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Abstract. In this paper we study the computational performance of variants of an al-

gebraic additive Schwarz preconditioner for the Schur complement for the solution of

large sparse linear systems. In earlier works, the local Schur complements were com-

puted exactly using a sparse direct solver. The robustness of the preconditioner comes at

the price of this memory and time intensive computation that is the main bottleneck of

the approach for tackling huge problems. In this work we investigate the use of sparse

approximation of the dense local Schur complements. These approximations are com-

puted using a partial incomplete LU factorization. Such a numerical calculation is the

core of the multi-level incomplete factorization such as the one implemented in pARMS.

The numerical and computing performance of the new numerical scheme is illustrated

on a set of large 3D convection-diffusion problems; preliminary experiments on linear

systems arising from structural mechanics are also reported.
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Key words: Hybrid direct/iterative solver, domain decomposition, incomplete/partial factorization,
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1. Introduction

The solution of partial differential equations (PDE) problems on large three dimen-

sional (3D) meshes often leads to the solution of large sparse possibly unstructured lin-

ear systems. In this work, we mainly consider unsymmetric matrices resulting from the

discretization of convection-diffusion type of problems. For their solution, we consider
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a parallel hybrid iterative-direct numerical technique. It is based on an algebraic pre-

conditioner for the Schur complement system that classically appears in non-overlapping

domain decomposition method. In earlier papers [3, 4], we studied the numerical and

parallel scalability of this algebraic additive Schwarz preconditioners [2, 5, 6] where the

preconditioner is built using exact local Schur complement matrices. This exact calcula-

tion is performed thanks to sparse direct solvers such as [1]. This calculation becomes

prohibitive for large 3D problems both from a memory and computing time prospectives.

To alleviate these costs while preserving its numerical robustness, we consider in this paper

an approximation of the local Schur complement computed using a partial incomplete fac-

torization following the approach implemented in the multi-level incomplete factorization

schemes such as pARMS [7].

In Section 2, we describe the main components of the preconditioner that are the alge-

braic additive Schwarz approach and the variant of the dual thresholding I LU(t, p) [10]

enabling us to build the approximation of the local Schur complement. The memory and

CPU-time benefits as well as the numerical and parallel behaviours are discussed in Sec-

tion 4 through an extensive scalability study on large numbers of processors for model

problems. More precisely, we mainly consider the 3D convection-diffusion problems de-

fined by Eq. (1.1)
¨

−ε div(K .∇u) + v.∇u= f in Ω,

u= 0 on ∂Ω,
(1.1)

where ε is a scalar, K a positive definite bounded tensor and v a velocity field defined

on the computational domain Ω. Some preliminary experiments on linear systems arising

from industrial structural mechanics computational are also reported.

2. The main components of the parallel preconditioner

Motivated by parallel distributed computing and the potential for coarse grain paral-

lelism, considerable research activity developed around iterative domain decomposition

schemes [8, 9, 13, 14]. The governing idea behind sub-structuring or Schur complement

methods is to split the unknowns in two subsets. This induces the following block re-

ordered linear system associated with the discretization of Eq. (1.1):
�

AI I AIΓ

AΓI AΓΓ

��

x I

xΓ

�

=

�

bI

bΓ

�

, (2.1)

where xΓ contains all unknowns associated with sub-domain interfaces and x I contains

the remaining unknowns associated with sub-domain interiors. The matrix AI I is block

diagonal where each block corresponds to a sub-domain interior. Eliminating x I from the

second block row of Eq. (2.1) leads to the reduced system

SxΓ = bΓ − AΓIA
−1
I I bI , where S = AΓΓ − AΓIA

−1
I I AIΓ (2.2)

and S is referred to as the Schur complement matrix. This reformulation leads to a general

strategy for solving (2.1). Specifically, an iterative method can be applied to (2.2). Once xΓ
is determined, x I can be computed with one additional solve on the sub-domain interiors.
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For the sake of simplicity, we describe the basis of our algebraic preconditioner in

two dimensions as its generalization to three dimensions is straightforward. In Fig. 1, we

depict an internal sub-domain Ωi with its edge interfaces Em, Eg , Ek, and Eℓ that define

Γi = ∂Ωi/∂Ω. Let RΓi
: Γ→ Γi be the canonical pointwise restriction that maps full vectors

defined on Γ into vectors defined on Γi , and let RT
Γi

: Γi → Γ be its transpose. For a matrix

A arising from a finite element discretization, the Schur complement matrix (2.1) can also

be written

S =

N
∑

i=1

RT
Γi

S(i)RΓi
,

where

S(i) = A
(i)
ΓΓ − AΓi i

A−1
ii AiΓi

is referred to as the local Schur complement associated with the sub-domainΩi. The matrix

S(i) involves submatrices from the local stiffness matrix A(i), defined by

A(i) =

�

Aii AiΓi

AΓi i
A
(i)
ΓiΓi

�

. (2.3)

The matrix A(i) corresponds to the discretization of Eq. (1.1) on the sub-domain Ωi with

Neumann boundary condition on Γi and Aii corresponds to the discretization of Eq. (1.1)

on the sub-domain Ωi with homogeneous Dirichlet boundary conditions on Γi.

