λk
c
= λk−1

c
+

cc

ωc

�

∇× nk
�

, (4.4)

Λ
k
r
= Λk−1

r
+ cr

�

Pk −∇nk
�

. (4.5)Note that we use λk
c
= λk−1

c
if ωc is zero.4. Measure the relative residuals and go to Step 2 unless they are larger than an error bound

ε1.
An iterative procedure in Algorithm 4.1 is used to find the saddle point of the aug-

mented Lagrangian functional (4.1) via maximizing the Lagrangian multipliers and mini-

mizing variables s, n, and P. We initialize s0, n0, P0, λ0
f
, λ0

c , and Λ0
r as zero. For k ≥ 1, an

alternating minimization method is used to approximately find a minimizer (sk,nk,Pk) of

the functional Lv(· : λk−1
f

,λk−1
c ,Λk−1

r ) with the previous variables sk−1, nk−1, and Pk−1.

The detailed algorithm for alternating minimization is given in Algorithm 4.2. First of

all, we initialize the variables: s̃0 = sk−1, ñ0 = nk−1, and P̃0 = Pk−1. For l = 1, · · · , L, we
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k−1
f

, λc = λ
k−1
c

, and Λr = Λ
k−1
r

, solvethe following minimization problems alternatively:
s̃l = arg minLv

�

s, ñl−1, P̃l−1;λ f ,λc ,Λr

�

, (4.6)

ñl = arg minLv

�

s̃l ,n, P̃l−1;λ f ,λc ,Λr

�

, (4.7)

P̃l = arg minLv

�

sl , ñl ,P;λ f ,λc ,Λr

�

. (4.8)3. �sk,nk,Pk
�

=
�

s̃L , ñL , P̃L
�.

find minimizers s̃l , ñl , and P̃l in the subproblems from (4.6) to (4.8) by minimizing the

energy functionals

E1(s) =

∫

Ω

c f

2
|s− ñl−1|2 +λ f · s+η

∫

Γ

|s− n∗|, (4.9)

E2(n) =

∫

Ω

cr

2
|P̃l−1−∇n|2F −Λr · ∇n+

cc

2
(∇× n)2

+ωcλc(∇× n) +
c f

2
|s̃l − n|2−λ f · n, (4.10)

E3(P) =

∫

Ω

(1− g)|P|F + g|P|2F +
cr

2
|P−∇ñl |2F +Λr · P. (4.11)

After Lth iteration, sk = s̃L, nk = ñL, and Pk = P̃L are updated. Note that we numerically

observe that L = 1 is enough to obtain desirable results. Before we explain more details of

each minimization, we would like to add the following comments:

• The minimization of functionals (4.9) and (4.11), c.f. (4.6) and (4.8) in Algorithm 4.2,

can be solved by soft thresholding method [28] which requires a simple arithmetic

computation.

• The minimization of functional (4.10), c.f. (4.7) in Algorithm 4.2, is terminated

by solving a system of linear equations over the whole domain Ω. Since a grid is

uniform, FFT can be used to solve equations with a very low computational cost.

Note that there are a lot of fast and efficient methods to solve energy minimization with

TV regularization. For interested readers, please refer to [32–35] and references therein.

In the rest of this subsection, we describe the details of the implementation for mini-

mizing the given functionals in (4.9), (4.10), and (4.11). Especially, we shall present the

details in the staggered grid system in Fig. 9. The variables, s, n, P, λ f , λc, and Λr in the
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(a) (b)Figure 9: (a) is the rule of indexing variables, s, n, P, λ f , λc, and Λr in the augmented Lagrangianfuntional (4.1). (b) is an example of disrete omputational domain whose size is 5× 4.
augmented Lagrangian functional (4.1) are defined on a discrete computational domain

Ω = [1, N1]× [1, N2]:

s =

�

s1

s2

�

, n=

�

n1

n2

�

, λ f =

�

λ f 1

λ f 2

�

,

P =

�

p1

p2

�

=

�

p11 p12

p21 p22

�

, and Λr =

�

λr1

λr2

�

=

�

λr11 λr12

λr21 λr22

�

.

