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Abstract. A Delaunay-type mesh condition is developed for a linear finite element ap-
proximation of two-dimensional anisotropic diffusion problems to satisfy a discrete max-
imum principle. The condition is weaker than the existing anisotropic non-obtuse angle
condition and reduces to the well known Delaunay condition for the special case with
the identity diffusion matrix. Numerical results are presented to verify the theoretical
findings.
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1. Introduction

We are concerned with the linear finite element (FEM) solution of the two-dimensional
anisotropic diffusion equation

−∇ · (D∇u) = f , in Ω (1.1)

subject to the Dirichlet boundary condition

u= g, on ∂Ω, (1.2)

where Ω ∈ R2 is a connected polygonal domain, f and g are given functions, and D =
D(x , y) is the diffusion matrix assumed to be symmetric and strictly positive definite on Ω.
This boundary value problem (BVP) is a model of anisotropic diffusion problems arising in
various fields such as plasma physics [15–17, 34, 36, 38], petroleum reservoir simulation
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[1,2,10,13,32], and image processing [6,7,21,33,35,43]. A distinct feature of the BVP is
that its solution satisfies the maximum principle and is monotone when

f (x , y)≤ 0, for all (x , y) ∈ Ω.

A challenge in the numerical solution of the BVP is to design a scheme so that the resulting
numerical approximations satisfy a discrete maximum principle (DMP).

Development of DMP satisfaction schemes for solving diffusion problems has attracted
considerable interest in the past; e.g., see [4, 5, 8, 9, 18–20, 23, 27, 39–42,44] for isotropic
diffusion problems where

D= a(x , y)I

with a(x , y) being a scalar function and [10,11,15–17,22,24–26,28–32,36] for anisotropic
diffusion problems where D(x , y) can be heterogeneous and anisotropic. For example,
Ciarlet and Raviart [9] (also see Brandts et al. [4]) show that the linear finite element
method for an isotropic diffusion problem (in any dimension) satisfies DMP when the mesh
is simplicial and satisfies the non-obtuse angle condition which requires that the dihedral
angles of mesh elements be non-obtuse. In two dimensions and for the special case D= I ,
the condition can be replaced by the Delaunay condition, a weaker condition which only
requires the sum of any pair of angles opposite a common edge to be less than or equal to
π [27,41]. Moreover, Xu and Zikatanov [44] show that the non-obtuse angle condition at
edges where the diffusion coefficient is discontinuous and the Delaunay condition at other
places guarantee DMP satisfaction.

Note that the Delaunay condition may be insufficient for DMP satisfaction in three di-
mensions since it is insufficient to guarantee the M -matrix property of the stiffness matrix
in 3D (see Letniowski [27]), a crucial property used in most of DMP satisfaction proofs.
Recently, Li and Huang [28] generalize the non-obtuse angle condition to anisotropic diffu-
sion problems and obtain a so-called anisotropic non-obtuse angle condition which requires
the dihedral angles of mesh elements, when measured in a metric depending on D, to be
non-obtuse. It is thus natural to ask if the anisotropic non-obtuse angle condition can be
replaced by a weaker, Delaunay-type mesh condition for anisotropic diffusion problems in
2D.

The objective of this paper is to extend the Delaunay condition to anisotropic diffusion
problems. A Delaunay-type mesh condition is developed for the DMP satisfaction of linear
finite element approximations for those problems. It is shown that the new condition
reduces to the Delaunay condition for the special case D = I and is weaker than the
anisotropic non-obtuse angle condition developed in [28]. We arrive at the new condition
by investigating the stiffness matrix as a whole. This is different from [28] where only
local stiffness matrices on individual elements are considered. The main result is given in
Theorem 4.1.

This paper is organized as follows. The linear finite element formulation for BVP (1.1)
and (1.2) is given in Section 2. Section 3 is devoted to the description and the geometric
interpretation of the anisotropic non-obtuse angle condition. The Delaunay-type mesh
condition is developed in Section 4 while illustrative numerical results are presented in
Section 5. Finally, Section 6 contains conclusions and comments.



