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Abstract. An inverse problem of reconstructing the initial condition for a time frac-

tional diffusion equation is investigated. On the basis of the optimal control framework,

the uniqueness and first order necessary optimality condition of the minimizer for the

objective functional are established, and a time-space spectral method is proposed to

numerically solve the resulting minimization problem. The contribution of the paper

is threefold: 1) a priori error estimate for the spectral approximation is derived; 2) a

conjugate gradient optimization algorithm is designed to efficiently solve the inverse

problem; 3) some numerical experiments are carried out to show that the proposed

method is capable to find out the optimal initial condition, and that the convergence

rate of the method is exponential if the optimal initial condition is smooth.

AMS subject classifications: 65M12, 65M32, 65M70, 35S10, 49J20

Key words: Time fractional diffusion equation, inverse problem, spectral method, error estimate,

conjugate gradient method.

1. Introduction

Optimal control problems can be found in many scientific and engineering applications,

and it has become a very active and successful research area in recent years. Extensive

research has been carried out on various theoretical aspects of control problems such as

existence of optimal control, optimality conditions, regularity of the optimal solutions, and

so on. The literature on this field is huge, and it is impossible to give even a very brief

review here. However, to the best of the authors’ knowledge, most research concerning

control problems has been performed using partial differential equations of integer order,

and there are not many published works related to the differential equations of fractional

order.
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In this paper we are interested in control problems based on partial differential equa-

tions of fractional order. This work is motivated by the fact that the fractional partial

differential equations are novel extensions of the traditional models, based on fractional

calculus. They are now winning more and more scientific applications cross a variety of

fields including control theory, biology, electrochemical processes, viscoelastic materials,

polymer, finance, and etc. We will consider an inverse problem associated to the time

fractional diffusion equation (TFDE) of the form

∂ αt u(x , t)− ∂ 2
x u(x , t) = 0, 0< x < l, t > 0,

where ∂ αt means the fractional derivative of order α, 0 < α < 1. Precisely, the problem to

be investigated is as follows: suppose we are given the observed date ū(x , t), the goal is to

find out the optimal initial condition u(x , 0) such that the corresponding solution to TFDE

matches the observed data as closely as possible.

For the initial boundary value problem of TFDE, some theoretical and numerical results

have been obtained by a number of authors. For example, Schneider and Wyss [18] and

Wyss [20] used the Green functions to construct the explicit solution in some simple cases.

Luchko [12, 13] derived the maximum principle and proved the unique existence of the

generalized solution. Sakamoto and Yamamoto [16] investigated weak solutions of TFDE

in 2D. The existing numerical methods includes finite difference [7,11,19], Galerkin finite

element [4, 5, 15], finite difference/spectral method [9], time-space spectral method [8],

and so on.

For the inverse problem concerning TFDE, although the research is relatively sparse,

several studies have been carried out, and we see increasing interest in this topic from

both scientific and engineering communities. We mention, among others, the work [3] to

determine the fractional order α and variable diffusion coefficient by means of additional

boundary data. The uniqueness of the inverse problem was proved theoretically on the

basis of the eigenfunction expansion of the weak solution and the Gel’fand-Levitan theory.

Sakamoto and Yamamoto also considered in their above mentioned paper an inverse source

problem. They analyzed the stability of determining time-dependent factor in the source

by some observation. Zhang and Xu [21] established the uniqueness of an inverse problem

which consists in identifying the time independent source term for TFDE with homogenous

Neumann boundary condition, and some numerical examples were presented.

In this work, we will focus on the numerical method to find out the optimal initial

condition for the TFDE with known observed data. Unlike the work [21], which uses

the eigenfunction expansion of the solution as the main tool, we will adapt the optimal

control framework [10] to treat the inverse problem. By introducing an objective function

which measures the discrepancy of the solution given by the TFDE problem and the known

observation data, the optimal initial condition is then defined as the state such that the

objective function attains its minimum. Thanks to the weak formulation of TFDE proposed

in [8], we are able to derive a space-time spectral method for the considered inverse

problem.

The remainder of this paper comprises five sections. In Section 2, we first describe the

inverse problem, and give some preliminary results on the initial value problem associated
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to the TFDE. The formulation of the inverse problem into the control problem is also given

in this section. In Section 3, we derive the necessary and sufficient optimality condition for

the optimal control problem. The space-time spectral discretization and the error analysis

are presented in Section 4, where some error estimates are provided. In Section 5, we de-

scribe the overall algorithm and present some numerical examples to validate our method.

Some concluding remarks are given at the end of the paper.

2. Inverse problem of the time fractional diffusion equation

2.1. Time fractional diffusion equation

Let Λ = (−1,1), I = (0, T ) and Ω = Λ× I . We consider the following one-dimensional

TFDE

0∂
α
t u(x , t)− ∂ 2

x u(x , t) = 0, ∀(x , t) ∈ Ω, (2.1)

subject to the boundary and initial condition:

u(−1, t) = u(1, t) = 0, ∀t ∈ I , (2.2a)

u(x , 0) = q(x), ∀x ∈ Λ, (2.2b)

where 0< α < 1, 0∂
α
t u(x , t) is the left Caputo fractional derivative of order α, defined by

0∂
α
t u(x , t) =

1

Γ(1−α)

∫ t

0

∂τu(x ,τ)
dτ

(t −τ)α
.

The inverse problem that we are concerned with in this paper is:

Given the observation date ū(x , t), find the optimal initial condition q(x) such that the

corresponding solution to (2.1)-(2.2b) matches ū(x , t) as well as possible.