Ωi

Ω j
Ek

EgEm

EℓFigure 1: An internal sub-domain.
For convection diffusion problems the discretization matrix A is unsymmetric. Hence,

systems with the matrix S can be solved using a unsymmetric Krylov subspace method such

as GMRES [12] without forming the Schur complement matrix explicitly. While the Schur

complement system is often much more amenable to solution using a Krylov subspace

method than the original system, it is important to consider further preconditioning.

We now describe in Section 2.1 the algebraic Schwarz preconditioner that, in its orig-

inal form, relies on the knowledge of some block entries of the Schur complement matrix

S that have to be computed explicitly using some entries of the matrices S(i). This ex-

plicit calculation of these matrix entries can become prohibitive for large 3D problems. To

overcome this penalty we introduce in Section 2.2 an approximation of the local Schur

complement matrices S(i) that is computed by a partial incomplete dual thresholding LU

factorisation [10].
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2.1. The algebraic additive Schwarz preconditioner

The local Schur complement matrix, associated with the sub-domain Ωi depicted in

Fig. 1, is dense and has the following 4× 4 block structure:

S(i) =













S(i)mm Smg Smk Smℓ

Sgm S(i)g g Sgk Sgℓ

Skm Skg S
(i)

kk
Skℓ

Sℓm Sℓg Sℓk S
(i)

ℓℓ













,

where each block accounts for the interactions between the degrees of freedom of the four

edges of the interface Γi.

To describe the preconditioner we define the local assembled Schur complement,

S̄(i) = RΓi
SRT
Γi

,

that corresponds to the restriction of the Schur complement to the interface Γi. This local

assembled preconditioner can be built from the local Schur complements S(i) by assembling

their diagonal blocks thanks to a few neighbour to neighbour communications in a parallel

distributed computing environment. For instance, the diagonal blocks of the complete

matrix S associated with the edge interface Ek, depicted in Fig. 1, is

Skk = S
(i)

kk
+ S

( j)

kk
.

That is, it results from the contribution of domain Ωi and Ω j that share the edge interface

Ek. Assembling each diagonal block of the local Schur complement matrices, we obtain

the local assembled Schur complement, that is:

S̄(i) =











Smm Smg Smk Smℓ

Sgm Sg g Sgk Sgℓ

Skm Skg Skk Skℓ

Sℓm Sℓg Sℓk Sℓℓ











.

With these notations the preconditioner reads

Md =

N
∑

i=1

RT
Γi

�

S̄(i)
�−1

RΓi
. (2.4)

In a matrix form this preconditioner can be viewed as a block diagonal preconditioner with

overlap among the blocks. Consequently, it is referred to as algebraic additive Schwarz

preconditioner for the Schur complement.

In three dimensional problems the size of the dense local Schur matrices can be large,

consequently it might be computationally expensive to factorize and perform forward or

backward substitutions with these factors. One possible alternative to get a cheaper pre-

conditioner is to consider a sparse approximation for S̄(i) in (2.4), which may result in a
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saving of memory to store the preconditioner and saving of computation time to factorize

and apply it. This approximation Ŝ(i) can be constructed by dropping the elements of S̄(i)

that are smaller than a given threshold. More precisely, the following dropping policy can

be applied:

ŝℓ j =

¨

0, if |s̄ℓ j| ≤ ξ(|s̄ℓℓ|+ |s̄ j j |),
s̄ℓ j, otherwise.

The resulting preconditioner reads

Msp =

N
∑

i=1

RT
Γi

�

Ŝ(i)
�−1

RΓi
. (2.5)

While this strategy enables us to reduce the memory storage and computational com-

plexity to apply the preconditioner, it does require a memory peak while the local Schur

complement are assembled (before to be sparsified). In the next section we describe a

solution to avoid this expensive calculation.

2.2. Sparse approximation based on partial I LU(t , p)

One can design a computationally and memory cheaper alternative to approximate the

local Schur complements S(i). Among the possibilities, we consider in this paper a variant

based on the I LU(t, p) [10] that is also implemented in pARMS [7].

The approach consists in applying a partial incomplete factorisation to the matrix A(i).

The incomplete factorisation is only run on Aii and it computes its ILU factors L̃i and Ũi

using to the dropping parameter threshold t f actor .

pI LU (A(i)) ≡ pI LU

�

Aii AiΓi

AΓi i
A
(i)
ΓiΓi

�

≡

�

L̃i 0

AΓi Ũ
−1
i

I

��

Ũi L̃−1
i

AiΓ

0 S̃(i)

�

,

where

S̃(i) = A
(i)
ΓiΓi
−AΓi i

Ũ−1
i L̃−1

i AiΓi
.

The incomplete factors are then used to compute an approximation of the local Schur

complement. Because our main objective is to get an approximation of the local Schur

complement we switch to another less stringent threshold parameter tSchur to compute the

sparse approximation of the local Schur complement.

Such a calculation can be performed using a IKJ-variant of the Gaussian elimina-

tion [11], where the L̃ factor is computed but not stored as we are only interested in

an approximation of S̃i. This further alleviate the memory cost.