DMP and Delaunay-Type Mesh Condition for Diffusion Problems 321

2. Linear finite element formulation for the model problem

Consider the linear finite element solution of BVP (1.1) and (1.2). Assume that a family
of triangular meshes {Th} is given for Ω. Let

Ug =
�

v ∈ H1(Ω)
�

� v|∂Ω = g
	

.

Denote by Uh
gh ⊂ Ugh the linear finite element space associated with mesh Th, where gh is

a linear approximation to g on the boundary. A linear finite element solution ũh ∈ Uh
gh to

BVP (1.1) and (1.2) is defined by

∑

K∈Th

∫

K

(∇vh)T D∇ũhd xd y =
∑

K∈Th

∫

K

f vhd xd y, ∀ vh ∈ Uh
0 , (2.1)

where Uh
0 = Uh

gh with gh = 0. Generally speaking, the integrals in (2.1) cannot be carried
out analytically and numerical quadrature is often necessary. We assume that a quadrature
rule has been chosen on the reference element K̂ ,

∫

K̂

v(ξ,η)dξdη≈ |K̂ |
m
∑

k=1

ŵkv(b̂k),
m
∑

k=1

ŵk = 1, (2.2)

where ŵk ’s are the weights and b̂k ’s are the quadrature nodes. Many quadrature rules
can be used for this purpose; e.g., see [12]. An example is ŵk =

1
3

(k = 1,2, 3) and the

barycentric coordinates of the nodes are (1
6
, 1

6
, 2

3
), (1

6
, 2

3
, 1

6
), and (2

3
, 1

6
, 1

6
).

Let FK be the affine mapping from K̂ to K such that K = FK(K̂). Denote bK
k = FK(b̂k),

k = 1, · · · , m. Upon applying (2.2) to the integrals in (2.1) and changing variables, the
finite element approximation problem becomes seeking uh ∈ Uh

gh such that

∑

K∈Th

|K |
m
∑

k=1

ŵk (∇vh|K)T D(bK
k )∇uh|K =

∑

K∈Th

|K |
m
∑

k=1

ŵk f (bK
k ) vh(bK

k ), ∀vh ∈ Uh
0 , (2.3)

where∇vh|K and∇uh|K denote the restriction of∇vh and∇uh on K , respectively. We have
used the fact that ∇vh|K and ∇uh|K are constant in deriving (2.3). Let

DK =
m
∑

k=1

ŵkD(bK
k ). (2.4)

Obviously, DK is an average of D on K . Eq. (2.3) can be written into

∑

K∈Th

|K |
�

∇vh
�

�

K

�T DK ∇uh
�

�

K =
∑

K∈Th

|K |
m
∑

k=1

ŵk f (bK
k ) vh(bK

k ), ∀vh ∈ Uh
0 . (2.5)

We now express (2.5) in a matrix form. Denote the numbers of the elements, vertices,
and interior vertices of mesh Th by N , Nv , and Nvi , respectively. Assume that the vertices
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are ordered in such a way that the first Nvi vertices are the interior vertices. Then Uh
0 and

uh can be expressed as

Uh
0 = span

�

φ1, · · · ,φNvi

	

, (2.6)

uh =
Nvi
∑

j=1

u jφ j +
Nv
∑

j=Nvi+1

u jφ j , (2.7)

where φ j is the linear basis function associated with the j-th vertex, a j . The boundary
condition (1.2) is approximated by

u j = g(a j), j = Nvi + 1, · · · , Nv . (2.8)

Substituting (2.7) into and taking vh = φi (i = 1, · · · , Nvi) in (2.5) and combining the
resulting equations with (2.8), we obtain the linear algebraic system

Au = f , (2.9)

where

A=

�

A11 A12
0 I

�

, (2.10)

u = (u1, · · · , uNvi
, uNvi+1, · · · , uNv

)T ,

f = ( f1, · · · , fNvi
, gNvi+1, · · · , gNv

)T ,

and I in (2.10) is the identity matrix of size (Nv − Nvi). The entries of the stiffness matrix
A and the right-hand-side vector f are given by

ai j =
∑

K∈Th

|K |
�

∇φi

�

�

K

�T DK ∇φ j|K , i = 1, · · · , Nvi , j = 1, · · · , Nv , (2.11)

fi =
∑

K∈Th

|K |
m
∑

k=1

ŵk f (bK
k ) φi(b

K
k ), i = 1, · · · , Nvi . (2.12)