In order to define well the inverse problem, we first introduce some notations that

will be used to construct the weak problem of the time fractional diffusion equation (2.1)-

(2.2b). We use the symbol O to denote a domain which may stand for Λ, I or Ω. C∞0 (O )
means the space of all functions having continuous derivatives of all orders and com-

pactly supported in O . The notations L2(O ), Hs(O ), and Hs
0(O ) stand for the usual Sobolev

spaces, whose norms are respectively denoted by ‖·‖0,O and ‖·‖s,O . For the Sobolev space

X with norm ‖·‖X , let

Hs(I; X ) :=
�

v| ‖v(·, t)‖X ∈ Hs(I)
	

, s ≥ 0,

endowed with the norm:

‖v‖Hs(I ;X ) :=


‖v(·, t)‖X




s,I
.

Particularly, when X stands for Hµ(Λ) or H
µ
0 (Λ), µ ≥ 0, the norm of the space Hs(I; X ) will

be denoted by ‖·‖µ,s,Ω. Hereafter, in cases where no confusion would arise, the domain

symbols I ,Λ and Ω may be dropped from the notations.

We also need some definitions and properties regarding fractional derivatives.
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• Right Caputo fractional derivative [14]

t∂
α
T u(t) = −

1

Γ(1−α)

∫ T

t

u′(τ)dτ

(τ− t)α
, 0< α < 1. (2.3)

• Left Riemann-Liouville fractional derivative

R
0∂
α
t u(t) =

1

Γ(1−α)

d

d t

∫ t

0

u(τ)

(t −τ)α
dτ, 0< α < 1. (2.4)

• Right Riemann-Liouville fractional derivative

R
t ∂
α
T u(t) = −

1

Γ(1−α)

d

d t

∫ T

t

u(τ)

(τ− t)α
dτ, 0< α < 1. (2.5)

The definitions of Riemann-Liouville and Caputo fractional derivative are linked by the

following relationship, which can be verified by a direct calculation:

R
0∂
α
t v(t) =

v(0)t−α

Γ(1−α)
+0 ∂

α
t v(t), (2.6a)

R
t ∂
α
T v(t) =

v(T )(T − t)−α

Γ(1−α)
+t ∂

α
T v(t). (2.6b)

We employ the space introduced in [8]:

Bs(Ω) = Hs(I , L2(Λ))∩ L2(I , H1
0 (Λ)), ∀s > 0,

equipped with the norm:

‖v‖Bs(Ω) =
�

‖v‖2
Hs(I ,L2(Λ))

+ ‖v‖2
L2(I ,H1

0(Λ))

�
1

2
.

In this setting, the weak formulation of the problem (2.1)-(2.2b) reads: given q(x) ∈
L2(Λ), find u ∈ Bα/2(Ω), such that

A (u, v) =
� q(x)t−α

Γ(1−α)
, v
�

Ω
, ∀v ∈ B

α
2 (Ω), (2.7)

where the bilinear formA (·, ·) is defined by

A (u, v) :=
�R

0∂
α
2

t u,Rt ∂
α
2

T v
�

Ω + (∂xu,∂x v)Ω.

It has been proved [8] that the problem (2.7) is well-posed.
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2.2. Inverse problem and optimal control

We now define the objective function as follows:

J(q) =
1

2
‖u− ū‖20,Ω +

λ

2



q




2

0,Λ
, ∀q ∈ L2(Λ), (2.8)

where u is the solution of the problem (2.7) associated to the initial condition q(x), ū is

the observation data, and λ > 0 is the regularization parameter.

Statement of the inverse problem: Given the observed data ū(x , t), x ∈ Λ, t > 0,

determine the unknown initial condition q(x), such that the objective function J(q) attains its

minimum.

Precisely, the above inverse problem can be formulated into the following optimal con-

trol problem: given ū ∈ L2(I , L2(Λ)), find q∗ ∈ L2(Λ), such that

J(q∗) = min
q∈L2(Λ)

J(q). (2.9)

From now on, we regard q as control variable, and u as state variable satisfying the

state equation (2.7).

3. Optimality condition

The first order necessary optimality condition for the problem (2.9) takes the form

J ′(q∗)(η) = 0, for all η ∈ L2(Λ), (3.1)

where J ′(q∗)(η) is usually called the gradient of J(q), which is defined through the Gâteaux

differential of J(q) at q∗ along the "direction" η. Note that (3.1) is also the sufficient

condition because the quadratic functional J(q) is convex [10].

Now the key point is how to efficiently compute the gradient of the objective functional

J(q). To this end, we introduce the adjoint state equation of (2.1)-(2.2b) as follows:







t∂
α
T z − ∂ 2

x z = u− ū, ∀(x , t) ∈ Ω,

z(−1, t) = z(1, t) = 0, ∀t ∈ I ,

z(x , T ) = 0, ∀x ∈ Λ.

(3.2)

Its associated weak formulation reads: find z ∈ Bα/2(Ω), such that

A (ϕ, z) = (u− ū,ϕ)Ω, ∀ϕ ∈ B
α
2 (Ω). (3.3)

Following the same idea as for the problem (2.7), it can be proved that (3.3) admits a

unique solution z ∈ Bα/2(Ω) for any given u ∈ Bα/2(Ω). The solution z of the above

problem is hereafter referred to the adjoint state variable.
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Theorem 3.1. Let z ∈ Bα/2(Ω) be the solution of the adjoint state equation (3.2), then there

exists a unique solution q∗ ∈ L2(Λ) to the optimal control problem (2.9). Furthermore, the

gradient of J can be obtained through

J ′(q)(η) =
1

Γ(1−α)

∫

Ω

z(x , t)η(x)t−αd xd t +λ

∫

Λ

q(x)η(x)d x . (3.4)

Proof. Let us consider the perturbation of the initial condition:

q(x)→ q̃(x) := q(x)+ ǫη(x),

where ǫ is a real parameter tending to 0, and η ∈ L2(Λ). Let ũ be the solution of (2.1)-

(2.2a) subject to the above perturbed initial condition q̃(x). We define û as

û= lim
ǫ→0

ũ− u

ǫ
.