In the staggered grid system, we use physically different locations to evaluate a value of

variables. More precisely, the first and second components of n, s, and λ f are defined

at � and ◦, respectively, in Fig. 9-(a) and p12, p21, λr12, and λr21 are defined at •. The

other variables are defined at Í, but the coordinate (i, j) indicates different position. More

specifically, λc(i, j) is at the green triangle, p11(i, j) and λr11(i, j) are at the red trian-

gle, and p22(i, j) and λr22(i, j) are at the blue triangle. These rules of indexing become

more reasonable when we discretize the Euler-Lagrange equations for (4.10). The peri-

odic boundary condition is applied to all variables. An example whose discrete domain is

[1,5]× [1,4] is shown in Fig. 9-(b).

4.1.1. Minimization of E1(s) in (4.9)

Denoting n= ñl−1, we represent the functional in E1(s) as two parts:

E1(s) = EΩ\Γ(s)+ EΓ(s),
where

EΩ\Γ(s)≡
∫

Ω\Γ
λ f · s+

c f

2
|s− n|2,

EΓ(s)≡
∫

Γ

η|s− n∗|+λ f · s+
c f

2
|s− n∗|2.
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The minimizer in the first energy functional EΩ\Γ(·) is easily obtained because the inte-

grand is a quadratic polynomial in terms of s. For the second energy functional EΓ(·), we

reformulate it as follows:

EΓ(s) =
∫

Γ

η|s− n∗|+ c f

2

�

�

�

�

�

s− n∗+
λ f

c f

�

�

�

�

�

2

+ C ,

where C does not count on the minimization. For each coordinate (i, j) ∈ Γ, we use the

soft thresholding method in [28] and a minimizer s̃l in the problem (4.6) is obtained by

(i, j) /∈ Γ ⇒ s̃l(i, j) = n(i, j)− 1

c f

λ f (i, j),

(i, j) ∈ Γ ⇒ s̃l(i, j) = n∗(i, j) +α(i, j)x0(i, j),

where α=max
�

0,1− η

c f |x0|
�

and x0 = n∗− λ f

c f
.

4.1.2. Minimization of E2(n) in (4.10)

For fixed P = P̃l−1 and s = s̃l , the Euler-Lagrange equation of (4.10) yields a system of

linear PDEs:

−
�

crDr + ccDc − c f I
�

n=∇ ·Λr −∇⊥(ωcλc) +λ f −∇ · P+ c f s, (4.12)

where∇⊥ = (−∂2,∂1)
T,∇·P= (∇·p1,∇·p2)

T, I is a 2×2 identity matrix, Dr = (∂
2
1 +∂

2
2 )I ,

and Dc =∇⊥∇⊥T
. The componentwise expression of (4.12) is as follows:

−
�

cr

�

∂ 2
1 + ∂

2
2 0

0 ∂ 2
1 + ∂

2
2

�

+ cc

�

∂ 2
2 −∂2∂1

−∂1∂2 ∂ 2
1

�

− c f

�

1 0

0 1

���

n1

n2

�

=

�

∇ ·λr1

∇ ·λr2

�

−
�

−∂2(ωcλc)

∂1(ωcλc)

�

+

�

λ f 1

λ f 2

�

−
�

∇ · p1

∇ · p2

�

+ c f

�

s1

s2

�

. (4.13)

The operator Dr is componentwise Laplacian to generates diffusion of n∗ on the strokes.

The differential operator Dc obtained by curl-free constraint makes (4.12) to be coupled

equations. It generates an extra force to interpolate n∗ into the whole domain.

From the standard finite difference scheme with the rule of indexing variables in Fig. 9,

we discretize (4.13) at different nodes: n1 at � and n2 at ◦:

− cr∂
+

1
∂ −1 n1− (cr + cc)∂

+
2
∂ −2 n1+ cc∂

−
1 ∂

+
2

n2 + c f n1

=− ∂ +1 λr11 − ∂ +2 λr12 − ∂ −2
�

ωcλc

�

+λ f 1− cr∂
+
1 p11 − cr∂

+
2 p12 + c f s1, (4.14)