The expression (2.11) can be simplified. Let ωi be the patch of the elements sharing
vertex ai . Noticing that ∇φi = 0 for (x , y) /∈ ωi , we have, for i 6= j, i = 1, · · · , Nvi ,
j = 1, · · · , Nv ,

ai j =
∑

K∈ωi∩ω j

|K | (∇φi|K)T DK ∇φ j|K

=|K | (∇φi|K)T DK ∇φ j|K + |K ′| (∇φi|K ′)T DK ′ ∇φ j|K ′ , (2.13)

where K and K ′ denote the two elements sharing the common edge (ei j) connecting ver-
tices ai ≡ aK

i ≡ aK ′
i and a j ≡ aK

j ≡ aK ′
j ; see Fig. 1.
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aK
i (aK ′

i ) aK
k

aK
j (aK ′

j )

aK ′
l

αK
i j

αK ′
i j

K

K ′ ei j

Figure 1: Elements K and K ′ share the common edge (ei j) connecting vertices aK
i (aK ′

i ) and aK
j (aK ′

j ).

The angles opposite the edge are denoted by αK
i j and αK ′

i j , respectively. The Delaunay condition is

αK
i j +α

K ′
i j ≤ π.

3. The anisotropic non-obtuse angle condition

In this section, we study mesh conditions under which the linear finite element scheme
(2.5) satisfies DMP.

To start with, we introduce some notation. Denote the vertices of an element K by
aK

1 , aK
2 , aK

3 . The edge matrix of K is defined as

EK =
h

aK
2 − aK

1 , aK
3 − aK

1

i

.

Since K is simplicial, EK is nonsingular [37]. A set of q -vectors (cf. Fig. 2) can then be
defined as

[qK
2 , qK

3 ] = E−T
K , qK

1 =−qK
2 − qK

3 . (3.1)

By construction, qK
i is the inward normal to the edge opposite to vertex aK

i (i.e., the edge
not having aK

i as a vertex). This orthogonality implies that the (dihedral) angle, αK
i j ,

opposite to edge ei j can be calculated in terms of qK
i and qK

j as

αK
i j = π− arccos

 

qK
i · q

K
j

‖qK
i ‖ · ‖q

K
j ‖

!

, i 6= j. (3.2)

Moreover, it is known [3,23] that
∇φi|K = qK

i . (3.3)

From this relation, it is not difficult to show

‖qK
i ‖=

1

hK
i

, (3.4)

where hK
i is the height of K in the direction of qK

i or the shortest distance from aK
i to the

edge opposite to aK
i ; see Fig. 2.

Now, we are ready to describe the anisotropic non-obtuse angle condition.
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aK
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1
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2
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3
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1

hK
1

Figure 2: A sketch of the q vectors and other geometric quantities for an arbitrary element K.

Lemma 3.1. If the mesh satisfies the anisotropic non-obtuse angle condition

(qK
i )

T DK qK
j ≤ 0, ∀ i 6= j, i, j = 1,2, 3, ∀ K ∈ Th, (3.5)

then the linear finite element scheme (2.5) for solving BVP (1.1) and (1.2) satisfies DMP.

This lemma was proven in [28] in any spatial dimension by showing that the stiffness
matrix A in (2.9) is an M -matrix and has non-negative row sums. A key step of the proof
is to show ai j ≤ 0 for all i 6= j, which can be seen to hold from (2.13), (3.3), and (3.5).

For the isotropic diffusion case, the condition (3.5) reduces to

(qK
i )

T qK
j ≤ 0, ∀ i 6= j, i, j = 1,2, 3, ∀ K ∈ Th. (3.6)

Thus, (3.5) is a generalization of (3.6) for a general diffusion matrix. Notice that (3.6)
implies that the second term on the right-hand side of (3.2) is between π/2 and π. Conse-
quently, (3.6) is exactly the non-obtuse angle condition [9], implying αK

i j ≤ π/2.
The condition (3.5) can be interpreted directly as a requirement that the angles of

elements be non-obtuse when measured in a metric depending on D. To see this, we first
notice that (3.5) suggests that the angle between qK

i and qK
j be measured in the metric

DK . Indeed, the angle is given by

arccos

 

(qK
i )

TDKqK
j

‖qK
i ‖DK
‖qK

j ‖DK

!