Then it is readily seen that û is the solution of the following problem:







0∂
α
t û− ∂ 2

x û= 0, ∀(x , t) ∈ Ω,

û(−1, t) = û(1, t) = 0, ∀t ∈ I ,

û(x , 0) = η(x), ∀x ∈ Λ.

(3.5)

By virtue of (2.8), we have

J ′(q)(η) = lim
ǫ→0

J(q+ ǫη)− J(q)

ǫ

= lim
ǫ→0

∫

Ω
[(ũ− ū)2 − (u− ū)2]d xd t +λ

∫

Λ
(q̃2− q2)d x

2ǫ

=

∫

Ω

lim
ǫ→0

(ũ+ u− 2ū)(ũ− u)

2ǫ
d xd t +λ

∫

Λ

lim
ǫ→0

(q̃+ q)η

2
d x

=

∫

Ω

(u− ū)ûd xd t +λ

∫

Λ

qηd x . (3.6)

Similarly, the second order Gâteaux derivative of J(q) is given by

J
′′
(q)(η,η) = lim

ǫ→0

J ′(q+ ǫη)(η)− J ′(q)(η)

ǫ
= lim
ǫ→0

J ′(q̃)(η)− J ′(q)(η)

ǫ
.

By using (3.6) with q replaced by q̃, we obtain

J
′′
(q)(η,η) = lim

ǫ→0

�
∫

Ω

ũ− u

ǫ
ûd xd t +λ

∫

Λ

q̃− q

ǫ
ηd x

�

=

∫

Ω

û2d xd t +λ

∫

Λ

η2d x ≥ 0. (3.7)
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This means that the functional J is uniformly convex, and therefore problem (2.9) admits

a unique solution q∗.

To prove (3.4), we multiply each side of the first equation in (3.2) by û, then integrate

the resulted equation on the domain Ω to yield

∫

Ω

(u− ū)ûd xd t =

∫

Ω

�

t∂
α
T z − ∂ 2

x z
�

ûd xd t. (3.8)

In one side, taking into account the boundary conditions in (3.5) and (3.2), it holds

∫

Ω

∂ 2
x zûd xd t =

∫

Ω

z∂ 2
x ûd xd t. (3.9)

On the other side, by means of (2.6a), (2.6b), the terminal condition in (3.2), and the

fractional integration by parts demonstrated in [8], we have

∫

Ω

t∂
α
T zûd xd t =

∫

Ω

�R

t
∂ αT z −

z(x , T )(T − t)−α

Γ(1−α)

�

ûd xd t

=

∫

Ω

R
t ∂
α
T zûd xd t =

∫

Ω

z R
0∂
α
t ûd xd t

=

∫

Ω

z 0∂
α
t ûd xd t +

∫

Ω

zû(x , 0)

Γ(1−α)tα
d xd t. (3.10)

Finally, combining (3.5), (3.8), (3.9), and (3.10), we obtain

∫

Ω

(u− ū)ûd xd t =

∫

Ω

�

0
∂ αt û− ∂ 2

x û
�

zd xd t +

∫

Ω

zη(x)

Γ(1−α)tα
d xd t

=
1

Γ(1−α)

∫

Ω

z(x , t)η(x)t−αd xd t. (3.11)

This, together with (3.6), leads to (3.4). �

4. Spectral approximation and a priori error estimates

In this section we consider a space-time spectral approximation to the optimal control

problem and carry out an error analysis for the numerical solution.

We first define the space

P0
M (Λ) := PM (Λ)∩H1

0(Λ),

where PM denotes the space of all polynomials degree less than or equal to M . The space-

time spectral approximation space SL is then defined as

SL := P0
M (Λ)⊗ PN (I) ⊂ B

α
2 (Ω),
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where L stands for the parameter pair (M , N).

We then define the discrete objective function, which is an approximation to J , as

follows:

JL(qL) :=
1

2



uL − ū




2

0,Ω
+
λ

2



qL





2

0,Λ
, ∀qL ∈ PM (Λ), (4.1)

where uL = uL(qL) ∈ SL is the solution of the following problem:

A (uL, vL) =
� qL t−α

Γ(1−α)
, vL

�

Ω
, ∀vL ∈ SL. (4.2)

We propose the following spectral approximation to the optimal control problem (2.9):

find q∗L ∈ PM (Λ) such that

JL(q
∗
L) = min

qL∈PM (Λ)
JL(qL). (4.3)

Similar to the continuous problem, it can be proved that the discrete optimal control

problem (4.3) admits a unique solution q∗L ∈ PM (Λ), which fulfills the first order optimality

condition:

J ′L(q
∗
L)(η) = 0, ∀η ∈ PM (Λ), (4.4)

where

J ′L(qL)(η) =
1

Γ(1−α)

∫

Ω

zL t−αηd xd t +λ

∫

Λ

qLηd x (4.5)

with zL ∈ SL, the solution of the discrete adjoint state equation:

A (ϕL, zL) = (uL − ū,ϕL)Ω, ∀ϕL ∈ SL. (4.6)

We now carry out an error analysis for the spectral approximation (4.3). To simplify

the notations, we let c be a generic positive constant independent of any functions and

of any discretization parameters. We use the expression A ® B to mean that A ≤ cB, and

A∼= B to mean that A® B ® A.

We first introduce some approximation operators that will be used in the following

context. We define the orthogonal projector Π
1,0
M : H1

0(Λ) → P0
M (Λ) by: ∀v ∈ H1

0(Λ),

Π
1,0
M v ∈ P0

M (Λ), such that

�

�

Π
1,0
M v− v
�′

,φ′M

�

Λ
= 0, ∀φM ∈ P0

M (Λ).