The local approximations of the Schur complement are then assembled thanks to a few

neighbour to neighbour communications to form S̃
(i)

. These matrices are used to build a
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preconditioner similar to (2.5) that reads

Mapp =

N
∑

i=1

RT
Γi

�

S̃
(i)
�−1

RΓi
. (2.6)

3. Exact vs. approximated Schur algorithm

In a parallel distributed memory environment, the domain decomposition strategy is

followed to assign each local PDE problem (sub-domain) to one processor that works in-

dependently of other processors and exchange data using message passing. In that compu-

tational framework, the implementation of the algorithms based on preconditioners built

from the exact or approximated local Schur complement only differ in the preliminary

phases. The parallel SPMD algorithm is as follow:

1. Initialization phase:

• Exact Schur : using the sparse direct solver [1] we compute at once the LU

factorization of Aii and the local Schur complement S(i);

• Approximated Schur : using the sparse direct solver we only compute the

LU factorization of Aii, then we compute the approximation of the local

Schur complement S̃(i) by performing a partial I LU factorization of A(i).

2. Set-up of the preconditioner:

• Exact Schur : we first assemble the diagonal problem thanks to few neigh-

bour to neighbour communications (computation of S̄(i)), we sparsify the

assembled local Schur (i.e., Ŝ(i)) that is then factorized.

• Approximated Schur : we assemble the sparse approximation also thanks to

few neighbour to neighbour communications and we factorize the resulting

sparse approximation of the assembled local Schur.

3. Krylov subspace iteration: the same numerical kernels are used. The only differ-

ence is the sparse factors that are considered in the preconditioning step depen-

dent on the selected strategy (exact vs. approximated).

From a high performance computing point of view, the main difference relies in the

computation of the local Schur complement. In the exact situation, this calculation is per-

formed using sparse direct techniques which make intensive use of BLAS-3 technology as

most of the data structure and computation schedule are performed in a symbolic analysis

phase when fill-in is analyzed. For partial incomplete factorization, because fill-in entries

might be dropped depending on their numerical values, no prescription of the structure of

the pattern of the factors can be symbolically computed. Consequently this calculation is

mainly based on sparse BLAS-1 operations that are much less favorable to an efficient use

of the memory hierarchy and therefore less effective in terms of their floating point oper-

ation rate. In short, the second case leads to fewer operations but at a lower computing
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rate, which might result in higher overall elapsed time in some situations. Nevertheless,

in all cases the approximated Schur approach consumes much less memory as illustrated

later on in this paper.

4. Numerical experiments

We first describe in Section 4.1 the computational framework considered for our par-

allel numerical experiments then we illustrate in Section 4.2 the benefits from a computa-

tional resources view-point of the approximated approach. We investigate in Section 4.3

the numerical behaviours of the sparsified approximated variants and compare them with

the classical sparse preconditioner based on an exact computation of the Schur comple-

ment. In Section 4.4 we briefly study the numerical scalability of the preconditioners by

conducing weak scalability experiments where the global problem size is increased linearly

with the number of processors.

4.1. Computational framework

We investigate the numerical behaviour and the parallel scalability of the hybrid solver

on parallel computing facilities. These computers are: the IBM JS21 that is a 4-way SMP

of PowerPC 970MP processors running at 2.5 GHz and equipped with 8 GBytes of main

memory per node. The IBM Blue Gene/L that consists of 1024 chips, where each chip has

two modified PowerPC 440s running at 700 MHz and 512 MBytes of memory per CPU.

We consider various 3D model problems defined by Eq. (1.1) with different diffusion

and convection terms. A scalar term is used in front of the diffusion term that enables

us to vary the Péclet number so that the robustness with respect to this parameter can

be investigated. These various choices of 3D model problems are thought to be difficult

enough and representative for a large class of applications. We consider for the diffusion

coefficient the matrix K in Eq. (1.1) as diagonal with piecewise constant function entries

defined in the unit cube as depicted in Fig. 2. The diagonal entries a(x , y, z), b(x , y, z),

c(x , y, z) of K are bounded positive functions on Ω enabling us to define heterogeneous

and/or anisotropic problems.

To vary the difficulties we consider both discontinuous and anisotropic diffusion coef-

ficients defined along vertical beams according to the pattern displayed in Fig. 2.

More precisely we define the following set of diffusion coefficients to define K .

Problem 1: heterogeneous diffusion problem defined on Pattern 1

a(·) = b(·) = c(·) =

¨

1 in Ω1 ∪Ω3 ∪Ω5,

103 in Ω2 ∪Ω4 ∪Ω6.

Problem 2: heterogeneous and anisotropic diffusion problem defined on Pattern 1

a(·) = 1 and b(·) = c(·) =

¨

1 in Ω1 ∪Ω3 ∪Ω5,

103 in Ω2 ∪Ω4 ∪Ω6.
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Figure 2: Variable di�usion oe�ient domains. (a) Pattern 1; (b) Pattern 2.
Problem 3: heterogeneous and anisotropic diffusion problem defined on Pattern 2

a(·) = 1 and b(·) = c(·) =







1 in Ω1,

103 in Ω2,

10−3 in Ω3 ∪Ω4 ∪Ω5 ∪Ω6.