,

where the DK -norm is defined by

‖v‖DK
=
p

v TDK v , ∀ v ∈ R2. (3.7)

Since

arccos

 

(qK
i )

TDKqK
j

‖qK
i ‖DK
‖qK

j ‖DK

!

= arccos









(D
1
2
KqK

i )
T (D

1
2
KqK

j )

‖D
1
2
KqK

i ‖ · ‖D
1
2
KqK

j ‖









,

the angle can also be regarded as the one between vectors D
1
2
KqK

i and D
1
2
KqK

j in the Eu-
clidean norm. Denote the third vertex of K by aK

k . By construction, qK
i and qK

j are orthog-
onal to edges (aK

j − aK
k ) and (aK

i − aK
k ), respectively; i.e.,

(qK
i )

T (aK
j − aK

k ) = 0, (qK
j )

T (aK
i − aK

k ) = 0.
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It follows that

(D
1
2
KqK

i )
T
�

D
− 1

2
K (a

K
j − aK

k )
�

= 0, (D
1
2
KqK

j )
T
�

D
− 1

2
K (a

K
i − aK

k )
�

= 0,

indicating that D
1
2
KqK

i and D
1
2
KqK

j are orthogonal to D
− 1

2
K (a

K
j − aK

k ) and D
− 1

2
K (a

K
i − aK

k ), re-

spectively. Thus, the angle between edges (aK
j − aK

k ) and (aK
i − aK

k ) in the D−1
K -norm and

that between qK
i and qK

j in the DK norm are related by

arccos

 

(qK
i )

TDKqK
j

‖qK
i ‖DK
‖qK

j ‖DK

!

+ arccos

 

(aK
i − aK

k )
TD−1

K (a
K
j − aK

k )

‖(aK
i − aK

k )‖D−1
K
‖(aK

j − aK
k )‖D−1

K

!

= π. (3.8)

Since (3.5) means the first term on the left-hand side of the above equation is between
π/2 and π, we conclude that condition (3.5) is equivalent to the requirement that the angles
of elements be non-obtuse when measured in the D−1

K norm.
It should be emphasized that condition (3.5) has been obtained by considering only

local stiffness matrices on individual elements. For the current 2D situation, this means
that each term in (2.13) has been required to be non-positive. Clearly, this is too strong
since we only need ai j ≤ 0 for i 6= j for A to be an M -matrix. For the special case D = I ,
the Delaunay condition requiring the sum of any pair of angles opposite a common edge to
be less than or equal to π (cf. Fig. 1) is sufficient to guarantee ai j ≤ 0 for i 6= j. It is then
natural to ask if condition (3.5) can be weakened and a Delaunay-type condition exists for
the general diffusion matrix D. This issue is studied in the next section.

4. A Delaunay-type mesh condition

In this section, we develop a Delaunay-type mesh condition under which the linear
finite element scheme (2.5) satisfies DMP. The main result is given in Theorem 4.1. Its
proof is broken into a series of Lemmas.

Lemma 4.1. For any element K,

|K |(∇φi|K)T∇φ j|K =−
1

2
cot(αK

i j), i 6= j, i, j = 1,2, 3, (4.1)

where αK
i j is the angle between edges eki and ek j , with aK

k being the third vertex.

Proof. This result has been obtained in [14]. For completeness, we give a short proof
here. Without loss of generality, we consider the case with i = 1, j = 2, and k = 3 (cf.
Fig. 2). From (3.2), (3.3), and (3.4), we have

|K |(∇φ1|K)T∇φ2|K =|K |(qK
1 )

T qK
2

=|K | ‖qK
1 ‖ · ‖q

K
2 ‖ cos(π−αK

12)

=−
|K |

hK
1 hK

2

cos(αK
12).
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From Fig. 2, it is easy to see

|K |=
1

2
hK

2 ‖a
K
1 − aK

3 ‖=
hK

1 hK
2

2 sin(αK
12)

.