Then, for all v ∈ Hm(Λ) ∩ H1
0(Λ), m ≥ 1, the following optimal error estimates hold

(see [2]):

�

�Π
1,0
M v− v
�

�

1,Λ
® M1−m ‖v‖m,Λ , (4.7a)
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Π
1,0
M v − v

0,Λ



 ® M−m ‖v‖m,Λ . (4.7b)

Now, we construct the projection operator Π1
N : H1(I)→ PN (I) by:

∫

I

�

(Π1
N v− v)′w′N + (Π

1
N v − v)wN

�

d t = 0, ∀wN ∈ PN (I).

The following error estimate is also known (see [2]):


Π1
N v− v




k,I
® N k−m ‖v‖m,I , ∀v ∈ Hm(I), m ≥ 1, k = 0,1. (4.8)

For 0 < s < 1, we can derive, by applying the standard space interpolation technique [1],

the Hs-error estimate as follows:


Π1
N v − v




s,I
® N s−m ‖v‖m,I , ∀v ∈ Hm(I), m ≥ 1. (4.9)

Similar to the proof of Lemma 3.2 in [8], we obtain an error estimate for the composite

projection operator Π1
NΠ

1,0
M , which is stated below.

Lemma 4.1. If v ∈ Hs(I; Hµ(Λ))∩ Hγ(I; H1
0(Λ)), 0< s < 1,γ≥ 1, µ ≥ 1, then we have





∂x(v−Π
1
NΠ

1,0
M v)







0,0
® M1−µ ‖v‖µ,0 + N−γ ‖v‖1,γ , (4.10a)







R
0∂

s
t (v−Π

1
NΠ

1,0
M v)







0,0
® N s−γ ‖v‖0,γ+ N s−γM−µ ‖v‖µ,γ+M−µ ‖v‖µ,s . (4.10b)

We now introduce the auxiliary problem:

A (uL(q), vL) =
� qt−α

Γ(1−α)
, vL

�

Ω
, ∀vL ∈ SL, (4.11a)

A (ϕL, zL(q)) = (uL(q)− ū,ϕL)Ω, ∀ϕL ∈ SL, (4.11b)

where q ∈ L2(Λ) and uL(q), zL(q) ∈ SL. Then it can be verified by a direct calculation that

J ′L(q)(η) =
1

Γ(1−α)

∫

Ω

zL(q)t
−αηd xd t +λ

∫

Λ

qηd x , η ∈ L2(Λ), (4.12)

where

JL(q) =
1

2



uL(q)− ū




2

0,Ω
+
λ

2



q




2

0,Λ
. (4.13)

Following [8], the error between the solution of (2.7) and the solution of (4.11a) can

be estimated as follows:

Lemma 4.2. For any q ∈ L2(Λ), let u(q) be the solution of (2.7), uL(q) be the solution of

(4.11a). Suppose u ∈ Hα/2(I; Hµ(Λ))∩Hγ(I; H1
0 (Λ)), 0< α < 1, γ≥ 1, µ ≥ 1, then we have



u(q)− uL(q)




B
α
2 (Ω)
®N

α
2
−γ ‖u‖0,γ + N−γ ‖u‖1,γ+ N

α
2
−γM−µ ‖u‖µ,γ

+M−µ ‖u‖µ, α
2
+M1−µ ‖u‖µ,0 . (4.14)
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We now analyze the approximation error of the proposed spectral method, and derive

some error estimates for the control and state variables. The proof of the main result will

be accomplished with a series of lemmas which we present below.

Lemma 4.3. For all p,q ∈ L2(Λ), we have

J ′L(p)(p− q)− J ′L(q)(p− q)≥ λ


p− q




2

0,Λ
. (4.15)

Proof. A direct calculation by using (4.12) gives

J ′L(p)(p− q)− J ′L(q)(p− q) =

∫

Ω

(zL(p)− zL(q))(p− q)

Γ(1−α)tα
d xd t +λ

∫

Λ

(p− q)2d x

=
�(p− q)t−α

Γ(1−α)
, zL(p)− zL(q)
�

Ω
+λ


p− q




2

0,Λ
. (4.16)

For the first term in the right hand side, it follows from (4.11a) and (4.11b) that

�(p− q)t−α

Γ(1−α)
, zL(p)− zL(q)
�

Ω
=A
�

uL(p)− uL(q), zL(p)− zL(q)
�

=
�

uL(p)− uL(q),uL(p)− uL(q)
�

Ω

≥0. (4.17)

Then, combining (4.16) and (4.17) gives (4.15). �

Lemma 4.4. Let q∗ be the solution of the continuous optimization problem (2.9), q∗L be the

solution of the discrete optimization problem (4.3). Suppose q∗ ∈ Hµ(Λ), µ ≥ 1, then it holds



q∗ − q∗L





0,Λ
® M−µ


q∗




µ,Λ
+


z(q∗)− zL(q
∗)




B
α
2 (Ω)

, (4.18)

where z(q∗) and zL(q
∗) are respectively the solutions of (3.3) and (4.11b) associated to q∗.

Proof. To prove the asserted result, we split the error to be estimated in the following

way:



q∗ − q∗L





0,Λ
≤


q∗− pL





0,Λ
+


pL − q∗L





0,Λ
, ∀pL ∈ PM (Λ). (4.19)

First it follows from Lemma 4.3:

λ


pL − q∗L





2

0,Ω
≤ J ′L(pL)(pL − q∗L)− J ′L(q

∗
L)(pL − q∗L), ∀pL ∈ PM (Λ). (4.20)

In virtue of (3.1) and (4.4), we have

J ′(q∗)(pL − q∗L) = J ′L(q
∗
L)(pL − q∗L) = 0, ∀pL ∈ PM (Λ).