− cr∂
+

2 ∂
−
2 n2− (cr + cc)∂

+
1 ∂
−

1 n2+ cc∂
−
2 ∂

+
1 n1 + c f n2

=− ∂ +1 λr21 − ∂ +2 λr22 + ∂
−

1

�

ωcλc

�

+λ f 2− cr∂
+
1 p21 − cr∂

+
2 p22 + c f s2, (4.15)
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where ∂ +
i

and ∂ −
i

are a standard finite forward and backward difference operators, respec-

tively. Note that ∂ −1 ∂
+
2 = ∂

+
2 ∂
−

1 in (4.14) and ∂ −2 ∂
+
1 = ∂

+
1 ∂
−
2 in (4.15). Now, introducing

the identity operator I f (i, j) = f (i, j) and shifting operators,

S ±1 f (i, j) = f (i ± 1, j) and S ±2 f (i, j) = f (i, j ± 1),

the discretization of (4.14) and (4.15) is written:

�

−cr

�

S +1 − 2I +S −1
�

− (cr + cc)
�

S +2 − 2I +S −2
�

+ c f I
�

n1(i, j)

+ cc

�

S +
2
−I −S −1 S +2 +S −1

�

n2(i, j) = f1(i, j), (4.16)

with

f1(i, j) =−
��

S +1 −I
�
�

λr11 + cr p11

�

+
�

S +2 −I
�
�

λr12 + cr p12

�
�

(i, j)

+
��

I −S +2
�
�

ωcλc

�

+λ f 1 + c f s1

�

(i, j);

and

�

−cr

�

S +2 − 2I +S −2
�

− (cr + cc)
�

S +1 − 2I +S −1
�

+ c f I
�

n2(i, j)

+ cc

�

S +1 −S +1 S −2 −I +S −2
�

n1(i, j) = f2(i, j), (4.17)

with

f2(i, j) =−
��

S +2 −I
�
�

λr22 + cr p22

�

+
�

S +1 −I
�
�

λr21 + cr p21

�
�

(i, j)

+
��

S +1 −I
�
�

ωcλc

�

+λ f 2 + c f s1

�

(i, j).

Adopting the periodic boundary condition to all variables, we apply the discrete Fourier

transform F to solve the discretization of (4.12). The shifting operators represented by fi-

nite difference are essentially a discrete convolution and then its discrete Fourier transform

is the componentwise multiplication in the frequency domain. For discrete frequencies, ui

and u j , we have

FS ±1 f (ui ,u j) = e±
p−1viF f (ui,u j), FS ±2 f (ui ,u j) = e±

p−1v jF f (ui,u j),

where

vi =
2π

N1

ui , ui = 1, · · · , N1, and v j =
2π

N2

u j , u j = 1, · · · , N2.

It yields a system of linear equations:

�

a11 a12

a21 a22

��

Fn1(ui ,u j)

Fn2(ui ,u j)

�

=

�

f1(ui,u j)

f2(ui,u j)

�

.
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The coefficients in the system of linear equations are

a11 = 4cr sin2
vi

2
+ 4(cr + cc) sin

2
v j

2
+ c f ,

a12 = cc(−ζ̄ j)ζi , a21 = cc(−ζ̄i)ζ j ,

a22 = 4(cr + cc) sin
2

vi

2
+ 4cr sin2

v j

2
+ c f ,

where

ζi = 2 sin2
vi

2
+
p

−1sin vi, ζ j = 2 sin2
v j

2
+
p

−1sin v j ,

and the right hand side of linear equations are

f1 = ζ̄ jFα1
12 + ζ̄iFα2

11 −Fα3
1,

f2 = ζ̄ jFα1
21 + ζ̄iFα2

22 −Fα3
2,

where

α1
mn ≡ λrmn + cr(pmn− pnm) + (−1)mωcλc,

α2
mn ≡ λrmn + cr pmn, α3

m ≡ λ f m+ c f sm.

Now, we have N1N2 numbers of 2× 2 systems. The determinant of the coefficients matrix

in the above equations for all discrete frequencies is

(4crβi j + c f )(4(cr + cc)βi j + c f ),

where βi j = sin2 vi

2
+ sin2 v j

2
, not zero because the penalty parameters cr , cc, and c f are

positive. After the systems of linear equations are solved for each frequency, the discrete

inverse Fourier transform is used to obtain ñl .