Combining the above results, we obtain inequality (4.1). �

The angle αK
i j can be calculated in terms of the q vectors as in (3.2) or in terms of the

edge vectors as

αK
i j = arccos

 

(aK
i − aK

k )
T (aK

j − aK
k )

‖aK
i − aK

k ‖ ‖a
K
j − aK

k ‖

!

. (4.2)

The above formula is more desirable if linear coordinate transformations are involved. This
is because, under a linear coordinate transformation, the edge vectors of K will remain to
be the edge vectors of the transformed element but in general the q vectors will not.
The latter is due to the fact that orthogonality between vectors is not preserved by linear
coordinate transformations.

Lemma 4.2. For any element K,

|K |(∇φi|K)TDK∇φ j|K =−

p

det(DK)

2
cot(αK

i j,D−1
K
), i 6= j, i, j = 1,2, 3, (4.3)

where αK
i j,D−1

K
is the angle between edges eki and ek j (with aK

k being the third vertex) measured

in the metric D−1
K , i.e.,

αK
i j,D−1

K
= arccos

 

(aK
i − aK

k )
TD−1

K (a
K
j − aK

k )

‖aK
i − aK

k ‖D−1
K
‖aK

j − aK
k ‖D−1

K

!

. (4.4)

Proof. Consider a linear mapping G : K → K̃ defined as
�

ξ

η

�

= D
− 1

2
K

�

x
y

�

, ∀ (x , y) ∈ K , (4.5)

where K̃ = G(K) and (x , y) and (ξ,η) are the coordinates in K and K̃ , respectively. Let ãi =
G(aK

i ) (i = 1,2, 3), ẽi j = G(ei j) (i 6= j), and ∇̃= ((∂ /∂ ξ), (∂ /∂ η))T . Denote the angles of
K̃ by α̃i j . It is easy to show that ẽi j ’s form the edges of K̃ and φ̃i(ξ,η) ≡ φi|K(F−1(ξ,η))
(i = 1,2, 3) form the linear basis functions on K̃ . Moreover,

∇= D
− 1

2
K ∇̃.

Since ∇φi and ∇φ j are constant on K , we have

|K |(∇φi|K)TDK∇φ j|K =
∫

K

(∇φi)
TDK∇φ jd xd y

=

∫

K̃

(∇̃φ̃i)
T ∇̃φ̃ jdet(D

1
2
K)dξdη

=
p

det(DK) |K̃ | (∇̃φ̃i|K̃)
T ∇̃φ̃ j|K̃ .



DMP and Delaunay-Type Mesh Condition for Diffusion Problems 327

Applying Lemma 4.1 to the last term in the above equation on element K̃ , we have

|K |(∇φi|K)TDK∇φ j|K =−

p

det(DK)

2
cot(α̃i j). (4.6)

From

ãi − ãk = D
− 1

2
K (a

K
i − aK

k ), ‖ãi − ãk‖= ‖aK
i − aK

k ‖D−1
K

and similar formulas for (aK
j − aK

k ), α̃i j can be expressed as

α̃i j =arccos

�

(ãi − ãk)T (ã j − ãk)

‖ãi − ãk‖ ‖ã j − ãk‖

�

=arccos

 

(aK
i − aK

k )
TD−1

K (a
K
j − aK

k )

‖aK
i − aK

k ‖D−1
K
‖aK

j − aK
k ‖D−1

K

!

=αK
i j,D−1

K
.

Combining this result with (4.6) gives (4.3). �

Lemma 4.3. The entry ai j of the stiffness matrix A, (2.13), can be expressed as

ai j =−

p

det(DK)

2
cot(αK

i j,D−1
K
)−

p

det(DK ′)

2
cot(αK ′

i j,D−1
K′
). (4.7)

Proof. This lemma is a consequence of combination of (2.13) and Lemma 4.2. �

Theorem 4.1. If the triangular mesh satisfies

1

2



αK
i j,D−1

K
+αK ′

i j,D−1
K′
+ arccot





È

det(DK)
det(DK ′)

cot(αK
i j,D−1

K
)





+ arccot





È

det(DK ′)
det(DK)

cot(αK ′

i j,D−1
K′
)







≤ π, for all interior edges ei j , (4.8)

where K and K ′ are the elements sharing ei j , then the linear finite element scheme (2.5)
satisfies DMP.