Combining these equalities with (3.4), (4.5) and (4.12), and using the Hölder inequality,

we obtain

λ


pL − q∗L





2

0,Λ
≤J ′L(pL)(pL − q∗L)− J ′(q∗)(pL − q∗L)
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=J ′L(pL)(pL − q∗L)− J ′L(q
∗)(pL − q∗L) + J ′L(q

∗)(pL − q∗L)− J ′(q∗)(pL − q∗L)

=λ

∫

Λ

�

pL − q∗
��

pL − q∗L
�

d x +
1

Γ(1−α)

∫

Ω

�

zL(pL)− zL(q
∗)
�

t−α
�

pL − q∗L
�

d xd t

+
1

Γ(1−α)

∫

Ω

�

z(q∗)− zL(q
∗)
�

t−α
�

pL − q∗L
�

d xd t

=λ

∫

Λ

�

pL − q∗
��

pL − q∗L
�

d x +
1

Γ(1−α)

∫

I

t−α
∫

Λ

�

zL(pL)− zL(q
∗)
��

pL − q∗L
�

d xd t

+
1

Γ(1−α)

∫

I

t−α
∫

Λ

�

z(q∗)− zL(q
∗)
��

pL − q∗L
�

d xd t

®λ


pL − q∗




0,Λ



pL − q∗L





0,Λ
+

∫

I

t−α


zL(pL)(·, t)− zL(q
∗)(·, t)




0,Λ



pL − q∗L





0,Λ
d t

+

∫

I

t−α


z(q∗)(·, t)− zL(q
∗)(·, t)




0,Λ



pL − q∗L





0,Λ
d t

®λ


pL − q∗




0,Λ



pL − q∗L





0,Λ
+


pL − q∗L





0,Λ



t−α




Ls(I)



zL(pL)− zL(q
∗)




Ls′(I ;L2(Λ))

+


pL − q∗L





0,Λ



t−α




Ls(I)



z(q∗)− zL(q
∗)




Ls′(I ;L2(Λ))
,

where s = 2/(1+α), s′ = 2/(1−α). By simplifying the both sides, we obtain

λ


pL − q∗L





0,Λ
®λ


pL − q∗




0,Λ
+


t−α




Ls(I)



zL(pL)− zL(q
∗)




Ls′(I ;L2(Λ))

+


t−α




Ls(I)



z(q∗)− zL(q
∗)




Ls′(I ;L2(Λ))
. (4.21)

Furthermore, by the Embedding Theorem [1], we have

H
α
2 (I) ,→ Ls′(I).

As a result, it holds



zL(pL)− zL(q
∗)




Ls′(I ;L2(Λ))
®


zL(pL)− zL(q
∗)




H
α
2 (I ;L2(Λ))

®


zL(pL)− zL(q
∗)




B
α
2 (Ω)

,

and



z(q∗)− zL(q
∗)




Ls′(I ;L2(Λ))
®


z(q∗)− zL(q
∗)




B
α
2 (Ω)

.

Using these results to (4.21) yields

λ


pL − q∗L





0,Λ
®λ


pL − q∗




0,Λ
+


t−α




Ls(I)



zL(pL)− zL(q
∗)




B
α
2 (Ω)

+


t−α




Ls(I)



z(q∗)− zL(q
∗)




B
α
2 (Ω)

. (4.22)

Note that zL(pL)− zL(q
∗) solves

A
�

ϕL, zL(pL)− zL(q
∗)
�

=
�

uL(pL)− uL(q
∗),ϕL

�

Ω, ∀ϕL ∈ SL, (4.23)
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and uL(pL)− uL(q
∗) satisfies

A (uL(pL)− uL(q
∗), vL) =
�(pL − q∗)t−α

Γ(1−α)
, vL

�

Ω
, ∀vL ∈ SL. (4.24)

On the other hand, the bilinear form A (·, ·) satisfies the following continuity and coerciv-

ity [8]:

A (u, v)® ‖u‖
B
α
2 (Ω)
‖v‖

B
α
2 (Ω)

, A (v, v)¦ ‖v‖2
B
α
2 (Ω)

, ∀u, v ∈ B
α
2 (Ω).

Thus, taking vL = uL(pL)− uL(q
∗) in (4.24) gives



uL(pL)− uL(q
∗)




B
α
2 (Ω)
®


t−α




Ls(I)



pL − q∗




0,Λ
. (4.25)

Similarly, taking ϕL = zL(pL)− zL(q
∗) in (4.23) yields



zL(pL)− zL(q
∗)




B
α
2 (Ω)
®


uL(pL)− uL(q
∗)




0,Ω
®


uL(pL)− uL(q
∗)




B
α
2 (Ω)

.

Bringing (4.25) into above inequality, we obtain



zL(pL)− zL(q
∗)




B
α
2 (Ω)
®


t−α




Ls(I)



pL − q∗




0,Λ
. (4.26)

Then by combining (4.22) and (4.26), we get

λ


pL − q∗L





0,Λ
®λ


pL − q∗




0,Λ
+


t−α




2

Ls(I)



pL − q∗




0,Λ

+


t−α




Ls(I)



z(q∗)− zL(q
∗)




B
α
2 (Ω)

. (4.27)

Plugging (4.27) into (4.19) yields



q∗ − q∗L





0,Λ
®
�

2+
1

λ



t−α




2

Ls(I)

�


pL − q∗




0,Λ

+
1

λ



t−α




Ls(I)



z(q∗)− zL(q
∗)




B
α
2 (Ω)

. (4.28)

Since the above estimate is true for all pL ∈ PM (Λ), we take pL = ΠM q∗ in (4.28), with ΠM

standing for the standard L2-projector, to obtain



q∗ − q∗L





0,Λ
®
�

2+
1

λ



t−α




2

Ls(I)

�

M−µ


q∗




µ,Λ

+
1

λ



t−α




Ls(I)



z(q∗)− zL(q
∗)




B
α
2 (Ω)

. (4.29)

Finally, a simple calculation shows



t−α




Ls(I)
=
�1+α

1−α

�
1+α

2
T

1−α
2 , s =

2

1+α
.

