Some Properties of the Optimal Preconditioner and the Generalized Superoptimal Preconditioner

Hong-Kui Pang* and Xiao-Qing Jin
Department of Mathematics, University of Macau, Macao, China.
Received 6 August 2009; Accepted (in revised version) 31 August 2009
Available online 9 September 2010

Abstract

The optimal preconditioner and the superoptimal preconditioner were proposed in 1988 and 1992 respectively. They have been studied widely since then. Recently, Chen and Jin [6] extend the superoptimal preconditioner to a more general case by using the Moore-Penrose inverse. In this paper, we further study some useful properties of the optimal and the generalized superoptimal preconditioners. Several existing results are extended and new properties are developed.

AMS subject classifications: 65F10, 65F15, 65F35, 65F99
Key words: Optimal preconditioner, generalized superoptimal preconditioner, Moore-Penrose inverse, unitarily invariant norm, semi-stability, singular value.

1. Introduction

Given a unitary matrix $U \in \mathbb{C}^{n \times n}$, let

$$
\begin{equation*}
\mathscr{M}_{U} \equiv\left\{U^{*} \Lambda_{n} U \mid \Lambda_{n} \text { is any } n \text {-by- } n \text { diagonal matrix }\right\} . \tag{1.1}
\end{equation*}
$$

The optimal preconditioner $c_{U}\left(A_{n}\right)$ is defined to be the minimizer of

$$
\min _{W_{n} \in \mathscr{M}_{U}}\left\|A_{n}-W_{n}\right\|_{F} .
$$

This preconditioner was first proposed in [5] and then extended in [3, 12]. Due to be very efficient for solving a large class of structured systems [2, 4, 13, 14], the optimal preconditioner $c_{U}\left(A_{n}\right)$ has been studied deeply and widely. Many useful properties of $c_{U}\left(A_{n}\right)$ have been found.

Besides using the minimizer of $\min _{W_{n}}\left\|A_{n}-W_{n}\right\|_{F}$ as a preconditioner, Tyrtyshnikov [17] proposed another preconditioner $t_{U}\left(A_{n}\right)$, called superoptimal preconditioner, which is defined to be the minimizer of

$$
\min _{W_{n}}\left\|I-W_{n}^{-1} A_{n}\right\|_{F},
$$

[^0]where W_{n} runs over all nonsingular matrices in \mathscr{M}_{U} defined as in (1.1), I denotes the identity matrix. Recent results demonstrate that the superoptimal preconditioner has good filtering capabilities when applied in signal/image processing [8,9].

Very recently, the definition of the superoptimal preconditioner is generalized by Chen and Jin [6] by using the Moore-Penrose inverse [1]. For any arbitrary matrix A_{n}, the generalized superoptimal preconditioner $t_{U}\left(A_{n}\right)$ is defined to be the minimizer of

$$
\begin{equation*}
\min _{W_{n} \in \mathscr{M}_{U}}\left\|I-W_{n}^{\dagger} A_{n}\right\|_{F} \tag{1.2}
\end{equation*}
$$

where W_{n}^{\dagger} denotes the Moore-Penrose inverse of W_{n}. In [6], the authors give an explicit formula for this generalized superoptimal preconditioner and discuss its stability properties.

In this paper, we further study the optimal preconditioner and the generalized superoptimal preconditioner defined as in (1.2). The rest part of the paper is arranged as follows. In Section 2, we extend some existing results and develop some new properties of $c_{U}\left(A_{n}\right)$. In Section 3, the properties of $t_{U}\left(A_{n}\right)$ are discussed. The relation between the singular values of the optimal preconditioned matrix $c_{U}\left(A_{n}\right)^{\dagger} A_{n}$ and the superoptimal preconditioned matrix $t_{U}\left(A_{n}\right)^{\dagger} A_{n}$ is given in Section 4. Here, $c_{U}\left(A_{n}\right)^{\dagger} \equiv\left(c_{U}\left(A_{n}\right)\right)^{\dagger}$ and $t_{U}\left(A_{n}\right)^{\dagger} \equiv\left(t_{U}\left(A_{n}\right)\right)^{\dagger}$. Our results generalize some results presented in [15, 16].

2. The optimal preconditioner $c_{U}\left(A_{n}\right)$

In this section, we discuss the properties of the optimal preconditioner $c_{U}\left(A_{n}\right)$. Let $\delta\left(E_{n}\right)$ denote the diagonal matrix whose diagonal is equal to the diagonal of the matrix E_{n}. We first introduce some lemmas and theorems which will be used later.

Lemma 2.1. (Lemma 3.5 in [14]; Theorem 1 in [16]) Let $A_{n} \in \mathbb{C}^{n \times n}$ with $n \geq 1$ and U be any unitary matrix. Then
(i) $c_{U}\left(A_{n}\right) \equiv U^{*} \delta\left(U A_{n} U^{*}\right) U$ which is uniquely determined by A_{n}.
(ii) $c_{U}\left(A_{n}^{*}\right)=c_{U}\left(A_{n}\right)^{*}$.
(iii) $c_{U}\left(B_{n} A_{n}\right)=B_{n} c_{U}\left(A_{n}\right), c_{U}\left(A_{n} B_{n}\right)=c_{U}\left(A_{n}\right) B_{n}$, for any $B_{n} \in \mathscr{M}_{U}$.