For each of the diffusion problems described above we define a 3D convection-diffusion

problem by considering a convection term with a circular flow in the xy direction and a

sinusoidal flow in the z direction; that is:






vx(·) = (x − x2)(2y − 1),

vy(·) = (y − y2)(2x − 1),

vz(·) = sin(πz).

We depict in Fig. 3 the streamlines of the convection field.
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Figure 3: Cirular onvetion �ow. (a) xy plane; (b) yz plane.
Each problem is discretized on the unit cube using standard second order finite dif-

ference discretization with a seven point stencil; a centered finite difference scheme is

considered for the first order term.
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4.2. Comparison between exact and approximated Schur method

In this section we illustrate the difference of computing resource consumption of the

two approaches. We first illustrate the requirement of each approach in term of memory.

We depict in Table 1 the memory required for each sub-problem to compute the exact

Schur complement or to calculate the approximated sparse Schur complement. In the

row of Table 1 we report the amount of memory (expressed in MBytes) when the size

of the local sub-problem is varied. These results were observed for a given setup of the

parameters governing the model problem but there are representative of a general trend

seen with many experiments we have run.Table 1: Memory omparison between an exat and an approximated omputation of the loal Shuromplement S(i) using sparse diret fatorisation for exat approah and partial inomplete fatorisationfor the approximated approah.
sub-domain mesh size

memory/sub-domain 253 303 353 403 453 503 553

MB 15 Kdof 27 Kdof 43 Kdof 64 Kdof 91 Kdof 125 Kdof 166 Kdof

Ŝ(i) 100% in U, 4% in S 254 551 1058 1861 3091 4760 7108

S̃(i) 21% in U, 4% in S 55 114 216 383 654 998 1506

It can be seen that the exact Schur computation requires a large amount of mem-

ory especially for large sub-problem (553 local mesh, that is about 166 000 unknowns).

The memory is mainly used to store the L and U parts associated with the interface un-

knowns as well as the local dense exact Schur complement. A feature of the approximated

sparse variant is that it reduces dramatically this memory requirement. For all the problem

sizes, the approximated Schur approach reduces the memory requirement by a factor of 5.

This feature enables us to perform much larger computation using the same computing re-

sources as most of the memory was used to exactly compute the local Schur complement in

our earlier work [3,4]. For example, on the IBM-JS21 supercomputer with 2GB/proc, the

maximal sub-domain size allowed to perform a simulation using the exact Schur method

is 353 (i.e., 43 000 unknowns per sub-problem), whereas it can be bigger than 503 (i.e.,

125 000 unknowns) using the approximated Schur method. In other words, on 1728 pro-

cessors, we can solve a problem with more than 216 million degrees of freedom using

the approximated Schur method instead of a problem with 74 million degrees of freedom

using the exact Schur method.

We now examine the approximated Schur method from a computing time view point,

and compare it with the exact Schur method. Those tests were performed on the IBM-JS21

supercomputer because of the memory requirement on the large sub-problems. We report

in Table 2 the elapsed time required to compute the exact or the approximated local Schur

complement for different sub-problem sizes (i.e., sub-domain size). For the approximated

Schur method this elapsed time corresponds to the exact local sparse factorisation of Aii

(that is the (1,1) block of A(i) in Eq. (2.3)) and the partial incomplete factorisation of the

complete matrix A(i) to compute the approximated Schur complement S̃(i). We display the

percentage of retained entries in the U factor for two values of the dropping parameter

for each sub-problem size. It can be seen that on the small problems, higher computing



Sparse Approximations of the Schur Complement in 3D 285Table 2: Elapsed time omparison between an exat and an approximated omputation of the loal Shuromplement S(i) using sparse diret fatorisation for exat approah and partial inomplete fatorisationfor the approximated approah.
sub-domain grid size

Time kept entries 253 303 353 403 453 503 553

sec in factor 15 Kdof 27 Kdof 43 Kdof 64 Kdof 91 Kdof 125 Kdof 166 Kdof

Ŝ(i) 100% in U, 4% in S 4.1 12.1 35.4 67.6 137 245 581

S̃(i) 21% in U, 4% in S 6.1 15.1 31.2 60.8 128 208 351

S̃(i) 10% in U, 4% in S 2.9 7.5 16.5 29.8 64 100 169

speed of the BLAS-3 computation compensates the extra computation performed by the

exact approach. This is no longer true for large problem sizes where the amount of fill-in

increases significantly. In this latter situation, the reduction of the amount of computation

introduced by the dropping strategy is large enough to compensate for its slower compu-

tational speed due to its sparse BLAS-1 nature. In Table 2, we can observe that for a value

of 10% in the U factor (that leads to a sparse Schur with only 4% of entries compared to

the exact full), the approximated Schur method performs more than twice faster than the

exact one for all decompositions.