This quantity is bounded for any fixed T and α ∈ (0,1). Thus we obtain (4.18). �
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Lemma 4.5. Given q ∈ L2(Λ), let z(q) ∈ Bα/2(Ω) be the solution of the adjoint state problem

(3.3), zL(q) be the solution of its approximation problem (4.11b), then we have



z(q)− zL(q)




B
α
2 (Ω)
®


u(q)− uL(q)




0,Ω
+ inf
∀ϕL∈SL



z −ϕL





B
α
2 (Ω)

. (4.30)

Proof. We denote by z̃L ∈ SL the solution of the Galerkin approximation to (3.3) as

follows:

A (ϕL, z̃L) = (u− ū,ϕL)Ω, ∀ϕL ∈ SL. (4.31)

Then it holds

A (ϕL, z − z̃L) = 0, ∀ϕL ∈ SL,

and therefore



z − z̃L





B
α
2 (Ω)
® inf
ϕL∈SL



z −ϕL





B
α
2 (Ω)

. (4.32)

Subtracting (4.11b) from (4.31) gives

A (ϕL, z̃L − zL(q)) = (u− uL(q),ϕL)Ω, ∀ϕL ∈ SL.

By taking ϕL = z̃L − zL(q) in the above equation and using the coercivity of A (·, ·), we

obtain



z̃L − zL(q)




B
α
2 (Ω)
®


u− uL(q)




0,Ω
. (4.33)

Finally, (4.30) results from binding (4.32), (4.33), and the triangle inequality. �

We are now in a position to prove the main result concerning the approximation error

for our optimal control problem.

Theorem 4.1. Suppose q∗ and q∗L are respectively the solutions of the continuous optimization

problem (2.9) and its discrete counterpart (4.3), u∗ and u∗L are the state solutions of (2.7)

and (4.2) associated to q∗ and q∗L respectively, z∗ and z∗L are the associated solutions of (3.3)

and (4.6) respectively. If q∗ ∈ Hµ(Λ),u∗, z∗ ∈ Hα/2(I; Hµ(Λ)) ∩ Hγ(I; H1
0 (Λ)), 0 < α < 1,

γ≥ 1, µ ≥ 1, then the following estimate holds:



q∗ − q∗L





0,Λ
+


u∗ − u∗L





B
α
2 (Ω)
+


z∗ − z∗L





B
α
2 (Ω)

(4.34)

®M−µ


q∗




µ,Λ
+M1−µ�


u∗




µ,0
+


z∗




µ,0

�

+ N−γ
�


u∗




1,γ
+


z∗




1,γ

�

+ N
α
2
−γ�


u∗




0,γ
+


z∗




0,γ

�

+ N
α
2
−γM−µ
�


u∗




µ,γ
+


z∗




µ,γ

�

+M−µ
�


z∗




µ, α
2

+


u∗




µ, α
2

�

.
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Proof. First we have the following triangle inequality:


u∗ − u∗L





B
α
2 (Ω)
≤


u(q∗)− uL(q
∗)




B
α
2 (Ω)
+


uL(q
∗)− uL(q

∗
L)




B
α
2 (Ω)

.

By means of (4.25), we obtain


u∗ − u∗L





B
α
2 (Ω)
®


u(q∗)− uL(q
∗)




B
α
2 (Ω)
+


q∗− q∗L





0,Λ
. (4.35)

Similarly, we have


z∗ − z∗L





B
α
2 (Ω)
®


z(q∗)− zL(q
∗)




B
α
2 (Ω)
+


q∗− q∗L





0,Λ
. (4.36)

Thus, by combining (4.18), (4.30), (4.35) and (4.36), we obtain


q∗ − q∗L





0,Λ
+


u∗− u∗L





B
α
2 (Ω)
+


z∗ − z∗L





B
α
2 (Ω)

®M−µ


q∗




µ,Λ
+


u(q∗)− uL(q
∗)




B
α
2 (Ω)
+ inf
ϕL∈SL



z∗ −ϕL





B
α
2 (Ω)

. (4.37)

The last term in the right hand side can be estimated by using Lemma 4.1 as follows

inf
ϕL∈SL



z∗ −ϕL





B
α
2 (Ω)
≤




z∗ −Π1
NΠ

1,0
M z∗






B
α
2 (Ω)

®M1−µ


z∗




µ,0
+N−γ


z∗




1,γ

+ N
α
2
−γ


z∗




0,γ
+ N

α
2
−γM−µ


z∗




µ,γ
+M−µ


z∗




µ, α
2

. (4.38)

Finally, plugging the estimates (4.14) with q = q∗ and (4.38) into (4.37), we obtain the

sought result (4.34). �

5. Conjugate gradient optimization algorithm and numerical results

We will first derive the linear system of the spectral approximation based on Gauss

numerical quadratures, then describe the conjugate gradient algorithm for the associated

discrete optimization problem.

5.1. Implementation with Gauss numerical quadratures

We start with defining the temporal and spatial sampling points.

Let
�

ξ̂M
k

	M

k=0 and
�

ρ̂M
k

	M

k=0 be, respectively, the Gauss-Lobatto-Legendre (GLL) points

and weights, such that

∫ 1

−1

φ(x)d x =

M
∑

k=0

φ(ξ̂M
k )ρ̂

M
k , ∀φ(x) ∈ P2M−1(Λ).