Lemma 2.2. Let $A_{n} \in \mathbb{C}^{n \times n}$ be partitioned as

$$
A_{n}=\left(\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right) \quad \text { and } \quad D_{n}=\left(\begin{array}{cc}
A_{11} & 0 \\
0 & A_{22}
\end{array}\right) .
$$

Then for any unitarily invariant norm $\|\cdot\|$, we have

$$
\left\|D_{n}\right\| \leq\left\|A_{n}\right\|
$$

Proof. Let

$$
Q_{n}=\left(\begin{array}{cc}
I & 0 \\
0 & -I
\end{array}\right)
$$

Then we have from $2 D_{n}=A_{n}+Q_{n} A_{n} Q_{n}$,

$$
\left\|D_{n}\right\| \leq\left\|A_{n}\right\|
$$

This completes the proof of the lemma.
Theorem 2.1. (Corollary 3.5 .9 in [11]) Let $A, B \in \mathbb{C}^{m \times n}$ with $m \geq n$. Then for any unitarily invariant norm $\|\cdot\|$ defined on $\mathbb{C}^{m \times n}$, we have

$$
\begin{equation*}
\|A\| \leq\|B\| \tag{2.1a}
\end{equation*}
$$

if and only if

$$
\begin{equation*}
\|A\|_{(k)} \leq\|B\|_{(k)}, \quad k=1, \cdots, n \tag{2.1b}
\end{equation*}
$$

where $\|A\|_{(k)} \equiv \sum_{j=k}^{n} \sigma_{j}(A)$ are called the Ky Fan k-norms, and $\sigma_{1}(A) \leq \sigma_{2}(A) \leq \cdots \leq \sigma_{n}(A)$ are the singular values of A.

Note that the Ky Fan k-norms are also unitarily invariant. We always assume that the singular values are arranged in the non-decreasing order in this paper. The following two lemmas are useful to study the properties of the optimal preconditioner $c_{U}\left(A_{n}\right)$.

Lemma 2.3. Let $A_{n} \in \mathbb{C}^{n \times n}$ with $n \geq 1$. For any unitarily invariant norm $\|\cdot\|$, we have

$$
\begin{equation*}
\left\|\delta\left(A_{n}\right)\right\| \leq\left\|A_{n}\right\| . \tag{2.2}
\end{equation*}
$$

Proof. For any $A_{n} \in \mathbb{C}^{n \times n}$, there exists a permutation matrix P such that entries of the main diagonal of $B_{n}=\left(b_{i j}\right)_{n \times n}=P A_{n} P^{*}$ satisfy

$$
\left|b_{11}\right| \leq\left|b_{22}\right| \leq \cdots \leq\left|b_{n n}\right| .
$$

Moreover, for any unitarily invariant norm $\|\cdot\|$,

$$
\left\|\delta\left(B_{n}\right)\right\|=\left\|\delta\left(P A_{n} P^{*}\right)\right\|=\left\|P \delta\left(A_{n}\right) P^{*}\right\|=\left\|\delta\left(A_{n}\right)\right\|, \quad\left\|B_{n}\right\|=\left\|P A_{n} P^{*}\right\|=\left\|A_{n}\right\|
$$

Therefore, without loss of generality, we assume that A_{n} is a matrix with entries of the main diagonal satisfying

$$
\left|a_{11}\right| \leq\left|a_{22}\right| \leq \cdots \leq\left|a_{n n}\right| .
$$

Obviously, $\left|a_{11}\right|,\left|a_{22}\right|, \cdots,\left|a_{n n}\right|$ are the singular values of $\delta\left(A_{n}\right)$. We partition the matrix A_{n} as in the following form

$$
A_{n}=\left(\begin{array}{cc}
A_{k, k} & A_{k, n-k} \\
A_{n-k, k} & A_{n-k, n-k}
\end{array}\right), \quad 1 \leq k \leq n
$$

where $A_{k, k}$ is the k-by- k leading principal submatrix of A_{n}.
Next we prove this lemma by induction. When $k=2$, it is easy to see by Lemma 2.2 that for any unitarily invariant norm $\|\cdot\|$,

$$
\left\|\delta\left(A_{2,2}\right)\right\| \leq\left\|A_{2,2}\right\|
$$

Assume that for any unitarily invariant norm $\|\cdot\|$, the inequality $\left\|\delta\left(A_{k, k}\right)\right\| \leq\left\|A_{k, k}\right\|$ holds for a constant k with $2 \leq k<n$. We then have by Theorem 2.1,

$$
\begin{equation*}
\sum_{i=l}^{k}\left|a_{i i}\right| \leq \sum_{i=l}^{k} \sigma_{i}\left(A_{k, k}\right), \quad l=1, \cdots, k \tag{2.3}
\end{equation*}
$$