4.3. Influence of the sparsification threshold

The attractive feature of Mapp compared to Msp is that it enables us not only to re-

duce the memory requirement to store and factorize the preconditioner but also to reduce

the computational cost to construct it (exact versus approximated sparse factorization)

especially for large problems size. However, the counterpart of this computing resource

saving could be a deterioration of the preconditioner quality that would slow down the

convergence of GMRES. We study the effect of the sparse approximation on a set of model

problems. For these experiments, we consider a 420 × 420 × 420 mesh mapped onto

1728 processors of the IBM-JS21 supercomputer. That is, each sub-domain has a size of

about 43 000 unknowns and the overall problem is about 74 millions unknowns. We

note that this is the largest example that we can conduct on this platform using the exact

computation, whereas we can perform a problem with 216 millions unknowns using the

approximated computation.

We briefly compare and show the effect of the ILU dropping parameter for the differ-

ent problems mentioned above. For those problems, it has been observed [3, 4] that an

amount of 2-4% of kept entries in the Schur complement are suitable values to provide a

good trade-off between convergence speed and computational cost per iteration for Msp.

We display in Fig. 4 the convergence history for various choices of the ILU dropping param-

eters t f actor and tSchur involved in the definition of Mapp in (2.6). For those experiments

t f actor is defined so that 21% and 10% of the entries are kept in the incomplete U com-

pared to its exact counterpart computed by the sparse direct factorization. The parameter

tSchur is chosen so that only 4% of entries are eventually kept (compared to its dense coun-

terpart). We also plot the convergence history of the exact sparsified Msp preconditioner,

where the sparsification parameter is also chosen to keep only 4% of the entries. The left
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(d)Figure 4: Convergene history for a 420× 420× 420 mesh mapped onto 1728 proessors for varioussparsi�ation dropping thresholds (Left: saled residual versus iterations, Right: saled residual versustime). (ε = 10−3) in Eq. (1.1). (a) Heterogeneous di�usion Problem 1 with Convetion 1 (historyvs. iterations); (b) Heterogeneous di�usion Problem 1 with Convetion 1 (history vs. time); ()Heterogeneous and anisotropi di�usion Problem 2 with Convetion 1 (history vs. iterations); (d)Heterogeneous and anisotropi di�usion Problem 2 with Convetion 1 (history vs. time).
graphs in Fig. 4 show the convergence history as a function of the iterations, whereas the

right graphs give the convergence as a function of the computing time. The black curve

corresponds to the sparse preconditioner based on an exact Schur computation sparsified

by keeping around 4% of the Schur entries. The red curve illustrates the sparse precondi-

tioner based on an approximated Schur computation, where we keep around 21% of the

factor U entries during the ILU factorization and around 4% of the resulting approximated

Schur complement entries. Whereas the blue curve corresponds to the sparse precondi-

tioner based on an approximated Schur computation, where we kept around 10% of the

incomplete factor U and around 4% of the resulting approximated Schur complement en-

tries.

We should mention that the initial plateaus in the right graphs correspond to the setup

time that is the sum of the initialization time and the time to setup the preconditioner
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(assembling and factorization).

It can be observed that, as t f actor is increased the amount of entries kept in factor U

is decreased, the setup time (initial plateaus of the graphs) decreases but the convergence

deteriorates slightly (blue dashed curve). For a small dropping parameter for ILU (red

dashed curve), the numerical performance of the approximated sparse preconditioner is

closer to the exact sparse one and the convergence behaviours are similar. It can be ob-

served that, even though the approximated sparse variants require more iterations, with

respect to time they converge faster as the setup is cheaper and the time per iteration is

comparable.

4.4. Parallel performance

In this section we first study the weak numerical scalability of the preconditioner. We

perform weak scalability experiments where the global problem size is varied linearly with

the number of processors. Such experiments illustrate the ability of parallel computation to

perform large simulations (fully exploiting the local memory of the distributed platforms)

in ideally a constant elapsed time. We mention that these experiments have been conduced

on the Blue Gene supercomputer. In the numerical experiments below, the iterative method

used to solve these problems is the right preconditioned GMRES algorithm. We choose the

ICGS (Iterative Classical Gram-Schmidt orthogonalization) strategy which is suitable for

parallel implementation. The initial guess is the zero vector and the iterations are stopped

when the normwise backward error on the right-hand side, that is defined by
‖rk‖
‖ f ‖

, becomes

smaller than 10−8 or when more than 500 iterations are performed. In that expression f

denotes the right-hand side of the Schur complement system to be solved and rk the true

residual at the kth iteration (i.e., rk = f − Sx
(k)
Γ ).

4.4.1. Numerical scalability on massively parallel platforms

In this section we describe, evaluate and analyze how the preconditioners (Mapp) affect

the convergence rate of the iterative hybrid solver and what numerical performance is

achieved on various model problems when the convection term is varied. Various results

are presented in Tables 3 and 4.