The (M + 1)× (N + 1) GLL points in Ω are then defined by

(xk, t l) :=
�

ξ̂M
k , (ξ̂N

l + 1)
T

2

�

, k = 0,1, · · · , M ; l = 0,1, · · · , N .
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The corresponding weights are

ρM
k ρ

N
l with ρM

k := ρ̂M
k , ρN

l :=
T ρ̂N

l

2
, k = 0,1, · · · , M ; l = 0,1, · · · , N .

The discrete scalar product (·, ·)M and (·, ·)L are defined by

(u, v)M :=

M
∑

k=0

∫

I

u(xk, t)v(xk, t)ρM
k

d t, (5.1a)

(u, v)L :=

M
∑

k=0

N
∑

l=0

u(xk, t l)v(xk, t l)ρ
M
k ρ

N
l . (5.1b)

Let {hx
i

: i = 0, · · · , M} and {ht
j
: j = 0, · · · , N} be the Lagrangian polynomials respectively

associated with GLL points {x i : i = 0, · · · , M} and {t j : j = 0, · · · , N}. It is readily seen

that the set
�

hx
i
ht

j
, i = 1, · · · , M − 1; j = 0, · · · , N

	

serves as a basis of P0
M (Λ)⊗ PN (I), i.e.,

P0
M (Λ)⊗ PN (I) = span

n

hx
i (x)h

t
j(t), i = 1, · · · , M − 1; j = 0, · · · , N

o

.

Similarly, the set {hx
i
, i = 0, · · · , M} forms a basis of PM (Λ):

PM (Λ) = span{hx
i (x), i = 0, · · · , M},

which is the spectral approximate space for the initial condition. Expressing uL and zL

in the Lagrangian basis
�

hx
i
ht

j
, i = 1, · · · , M − 1; j = 0, · · · , N

	

, and choosing each test

function vL, ϕL to be these basis functions, we arrive at the matrix statement of (4.2) and

(4.6):

Au= f, (5.2a)

Bz= F, (5.2b)

where u = (ui j)(M−1)(N+1) and z = (zi j)(M−1)(N+1) are the state and costate unknown

vectors, with ui j and zi j approximations to u(x i, t j) and z(x i, t j) respectively, A =

(amn,i j)((M−1)(N+1))2 , B= (bmn,i j)((M−1)(N+1))2 with

amn,i j = δimρ
M
m

∫

I

R
0∂

α
2

t ht
j(t)

R
t ∂

α
2

T ht
n(t)d t +

M
∑

k=0

DkiDkmδ jn ρ
M
k
ρN

n , (5.3a)

bmn,i j = δimρ
M
m

∫

I

R
0∂

α
2

t ht
n(t)

R
t ∂

α
2

T ht
j(t)d t +

M
∑

k=0

DkiDkmδ jn ρ
M
k ρ

N
n , (5.3b)

m, i = 1, · · · , M − 1; n, j = 0, · · · , N .

In (5.3a) and (5.3b), δ denotes the Kronecker symbol, Di j = ∂xhx
j
(x i), and D = (Di j)

is usually called the derivative matrix in space. The right hand side vectors f =

( fmn)(M−1)(N+1) and F = (Fmn)(M−1)(N+1) are given by

fmn =
qmρ

M
m

Γ(1−α)

∫

I

ht
n(t)t

−αd t, Fmn = (umn− ū(xm, tn))ρ
M
mρ

N
n ,
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with m = 1, · · · , M − 1; n= 0, · · · , N , where qm = qL(xm).

The discrete gradient direction, denoted by g= (gm)M+1, can be obtained by

gm =
1

Γ(1−α)

N
∑

j=0

zmj

∫

I

ht
j(t)t

−αd t +λqm, m = 0, · · · , M .

5.2. Conjugate gradient optimization algorithm

We propose below a conjugate gradient algorithm for the overall discrete optimization

problem. The algorithm is an iterative process to construct vector sequences q(k), which

will get closer and closer to the desired solutions.

Optimization algorithm Given initial guess q(0)

(a) Solve problems Au(0) = f(0) and Bz(0) = F(0) to determine z(0). Compute g(0) by

g(0)m =
1

Γ(1−α)

N
∑

j=0

z
(0)

mj

∫

I

ht
j(t)t

−αd t +λq(0)m , m = 0, · · · , M .

Set s(0) = g(0), k = 0.

(b) Compute the auxiliary vector z̃(k) by solving Aũ(k) = f̃(k) and Bz̃(k) = F̃(k), where

f̃(k) =
�

f̃ (k)mn

�

(M−1)(N+1), F̃(k) =
�

F̃ (k)mn

�

(M−1)(N+1)

with

f̃ (k)mn =
s(k)m ρ

M
m

Γ(1−α)

∫

I

ht
n(t)t

−αd t, F̃ (k)mn = ũ(k)mnρ
M
mρ

N
n .

Then compute g̃(k) by

g̃(k)m =
1

Γ(1−α)

N
∑

j=1

z̃
(k)

mj

∫

I

ht
j(t)t

−αd t +λs(k)m .

Set ρk =

∑M
m=0 g(k)m g(k)m ρ

M
m

∑M
m=0 g̃

(k)
m s

(k)
m ρ

M
m

.

(c) Update: q(k+1) = q(k) −ρks(k), g(k+1) = g(k) −ρkg̃(k).

(d) If

∑M
m=0(g

(k+1)
m )2ρM

m
∑M

m=0(g
(0)
m )

2ρM
m

≤ tolerance, then take q∗ = q(k+1), stop.

Otherwise, let βk =

∑M
m=0(g

(k+1)
m )2ρM

m
∑M

m=0(g
(k)
m )

2ρM
m

, s(k+1) = g(k+1) + βks(k).