4.1.3. Minimization of E3(p) in (4.11)

Denoting n= ñl , the functional (4.11) is reformulated:

E3(P) =

∫

Ω

(1− g)|P|F +
cr + 2g

2

�

�

�

�

P− 1

cr + 2g

�

cr∇n−Λr

�

�

�

�

�

2

F

+ C ,

where C does not count on the minimization. We apply the same approach in [23] to find

the closed form of the minimizer at each point (i, j) ∈ Ω:

p(i, j) =max

�

0,1− 1− g(i, j)

cr |W(i, j)|F

�

W(i, j),

where

W=
cr

cr + 2g

�

cr∇n−λr

�

.
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4.2. Minimization of (3.2)

Using the same method in Subsection 4.1, the minimization problem (3.2) is also effi-

ciently solved by augmented Lagrangian method. We change (3.2) into a constraint mini-

mization problem with introducing new variables q and J :

min
I

∫

Ω

(1− h)|q− n|+
∫

Ω

h|q− n|2+ ξ
∫

Σ

|J − I0|, with q =∇I and J = I .

Now, we cast the problem into unconstraint problem and find a saddle point of the aug-

mented Lagrangian functional:

Lh(·)≡
∫

Ω

(1− h)|q− n|+ h|q− n|2+
∫

Ω

µr · (q−∇I)

+
dr

2

∫

Ω

|q−∇I |2 +
∫

Ω

µ f (J − I) +
d f

2

∫

Ω

(J − I)2 + ξ

∫

Σ

|I − I0|, (4.18)

where dr and d f are positive penalty parameters and µr and µ f are Lagrange multipliers.

The iterative algorithm to find the optimality condition for (4.18) is almost similar to

Algorithms 4.1 and 4.2; see [31] for discretization in detail.

In case of ξ = 0 and h= 1 on Ω, which happens in most common examples, we do not

need to use an iterative algorithm to solve (3.2) since the Euler-Lagrange equation for I is

simply Poisson equation:

∇ · (∇I) =∇ · n. (4.19)

The main reason why surface distortion is eliminated in the solution of the equation (4.19)

is that the interpolated vector field n satisfies with the integrability condition.

In case of h 6= 1 on Ω or ξ 6= 0, the iterative algorithm is necessary to efficiently

solve (3.2). Moreover, if there are jump strokes, which is the case of h 6= 1, the TV type

norm prevents a height map from having overshooting or undershooting problem on jump

strokes.

5. Numerical examples

In this section, we demonstrate the advantage of our proposed method and compare

with other related works. The computational cost is also shown to prove the applicability

of our method for practical modeling tasks. Moreover, stopping criterion and parameter

settings in the algorithm are explained.

Geometry Control: Fig. 1 shows an example created by our proposed method using

only regular strokes and default initial vector settings. For more complicated surfaces,

users can construct the desired geometry with various stroke types and the indicator func-

tion g in (3.1). When artists would like to create a surface which has discontinuities in its
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(a) (b)

(c) (d)Figure 10: Monkey example: (a) and () are the same drawing by an artist. In (a), the indiator funtion
g is set as 0 in the textured region and 1 elsewhere. In (), the artist uses the di�erent types of strokes.(b) and (d) are the reonstruted surfaes from (a) and (), respetively.
gradient, they simply need to select textured regions; see the textured region in Fig. 10-

(b). It is a much simpler task than exactly indicating where gradient discontinuities are

located in the domain, which is described in [22]. In Fig. 10, a monkey example drawn by

an artist is shown in (a). An artistic intention, which is to obtain sharp surface on the right

and smooth surface on the left, can be expressed by selecting the right side (textured re-

gion) indicator function g = 0 while the left side (white region) g = 1. The reconstructed

surface in (b) illustrates different geometrical structures with sharp (right) and smooth

(left) appearance. An alternative way to create a surface with gradient or jump discontinu-

ities is to use various types of strokes as in (c). The reconstructed surface in (d) preserves

discontinuities without any distortion. It clearly shows the intended surface from stroke

types.

Local Editing: Local editing is necessary for an efficient and real-time modification

on the surface which is already reconstructed. Although we use an efficient algorithm,

the computational cost is not in real time; see Table 1. Local editing is thus supported

to achieve efficient surface modification. In Fig. 11-(c), we can easily select new compu-

tational domain shown as the green region. A bounding blue rectangle is automatically

detected. We set Ω as the domain enclosed by the blue rectangle and Γ as the blue region

and new strokes. Then, (3.1) and (3.2) are computed based on new Ω and Γ. Note that

we need to choose Σ as the blue region and utilize I0 as the height information on Σ. In

our numerical experience, if the domain size is 642, the whole procedure takes less than 1