In these tables, we report the number of iterations when the local problem size is varied

when we increase the number of sub-domains from 27 up-to 1728; in Table 4 we vary the

Péclet number. For the sake of readability, the size of the sub-domain is fixed to 35×35×35,

that is approximately 43 000 dof. We also indicate the percentage of the kept entries in

both the approximated factor U and the approximated computed Schur complement. We

divide the discussion into three parts:

• the numerical scalability according to the local problem size (column reading in

Table 3),

• the numerical scalability of the Krylov solver when the number of sub-domains in-

creases (weak scalability),

• the numerical efficiency of the preconditioner when the Péclet number is varied.



288 L. Giraud, A. Haidar and Y. SaadTable 3: Number of preonditioned GMRES iterations for various di�usion terms ombined when thenumber of sub-domains are varied (horizontal view) and when the sub-domain mesh size is varied(vertial view).
# sub-domains ≡ # processors

sub-domain grid size 27 64 125 216 343 512 729 1000 1331 1728

Heterogeneous diffusion term defined by Problem 1

21% in U, 5% in S 29 39 44 56 60 73 81 86 91 108
253

10% in U, 5% in S 32 45 48 63 67 81 90 97 101 119

21% in U, 4% in S 32 43 47 60 62 80 86 92 96 114
303

10% in U, 4% in S 36 49 52 68 73 90 101 107 107 130

21% in U, 4% in S 34 46 50 65 70 77 94 98 97 123
353

10% in U, 4% in S 38 50 55 73 79 92 105 114 111 136

Heterogeneous and anisotropic diffusion term defined by Problem 2

21% in U, 5% in S 33 47 54 73 73 83 92 100 101 127
253

10% in U, 5% in S 35 51 59 78 79 91 100 108 110 133

21% in U, 4% in S 33 49 56 75 75 86 100 102 107 131
303

10% in U, 4% in S 37 54 63 82 83 97 105 114 117 139

21% in U, 4% in S 35 51 58 78 77 89 97 105 110 134
353

10% in U, 4% in S 43 57 65 85 84 101 110 120 121 144

In Table 3, we can observe that for all the problems, the dependency of the convergence

rate on the mesh size is rather low. When we go from sub-domains with about 15 625 dof

to sub-domains with about 43 000 dof, the gap in the number of iterations is between

3-10 iterations (10%-18%). Notice that with such an increase in the sub-domain size, the

overall system size is multiplied by a factor of 3; on 1728 processors the global system size

varies from 27 million dof up-to about 74 million dof.

We now comment on the numerical scalability of the approximated Schur method when

the number of sub-domains is varied while the Péclet number is constant. This behaviour

can be observed in Tables 3 and 4 by reading these tables by row. It can be seen that

the increase in the number of iterations is moderate when the sub-domain number varies

from 27 up-to 1728. When we multiply the number of sub-domains by 64, the number of

iterations increases between 3 to 4 times. Such a numerical behaviour can be considered as

satisfactory on this type of difficult problems. For the characteristics of the problems and

the associated difficulties, we can consider that the preconditioner performs reasonably

well. The behaviour is similar for the different dropping thresholds. We mention that the

approximated sparse preconditioner convergence is similar to the one observed using the

exact dense/sparse preconditioner [3].

Moreover, we study the effect of varying the dropping thresholds for the incomplete

factorisation (t f actor) and for the approximated Schur complement (tSchur ). As explained

in Section 4.3, as these thresholds increase, the sparsity of S̃(i) and the U factor increases;

the preconditioner behaves poorly. For example in Table 4, we observe that the gap be-

tween Mapp with 21% of kept entries in the factor U and Mapp with 10% of kept entries in

the factor U is significant; between 3 to 20 iterations (5%-15%). Furthermore, we see that,

when we increase the number of sub-domains, the sparser the preconditioner, the larger

the number of iterations is. The gap is larger when the Péclet number is increased.



Sparse Approximations of the Schur Complement in 3D 289Table 4: Number of preonditioned GMRES iterations for various di�usion terms when the number ofsub-domains and the Pélet number are varied. For sake of readability, the size of the sub-domain is�xed into 35× 35× 35; that is, the size of eah sub-domains is 43 000 dof.
# sub-domains ≡ # processors

27 64 125 216 343 512 729 1000 1331 1728

Heterogeneous diffusion term defined by Problem 1 with Convection 1

21% in U, 4% in S 34 46 50 65 70 77 94 98 97 123

21% in U, 2% in S 35 45 50 66 68 78 93 104 100 126
ε= 1

10% in U, 4% in S 38 50 55 73 79 92 105 114 111 136

10% in U, 2% in S 38 52 56 73 80 88 107 113 113 137

21% in U, 4% in S 34 48 53 67 77 89 100 112 118 135

21% in U, 2% in S 35 46 55 68 77 91 101 112 124 139
ε= 10−3

10% in U, 4% in S 38 54 60 76 90 102 114 129 136 154

10% in U, 2% in S 40 54 61 76 89 102 116 126 140 157

21% in U, 4% in S 36 52 62 72 85 96 105 116 128 138

21% in U, 2% in S 37 52 64 74 86 98 111 118 132 143
ε= 10−4

10% in U, 4% in S 41 59 69 81 96 108 119 131 144 155

10% in U, 2% in S 43 58 71 82 95 108 122 131 147 159

21% in U, 4% in S 126 170 163 169 201 217 231 259 276 290
ε= 10−5

10% in U, 4% in S 128 179 183 197 232 253 269 296 321 338

Heterogeneous and anisotropic diffusion term defined by Problem 2 with Convection 1