Proof. We first show that if the mesh satisfies

αK
i j,D−1

K
+ arccot





È

det(DK ′)
det(DK)

cot(αK ′

i j,D−1
K′
)



≤ π, for all interior edges ei j , (4.9)

then the conclusion holds. Indeed, notice that the inequality
p

det(DK)

2
cot(αK

i j,D−1
K
) +

p

det(DK ′)

2
cot(αK ′

i j,D−1
K′
)≥ 0



328 W. Huang

can be written as

αK
i j,D−1

K
≤arccot



−

È

det(DK ′)
det(DK)

cot(αK ′

i j,D−1
K′
)





=π− arccot





È

det(DK ′)
det(DK)

cot(αK ′

i j,D−1
K′
)



 ,

which is exactly (4.9). Then, from Lemma 4.3 we have ai j ≤ 0 for i = 1, · · · , Nvi and
j = 1, · · · , Nv if (4.9) is satisfied. The result also means ai j ≤ 0 for all i 6= j due to the
special structure (2.10) of the stiffness matrix. Following the proof of Theorem 2.1 of [28]
we can then show that A is an M -matrix and has non-negative row sums, which implies
that the linear finite element scheme (2.5) satisfies DMP (cf. Stoyan [40] or Lemma 1.2
of [28]).

Next, it is easy to show that (4.9) is equivalent to

αK ′

i j,D−1
K′
+ arccot





È

det(DK)
det(DK ′)

cot(αK
i j,D−1

K
)



≤ π. (4.10)

As a result, (4.8) and (4.9) are mathematically equivalent. �

We now study the mesh condition (4.8). We first consider the case with constant D.
For this case,

DK = DK ′ = D, det(DK) = det(DK ′) = det(D).

Then (4.8) reduces to

αK
i j,D−1 +αK ′

i j,D−1 ≤ π, for all interior edges ei j . (4.11)

For the special case with D= I , (4.11) reduces to

αK
i j +α

K ′
i j ≤ π, for all interior edges ei j , (4.12)

which is exactly the Delaunay condition (cf. Fig. 1). Thus, the mesh condition (4.8) reduces
to the Delaunay condition for the special case D = I and is a generalization of the Delaunay
condition for a general D.

Next, we consider the mesh condition

αK
i j,D−1

K
≤
π

2
, i 6= j, i, j = 1,2, 3, ∀ K ∈ Th, (4.13)

for a general matrix-valued function D = D(x , y). From (3.8) and (4.4) it is not difficult
to see that this mesh condition is equivalent to the anisotropic non-obtuse angle condition
(3.5). Moreover, under (4.13) we have

αK
i j,D−1

K
≤
π

2
, cot(αK

i j,D−1
K
)≥ 0, arccot





È

det(DK)
det(DK ′)

cot(αK
i j,D−1

K
)



≤
π

2
,
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Figure 3: The x and y axes are αK ′

i j,D−1
K′

and αK
i j,D−1

K
, respectively. The DMP satisfaction region (satisfying

the mesh condition (4.8)) is below the plotted curve.

and similar results for αK ′

i j,D−1
K′

and thus (4.8) is true. Therefore, (4.13), or equivalently

(3.5), implies (4.8). In other words, the mesh condition (4.8) is weaker than the anisotropic
non-obtuse angle condition (3.5).

Finally, we consider some special cases for (4.8). It is obvious that (4.8) reduces to
(4.11) when det(DK) = det(DK ′). In Fig. 3 the region of (αK ′

i j,D−1
K′

,αK
i j,D−1

K
) satisfying the

mesh condition (4.8) is plotted for two cases where the ratio det(DK ′)/det(DK) is either
large or small. From the figure, one can see that when the ratio is large (Fig. 3(a)), αK ′

i j,D−1
K′

should essentially be non-obtuse whereas αK
i j,D−1

K
can basically be any angle between 0 and

π. On the other hand, when the ratio is small (Fig. 3(b)), the roles of αK
i j,D−1

K
and αK ′

i j,D−1
K′

switch. This observation is consistent with that made by Xu and Zikatanov [44] that the
non-obtuse angle condition should be imposed at edges where the diffusion coefficient is
discontinuous (and thus the ratio det(DK ′)/det(DK) can be large or small) to guarantee
DMP satisfaction. It is also interesting to observe from Fig. 3 that the DMP satisfaction
region overlaps with

αK
i j,D−1

K
+αK ′

i j,D−1
K′
≥ π.