Set: k = k+ 1, go to (b).

Remark 5.1. In our calculation, the integrals in the above algorithm are evaluated by

Gauss-Lobatto-Jacobi numerical quadrature formula, see [8] for details.
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5.3. Numerical results

We carry out in this subsection a series of numerical experiments to demonstrate the

efficiency of the proposed optimization algorithm. The main purpose is to numerically ver-

ify the a priori error estimates we obtained in the previous sections. In all the calculations,

we take T = 1 and use the exact solution as the observation data ū.

Example 5.1. Consider the Eq. (2.1) with a right hand side function f (x , t), chosen such

that the exact solution u(x , t) = sinπt sinπx , and thus, the corresponding initial condition

q(x) = u(x , 0) = 0.

It is an easy matter to verify that the exact solution of the optimization problem (2.9)

is q∗(x) = 0 and the corresponding state solution u∗(x , t) = sinπt sinπx . We thus expect

that the proposed spectral optimization algorithm should be able to find the optimal initial

condition and the corresponding state solution exactly up to spectral accuracy.

In the first test, we study the effect of the regularization parameter λ in term of the

convergence rate of the iterative optimization algorithm. In Fig. 1 we present the conver-

gence history as a function of the iteration number with M = N = 18, α = 0.5 for several

values of λ. It is observed that the algorithm has better convergence property for λ = 1.

The convergence slows down slightly with decreasing λ. In particular, the algorithm fails

to converge with λ= 0.

We then check the convergence behavior of numerical solutions with respect to the

polynomial degrees M . In Fig. 2 we plot the errors as functions of the polynomial degrees

M with λ = 1,α = 0.5, N = 20. The initial guess q(0) is taken to be the constant 1. As

expected, the errors show an exponential decay, since in this semi-log representation one

observes that the error variations are essentially linear versus the degrees of polynomial.

It is worthwhile to mention that, although the initial guess has been taken far from the

exact initial condition, the convergence of the optimization algorithm was attained within

six iterations (not reported in the paper).
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Figure 1: Impat of λ on the onvergene rate of the gradient of the objetive funtion.
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Figure 2: Errors of q and u versus M with N = 20, α = 0.5.
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Figure 3: Bα/2 errors of u versus N with M = 20, α = 0.1, 0.6, 0.99.
We now investigate the temporal error about the state solution u. In Fig. 3, we plot the

errors versus N with M = 20 for several different α. The straight line of the error curves

indicates that the convergence in time is also exponential.

Example 5.2. We choose f such that the exact solution u and the exact initial condition q

are respectively u(x , t) = sinπx cosπt and q(x) = sinπx .

It is believed that a non trivial optimal condition is usually more difficult to capture

than a trivial condition, therefore this example can be served to better demonstrate the

ability of the algorithm. In this case, the solution of (2.9) differs from the one of the

original inverse problem. The error of the regularized solution depends on the magnitude

of the regularization parameter, and has been subject of many research, see e.g., [6,17].

Let us emphasize here that the choice of an appropriate regularization parameter λ is
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Figure 4: Errors of q and u versus M with N = 14, α= 0.6.
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Figure 5: L2 and Bα/2 errors of u versus N with M = 14, α= 0.6.
an important issue for inverse problems. In one side, the regularization parameter plays a

role to stabilize the optimization algorithm, and it is required to be large enough to have

good stabilization effect. In the other side, this stabilization parameter should not be too

large to guarantee that the solution of the stabilized optimization problem approaches the

exact solution as well as possible.

First we investigate the influence of the regularization parameter λ on the accuracy. Let

eq (resp: eu) denote the L2 error between the exact solution q (resp: u) and the numerical

solution q∗L (resp: u∗L). In Table 1, we list eq and eu for a number of λwith M = N = 14. It is

observed that the error decays quasi-linearly as λ decreases until the error stemming from

the spectral approximation becomes dominant. It is seen that when the regularization

parameter λ = 10−12, the numerical solutions appear to be more satisfactory. Thus, in

what follows, we take λ= 10−12 and q(0) = 10.

We now investigate the errors of the numerical solution with respect to the temporal

and spatial approximations. In Fig. 4 and Fig. 5 we report the errors in logarithmic scale
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L
and u∗

L
for di�erent λ with M = N = 14, α= 0.6.

λ 1 10−2 10−4 10−6 10−8 10−10 10−12 10−14

eq 0.98 0.33 4.94E-3 4.96E-5 5.09E-7 1.15E-7 3.05E-8 1.10E-7

eu 0.14 4.71E-2 7.01E-4 7.05E-6 7.05E-8 8.18E-10 2.91E-10 6.47E-10

as a function of the polynomial degrees M and N respectively. Clearly, all the errors show

an exponential decay until the errors associated to the regularization become dominant.

6. Concluding remarks

We presented an efficient optimization algorithm for the inverse problem of the time

fractional diffusion equation, which consists in finding the optimal initial condition such

that the corresponding solution matches the observed data as closely as possible. The pro-

posed algorithm is based on a time-space spectral approximation to the time fractional

diffusion equation and a conjugate gradient iteration to solve the discrete optimal con-

trol problem. We established the well-posedness of the regularized optimal problem and

derived an error estimate for both control and state variables. The error estimate and

the numerical tests showed that the convergence of the spectral optimization algorithm

was exponential for smooth solutions. The effect of the regularization parameter on the

accuracy and the iteration number was investigated numerically.

There are several potential extensions of the present method. Firstly, the proposed

algorithm can be adapted to two and three dimensional problems. Secondly, it can be

extended to other inverse problems, such as inverse source, inverse boundary conditions

and so on. Thirdly, some popular strategies, such as discrepancy principle, generalized

cross-validation and so on, for choosing a more suitable regularization parameter can be

considered.
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