21% in U, 4% in S 35 51 58 78 77 89 97 105 110 134

21% in U, 2% in S 36 52 59 79 78 91 99 109 113 136
ε= 1

10% in U, 4% in S 43 57 65 85 84 101 110 120 121 144

10% in U, 2% in S 43 57 65 85 84 101 111 120 123 146

21% in U, 4% in S 41 53 64 84 87 102 118 122 129 150

21% in U, 2% in S 38 55 66 86 89 105 120 126 133 153
ε= 10−3

10% in U, 4% in S 47 60 74 91 100 116 129 141 148 167

10% in U, 2% in S 47 61 74 91 101 116 129 142 151 170

21% in U, 4% in S 48 65 82 103 117 143 168 189 210 248

21% in U, 2% in S 49 67 86 109 124 151 178 201 223 263
ε= 10−4

10% in U, 4% in S 62 86 107 136 156 189 222 250 273 299

10% in U, 2% in S 62 87 108 137 157 190 225 252 279 302

Heterogeneous and anisotropic diffusion term defined by Problem 3 with Convection 1

21% in U, 4% in S 44 61 72 91 109 122 132 143 151 161

21% in U, 2% in S 44 61 73 92 111 122 134 145 153 163
ε= 1

10% in U, 4% in S 51 64 80 98 115 128 138 155 166 179

10% in U, 2% in S 50 64 80 99 115 128 138 156 166 180

21% in U, 4% in S 49 61 73 94 118 134 157 166 186 200

21% in U, 2% in S 50 62 75 95 121 136 160 169 189 202
ε= 10−3

10% in U, 4% in S 52 67 82 103 126 144 171 187 208 225

10% in U, 2% in S 52 67 84 103 126 145 171 188 209 226

21% in U, 4% in S 62 67 85 109 146 170 213 215 227 260
ε= 10−4

10% in U, 4% in S 62 70 89 111 151 177 221 228 238 272

Regarding the behaviour of the preconditioners for convection dominated problems,

although those problems are more difficult to solve, the preconditioners are still effective.

We recall that the preconditioners do not exploit any specific information about the prob-

lem (e.g., direction of flow). From a numerical point of view, if we read Table 4 by column,

we can observe the effect of the Péclet number increase on number of GMRES iterations
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to converge. With respect to this parameter the preconditioners perform reasonably well.

This robustness is illustrated by the fact that the solution is tractable even for large Péclet

numbers.

4.4.2. Parallel weak scalability on massively parallel platforms

This section is devoted to the presentation and analysis of the parallel performance of

the approximated sparse preconditioners Mapp. It is believed that parallel performance

is the most important means of improving/reducing turn around time and computational

cost of applications. In this context, we consider scaled experiments where we increase

the number of processors while the size of the sub-domain (i.e., sub-domain size) is kept

constant. Such weak scalability experiments mainly emphasize the interest of parallel

computation in keeping constant the elapsed time to solve a problem for which the overall

size and the number of processors increase proportionally.

In Table 5 are reported the elapsed time to exactly factorize the local internal prob-

lem of the matrix associated with each sub-domain A
(i)

ii
, using [1] (LU[Aii]), to perform

the partial incomplete LU factorization on A(i) to construct S̃(i). Different problem sizes

are considered for these experiments. The initialization times, displayed in Table 5, are

independent of the number of sub-domains and only depend on their size.

It can be seen that the BLAS-3 implementation of the sparse direct solver outperforms

the sparse BLAS-1 like computation of the partial incomplete factorization.

We report in Table 6 the setup time for the two values of the dropping threshold of the

preconditioner and for different sizes of the sub-domains. As mentioned above the setup

time to build the preconditioner depends on the size of the local Schur complement and

especially on the amount of the kept entries on the local Schur complements. This cost

includes the time to assemble the local approximated Schur complement, and to factorize

it using a sparse direct solver. We should mention that the assembly time does not depend

much on the number of processors; the key is that to assemble the preconditioner, a fewTable 5: Initialization time on a BlueGene superomputer.
sub-domain grid size

elapsed time kept entries 253 303 353 403

sec in factor 15 Kdof 27 Kdof 43 Kdof 64 Kdof

LU(A
(i)

ii
) 2.1 5.3 12.2 23.6

ILU(A(i))+S̃(i) 21% in U 24.1 56.6 120.1 230.2

ILU(A(i))+S̃(i) 10% in U 12.2 27.2 55.5 115.8

Init time 21% in U 26.2 61.9 132.3 253.8

Init time 10% in U 14.3 32.5 67.7 139.4Table 6: Preonditioner setup time (se) on the Blue Gene superomputer.
Sub-domain grid size 253 303 353 403

4% in S 2.8 6.1 10.1 14.4
Time

2% in S 1.7 2.9 5.2 7.5
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(d)Figure 5: Parallel weak salability of a �xed sub-domain size (353), when varying the number of proes-sors from 125 up to 1728. The onvetion term is de�ned by the irular onvetion and ε= 10−3. (Left:number of iterations, Right: overall omputing time for the solution). (a) Heterogeneous di�usion Prob-lem 1 with onvetion 1; (b) Heterogeneous di�usion Problem 1 with onvetion 1; () Heterogeneousanisotropi di�usion Problem 2 with onvetion 1; (d) Heterogeneous anisotropi di�usion Problem 2with onvetion 1.
neighbour to neighbour communications are performed to exchange informations with

processors owning neighbouring regions. In our 3D case the maximum communication is

performed among 27 neighbours for the internal sub-domains.