5. Numerical results

In this section, we present some numerical results obtained for BVP (1.1) and (1.2)
with

f ≡ 0, g(x , 0) = g(16, y) = 0,

g(0, y) =

¨

0.5y, for 0≤ y < 2,
1, for 14≤ y ≤ 16,

and g(x , 16) =

¨

1, for 0≤ x ≤ 14,
8− 0.5x , for 14< x ≤ 16.
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The diffusion matrix is defined as

D(x , y) =

�

500.5 499.5
499.5 500.5

�

.

This example has a constant but anisotropic diffusion matrix D and a continuous boundary
condition. It satisfies the maximum principle and its solution stays between 0 and 1.

The computation is done with four types of triangular meshes shown in Fig. 4: Meshes
(a) and (b) are obtained by dividing a rectangle into two triangles using the northwest and
northeast diagonal lines, respectively, Mesh (c) obtained by dividing a rectangle into four
triangles with the intersection toward the northeast corner, and Mesh (d) is a Delaunay
mesh (which satisfies the Delaunay condition). As mentioned in the previous section,
mesh condition (4.8) reduces to (4.11) for the current example (with constant D). Note
that Meshes (a) and (d) do not satisfy (4.11) whereas Meshes (b) and (c) do (cf. Fig. 4).
Moreover, Mesh (b) contains only acute elements whereas Mesh (c) has obtuse elements
(with angles greater than π/2 in the D−1–norm).

Fig. 5 shows the contours of the linear finite element solutions obtained for meshes
finer than those shown in Fig. 4. One can see that finite element solutions for both Meshes
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Figure 4: Numerical example in Section 5. Meshes used in computation. The maximum values
for αK

i j,D−1
K
and (αK

i j,D−1
K
+αK ′

i j,D−1
K′
), respectively, are 0.98π and 1.96π for Mesh (a), 0.49π and 0.98π

for Mesh (b), 0.51π and π for Mesh (c), and 0.98π and 1.96π for Mesh (d).
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Figure 5: Numerical example in Section 5. Contours of linear �nite element solutions.

(a): For the type of mesh in Fig. 4(a).
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(b): For the type of mesh in Fig. 4(d).
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Figure 6: Numerical example in Section 5. Overshoots and undershoots as functions of the
number of mesh elements.

(b) and (c) stay between 0 and 1 and show no undershoots and overshoots. This is consis-
tent with Theorem 4.1. On the other hand, both Meshes (a) and (d) lead to undershoots
and overshoots in the computational solutions. Fig. 6 shows these undershoots and over-
shoots as functions of the number of mesh elements. As the mesh is refined, the under-
shoots and overshoots decrease very slowly and eventually reach a rate O (N−0.5), where
N is the number of elements.
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6. Conclusions and comments

In the previous sections we have developed a Delaunay-type mesh condition (4.8) un-
der which the linear finite element scheme (2.5) for solving the anisotropic diffusion prob-
lem (1.1) and (1.2) satisfies DMP. This condition is weaker than the anisotropic non-obtuse
angle condition (3.5) developed in [28]. It reduces to (4.11) when the diffusion matrix
D is constant and especially to the Delaunay condition when D = I . The main theoretical
result is given in Theorem 4.1 and verified by numerical results.

It is well known that the Delaunay condition can be satisfied by a Delaunay mesh which
can be generated through edge swapping from an existing triangular mesh. Moreover,
Mlacnik and Durlofsky [32] have demonstrated that a properly designed edge swapping
procedure can improve the monotonicity of finite volume approximations for anisotropic
diffusion problems. Clearly, the mesh condition (4.8) can serve as a criterion for designing
such a procedure. The development of an edge swapping procedure based on (4.8), the
convergence study of edge swapping, and the generation of a mesh satisfying (4.8) through
edge swapping may deserve future investigations.
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[23] M. Křížek and Q. Lin. On diagonal dominance of stiffness matrices in 3D. East-West J. Numer.
Math., 3:59–69, 1995.