second.
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(a) (b) (c) (d)Figure 11: Loal editing: If several missing strokes in (a) are added, we do not need to ompute thewhole proedure. The loal domain is seleted as green and the loal hanges are re�eted withouthanging the previous geometry. (b) and (d) are the reonstruted height maps from (a) and (),respetively.
Comparisons: We demonstrate the differences between our proposed method and

closely related works such as LUMO [25] and ShapePalettes [20]. To make a fair com-

parison, we use the results after 500 iterations for all methods in order to confirm that all

results are converged. We ask an artist to trace the drawing as Fig. 12-(a), which is shown

in [36], and set the initial vectors as (e). The dense vector fields and reconstructed sur-

faces via LUMO, ShapePalettes, and our method are shown in (b) and (f), (c) and (g), and

(d) and (h), respectively. In Figs. 12-(f) and (g), the ripples on the clothes are smoothed

out because of linearity and lack of curl-free constraint. On the other hand, our method

(a) (b) (c) (d)

(e) (f) (g) (h)Figure 12: Indian lady example: (a) is the line drawing. (e) is the assigned vetors on the strokes in(a). (b) and (f), () and (g), and (d) and (h) are the dense vetor �eld and reonstruted surfae usingthe LUMO [25℄, ShapePalettes [20℄, and our proposed method, respetively.
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(a) Line drawing (b) LUMO method (c) ShapePalettes method (d) Our methodFigure 13: Cat Example: Comparison among LUMO [25℄, ShapePalettes [20℄, and our proposed method.
shows the ripples on the reconstructed surface clearly due to nonlinearity and curl-free

constraint. Fig. 13 also shows the difference between our method and the related works.

Due to the curl-free condition and non-linear interpolation, our method can reconstruct

surface details more properly than other two methods. Note that LUMO and ShapePalettes

also can generate similar surface structure 12-(f) if there are more strokes initially, which

is clearly not intuitive by users.

Modeling & Animation: Fig. 14 shows the modeling intuitiveness using our method.

Using less strokes, our method can generate similar quality of surfaces as reconstructed

in [22] and these strokes are in accordance to the drawing style of artists. In practical

(a) Female front (b) Female back (c) Male front (d) Male backFigure 14: Female & male examples.



Stroke-Based Surface Reconstruction 319

(a) (b) (c) (d)Figure 15: Fisting animation sequene.
modeling process, artists draw strokes in their own styles. They may spend a little time to

set stroke types or modify vectors to create more desirable surfaces if necessary.

Our method can also handle a simple animation by changing assigned vectors gradu-

ally. Fig. 15 demonstrates several frames selected from a fisting animation sequence. By

changing the magnitudes of the initial vectors on the fist and reconstructing the surface,

the animation is created. More complicated animation can be created by changing the

magnitudes or directions of vectors.

Stopping Criterion: In order to provide a fair stopping criterion, we monitor the rela-

tive residuals defined by:

Rk
vi ≡

1

|Ω| ||R̃
k
vi||L1 ≤ ε, ∀i ∈ {1,2,3}, (5.1)

where || · ||L1 is the L1 norm on Ω, |Ω| is the area of domain, and

�

R̃k
v1, R̃k

v2, R̃k
v3

�

=
�

sk − nk,∇× nk,Pk −∇nk
�

.

Since the relative residuals do not depend on the size of domain and penalty parameters,

the criterion (5.1) with the given error bound ε is reasonable to stop iteration.

We also monitor the relative errors of Lagrange multipliers

Lk
v1 =
||λk

f
−λk−1

f
||L1

||λk−1
f
||L1

, Lk
v2 =
||λk

c −λk−1
c ||L1

||λk−1
c ||L1

, Lk
v3 =
||Λk

r −Λk−1
r ||L1

||Λk−1
r ||L1

, (5.2)

and the numerical energy

E k
v =

∫

Ω

(1− g)|Pk|F + g|Pk|2F +η
∫

Γ

|s− n∗|. (5.3)

The graphs of (5.1)-(5.3) are indicators to observe a convergence of the proposed algo-

rithm.