As already observed in earlier work, the time per iteration does not depend much on

the number of processors. For example increasing the number of processors from 125 to

1728, the time goes from 0.32 seconds up to 0.39 seconds. This illustrates the parallel

efficiency of the implementation of the iterative solver. This nice scalability is mainly due

to the network available on the BlueGene computer dedicated to the reductions.

Finally, we consider the overall computing time with the aim of showing the parallel

scalability of the complete algorithms. We display in the left graphs of Fig. 5 the number

of iterations required to solve the linear systems whereas the right graphs summarize the

corresponding elapsed time for the complete solution. For each of these tests, we recall
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that the sub-domains are 35×35×35 grid mesh with 43 000 dof. The growth in the num-

ber of iterations as the number of sub-domains increases is rather pronounced, whereas

it is rather moderate for the global solution time as the initialization step represents a

significant part of the overall calculation.

4.4.3. Preliminary investigations on real life structural mechanics problems

To further assess the robustness of the proposed numerical scheme, we have investigated

the numerical behaviour of our approximated preconditioner for the solution of linear

systems arising in three dimensional structural mechanics problems representative of dif-

ficulties encountered in this application area. Our purpose it to evaluate the robustness

and the performance of our preconditioner on the solution of the challenging linear sys-

tems that are often solved using direct solvers. In this respect we consider a section of

fuselage depicted in Fig. 6. It is composed of its skin, stringers (longitudinal) and frames

(circumferential, in light blue on Fig. 6. This problem is related to the solution of the lin-

ear elasticity equations with constraints such as rigid bodies and cyclic conditions. These

constraints are handled using Lagrange multipliers, that give rise to symmetric indefinite

augmented systems.

Part of a Fuselage.Figure 6: strutural mehanis meshes.
The Fuselage problem is a relatively difficult problem with high heterogeneity. In Table

7, we display the number of iterations obtained for this unstructured mesh with 0.6 mil-

lion dof. The problem is split into 8 sub-domains. We test the quality of the approximated

sparse preconditioner generated by varying the percentage of the kept entries in the in-

complete factor U and in the approximated local Schur complement S̃(i). We compare the

results to the exact variant where we keep 100% of the factor entries and also 100% of the

local Schur entries.

The results show that, for these real engineering problems, the sparse preconditioner

has to retain more information about the Schur complement than for the model convection



Sparse Approximations of the Schur Complement in 3D 293Table 7: Number of preonditioned GMRES iterations when varying the perentage of the kept entriesin the approximated fator U for the strutural mehanis fuselage problem with 0.6 Mdof. For thesake of ompleteness we give a omparison of the number of iterations between the exat and theapproximated variants. �-� means no onvergene.
exact variant approximated variant

100% in U 65% in U 50% in U 45% in U 25% in U

100% in S 30% in S 30% in S 30% in S 30% in S
# iterations 64 66 74 106 -

diffusion test cases. For these problems, in order to preserve the numerical quality similar

to the exact dense variant, the approximated variant needs to keep more than 45% of the

entries of the factor U whereas 10% in the convection diffusion test cases were enough.

This result is not surprising, however the gain in memory is significant (around 50%).

5. Concluding remarks

In this paper, we propose an alternative to build an additive Schwarz preconditioner

for the Schur complement for designing a parallel hybrid linear solver. In earlier works [3,

4], the main bottleneck of this robust preconditioner was the explicit computation of the

local Schur complements. The robustness of the preconditioner comes at the price of

this memory and time intensive computation which constitute the main bottleneck of the

approach when dealing with very large problems. We have investigated in this paper the

use of sparse approximation of the dense local Schur complements. These approximations

are computed using a partial incomplete LU factorization. Such a numerical calculation

is the core of the multi-level incomplete factorization such as the one implemented in

pARMS. The numerical and computing performance of the new numerical scheme have

been illustrated on a set of large 3D convection-diffusion problems. The results indicated

that most of the numerical features of the initial preconditioner are preserved while both

the memory and computing time requirements have been relaxed.

In order to further assess the relevance of the new approach, preliminary experiments

on symmetric indefinite linear systems have been conducted. The results show that, for

these very difficult engineering problems, to keep a convergence similar to the exact vari-

ant, the approximated variant should keep more than 45% of the entries of the factor U. A

possible source of gain for the approximated variant would be a more sophisticated drop-

ping strategy. More work on this aspect would deserve to be undertaken to also investigate

strategies for the automatic tuning of the threshold parameter.
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