[24] C. Le Potier. Schéma volumes finis monotone pour des opérateurs de diffusion fortement
anisotropes sur des maillages de triangles non structurés. C. R. Math. Acad. Sci. Paris,
341:787–792, 2005.

[25] C. Le Potier. A nonlinear finite volume scheme satisfying maximum and minimum principles
for diffusion operators. Int. J. Finite Vol., 6:20, 2009.

[26] C. Le Potier. Un schéma linéaire vérifiant le principe du maximum pour des opérateurs de
diffusion très anisotropes sur des maillages déformés. C. R. Math. Acad. Sci. Paris, 347:105–
110, 2009.

[27] F. W. Letniowski. Three-dimensional delaunay triangulations for finite element approxima-
tions to a second-order diffusion operator. SIAM J. Sci. Stat. Comput., 13:765–770, 1992.

[28] X. P. Li and W. Huang. An anisotropic mesh adaptation method for the finite element solution
of heterogeneous anisotropic diffusion problems. J. Comput. Phys. 229 (2010), 8072-8094.
(arXiv:1003.4530v2)

[29] X. P. Li, D. Svyatskiy, and M. Shashkov. Mesh adaptation and discrete maximum principle for
2D anisotropic diffusion problems. Technical Report LA-UR 10-01227, Los Alamos National
Laboratory, Los Alamos, NM, 2007.

[30] K. Lipnikov, M. Shashkov, D. Svyatskiy, and Yu. Vassilevski. Monotone finite volume schemes



334 W. Huang

for diffusion equations on unstructured triangular and shape-regular polygonal meshes. J.
Comput. Phys., 227:492–512, 2007.

[31] R. Liska and M. Shashkov. Enforcing the discrete maximum principle for linear finite element
solutions of second-order elliptic problems. Comm. Comput. Phys., 3:852–877, 2008.

[32] M. J. Mlacnik and L. J. Durlofsky. Unstructured grid optimization for improved monotonicity
of discrete solutions of elliptic equations with highly anisotropic coefficients. J. Comput.
Phys., 216:337–361, 2006.

[33] D. Mumford and J. Shah. Optimal approximations by piecewise smooth functions and asso-
ciated variational problems. Commun. Pure Appl. Math, 42:577–685, 1989.

[34] K. Nishikawa and M. Wakatani. Plasma Physics. Springer-Verlag Berlin Heidelberg, New York,
2000.

[35] P. Perona and J. Malik. Scale-space and edge detection using anisotropic diffusion. IEEE
Trans. Pattern Anal. Mach. Intel., 12:629–639, 1990.

[36] P. Sharma and G.W. Hammett. Preserving monotonicity in anisotropic diffusion. J. Comput.
Phys., 227:123–142, 2007.

[37] D. M. Y. Sommerville. An Introduction to the Geometry of n Dimensions. Methuen & Co. LTD.,
London, 1929.

[38] T.H. Stix. Waves in Plasmas. Amer. Inst. Phys., New York, 1992.
[39] G. Stoyan. On a maximum principle for matrices, and on conservation of monotonicity. With

applications to discretization methods. Z. Angew. Math. Mech., 62:375–381, 1982.
[40] G. Stoyan. On maximum principles for monotone matrices. Lin. Alg. Appl., 78:147–161,

1986.
[41] G. Strang and G. J. Fix. An Analysis of the Finite Element Method. Prentice Hall, Englewood

Cliffs, NJ, 1973.
[42] R. S. Varga. On a discrete maximum principle. SIAM J. Numer. Anal., 3:355–359, 1966.
[43] J. Weickert. Anisotropic Diffusion in Image Processing. Teubner-Verlag, Stuttgart, Germany,

1998.
[44] J. Xu and L. Zikatanov. A monotone finite element scheme for convection-diffusion equations.

Math. Comput., 69:1429–1446, 1999.