In Fig. 16, we illustrate the graph of (5.1) and (5.2) in the log scale until the outer

iteration is log 104 = 4. The y-axis and x -axis in the graph of (5.3) is the log and the
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(a) Relative residuals (5.1)

(b) Relative errors of Lagrange multipliers (5.2)

(c) Numerical energy (5.3)Figure 16: The graphs of (5.1)-(5.3) for Fig. 1-(d)(left) and Fig. 10-(b)(right). The log sale is usedfor y-axis in all graphs and x-axis in (a) and (b).
decimal scale, respectively. The residuals and the relative errors of Lagrange multipliers

have the same convergence order. The energy reaches steady state. Note that the results

in our paper are obtained in much less than 104 iterations; see Table 1. In our numerical

experiments, no visual difference of the surface can be detected after the error bound 10−3

is satisfied. It is still a very difficult problem to find the most optimal number of iteration

N for making visually same surfaces after N . We numerically observe that the penalty

parameters affect the speed of convergence. Large values of the parameters yield slow

decreasing of energy and small values make slow decreasing of relative errors in Lagrange

multipliers and residuals. Therefore, it is necessary to tune the penalty parameters to

obtain fast decreasing of residuals and energy. Heuristically, the same parameter setting is

suitable for all examples in this paper.
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Example Size

First Step Second Step

Iter Time Iter Time

No. (sec) No. (sec)

Fig. 1-(d) 5122 146 8.14 - 0.094

Fig. 4-(a) 2562 90 1.77 - 0.062

Fig. 7-(e) 2562 156 3.00 - 0.062

Fig. 7-(f) 2562 307 5.86 - 0.062

Fig. 10-(b) 5122 288 15.95 - 0.094

Fig. 10-(d)-1 5122 80 4.50 - -

Fig. 10-(d)-2 5122 170 9.44 54 1.42

Fig. 14-(c)-1 2562 77 1.52 - -

Fig. 14-(c)-2 2562 63 1.27 - 0.062

Fig. 15-(c)-1 5122 254 13.95 - -

Fig. 15-(c)-2 5122 62 3.53 - 0.094

Computational Cost: Table 1 lists the iteration numbers and computational time (In-

tel(R) Xeon(R) CPU E5520 @ 2.27GHz, NVIDIA Quadro FX 1800) for examples in this

paper. For examples with jump, bump or dip strokes, the vectors are interpolated twice,

the first is to obtain a surface from regular, ridge and valley strokes, and the second is

to create jump, bump and dip structures on top of the obtained dense vectors in the first

interpolation. The geometry surrounding the jump, bump or dip structures are thus pre-

served, as shown in Figs. 2-(b), (c), 10-(d), and 14. If jump strokes are not used, iterative

algorithm is not necessary in the second step because the height map is simply obtained

by (4.19). For all the examples in this paper, parameters η = 100, cr = 10, cc = 1, and

c f = 1 are used in vector interpolation (4.1). For examples with jump strokes, ξ = 0 and

dr = 0.01 are used in surface reconstruction (4.18). The error bound ε for the first step is

0.001 to keep the coherence of the computational cost statistics in Table 1 even though a

bigger value can be selected for certain examples to dramatically reduce the computation

time with the same quality of reconstructed surfaces. The error bound for the second step

is 0.05 if the iterative algorithm is necessary. Using augmented Lagrangian method and

implementing our proposed method based on CUDA, the computational cost is quite low,

which proves the proposed method is applicable for practical modeling tasks.

6. Conclusion

We have presented surface reconstruction based on a two-step method. In the first step,

we proposed a nonlinear vector interpolation combining TV and H1 regularization with

the curl-free constraint for obtaining a dense vector field from given sparse vector field

on strokes. In the second step, we proposed a height map reconstruction algorithm which

integrates the dense vector field in the first step. The curl-free constraint in an interpolated
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vector field makes a clear difference from other methods. Moreover, TV regularization

allows to preserve jump discontinuities in the reconstructed surface and discontinuities

of its gradient without surface distortion. We also provided different types of strokes to

generate geometrically crucial structures such as ridge, valley, jump, bump, and dip on

the surface, helping artists to create desirable surfaces they can intuitively imagine from

2D strokes. Comparing with other methods, the reconstructed surfaces from our proposed

method are effectively affected by the assigned sparse vectors. Moreover, we can obtain

fast numerical results using augmented Lagrangian method and local editing. The future

direction of our research is to extend our proposed method to reconstruct and edit 3D

objects. We are planning to use the proposed method to other applications such as 2D

cartoon shading [37–39], geometric error fixing [40], etc.
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