For the case of $k+1$, we partition the leading principal submatrix $A_{k+1, k+1}$ as in the following form

$$
A_{k+1, k+1}=\left(\begin{array}{cc}
A_{k, k} & \alpha_{k} \\
\beta_{k} & a_{k+1, k+1}
\end{array}\right)
$$

where $\alpha_{k}, \beta_{k}^{*} \in \mathbb{C}^{k}$. Let

$$
D_{k+1}=\left(\begin{array}{cc}
A_{k, k} & 0 \\
0 & a_{k+1, k+1}
\end{array}\right)
$$

We have from Lemma 2.2,

$$
\left\|D_{k+1}\right\| \leq\left\|A_{k+1, k+1}\right\|
$$

for any unitarily invariant norm $\|\cdot\|$. Thus, the following inequalities hold by Theorem 2.1,

$$
\begin{equation*}
\sum_{i=l}^{k+1} \sigma_{i}\left(D_{k+1}\right) \leq \sum_{i=l}^{k+1} \sigma_{i}\left(A_{k+1, k+1}\right), \quad l=1, \cdots, k+1 \tag{2.4}
\end{equation*}
$$

Note that $\sigma_{1}\left(A_{k, k}\right), \sigma_{2}\left(A_{k, k}\right), \cdots, \sigma_{k}\left(A_{k, k}\right)$ and $\left|a_{k+1, k+1}\right|$ are the singular values of D_{k+1}. By (2.3) and (2.4), we obtain

$$
\begin{equation*}
\left|a_{k+1, k+1}\right| \leq \sigma_{k+1}\left(D_{k+1}\right) \leq \sigma_{k+1}\left(A_{k+1, k+1}\right) \tag{2.5}
\end{equation*}
$$

and

$$
\begin{align*}
& \sum_{i=l}^{k+1}\left|a_{i i}\right| \leq \sum_{i=l}^{k} \sigma_{i}\left(A_{k, k}\right)+\left|a_{k+1, k+1}\right| \\
\leq & \sum_{i=l}^{k+1} \sigma_{i}\left(D_{k+1}\right) \leq \sum_{i=l}^{k+1} \sigma_{i}\left(A_{k+1, k+1}\right), \quad l=1, \cdots, k \tag{2.6}
\end{align*}
$$

By Theorem 2.1 again, we have $\left\|\delta\left(A_{k+1, k+1}\right)\right\| \leq\left\|A_{k+1, k+1}\right\|$ for any unitarily invariant norm $\|\cdot\|$. Finally, we have (2.2) by using induction.

Lemma 2.4. Let $A_{n} \in \mathbb{C}^{n \times n}$ be a Hermitian positive definite matrix and $B_{n} \in \mathbb{C}^{n \times n}$. Then

$$
\begin{equation*}
\delta\left(B_{n} A_{n}^{-1} B_{n}^{*}\right) \geq \delta\left(B_{n}\right) \delta\left(A_{n}\right)^{-1} \delta\left(B_{n}^{*}\right) \tag{2.7}
\end{equation*}
$$

where $\delta\left(A_{n}\right)^{-1} \equiv\left(\delta\left(A_{n}\right)\right)^{-1}$, " \geq " means that $\delta\left(B_{n} A_{n}^{-1} B_{n}^{*}\right)-\delta\left(B_{n}\right) \delta\left(A_{n}\right)^{-1} \delta\left(B_{n}^{*}\right)$ is a positive semi-definite matrix.

Proof. Since

$$
\left(\begin{array}{cc}
I & 0 \\
-B_{n} A_{n}^{-1} & I
\end{array}\right)\left(\begin{array}{cc}
A_{n} & B_{n}^{*} \\
B_{n} & B_{n} A_{n}^{-1} B_{n}^{*}
\end{array}\right)\left(\begin{array}{cc}
I & -A_{n}^{-1} B_{n}^{*} \\
0 & I
\end{array}\right)=\left(\begin{array}{cc}
A_{n} & 0 \\
0 & 0
\end{array}\right)
$$

and A_{n} is Hermitian positive definite, we know that by Sylvester's law of inertia,

$$
\left(\begin{array}{cc}
A_{n} & B_{n}^{*} \\
B_{n} & B_{n} A_{n}^{-1} B_{n}^{*}
\end{array}\right)
$$

is positive semi-definite. Let $d_{k}(M)=m_{k, k}$ be the k th element of the main diagonal of a matrix M. Note that for each k with $1 \leq k \leq n$, the matrix

$$
\left(\begin{array}{cc}
d_{k}\left(A_{n}\right) & d_{k}\left(B_{n}^{*}\right) \\
d_{k}\left(B_{n}\right) & d_{k}\left(B_{n} A_{n}^{-1} B_{n}^{*}\right)
\end{array}\right)
$$

is a 2-by-2 principal submatrix of

$$
\left(\begin{array}{cc}
A_{n} & B_{n}^{*} \\
B_{n} & B_{n} A_{n}^{-1} B_{n}^{*}
\end{array}\right)
$$

Then

$$
\left(\begin{array}{cc}
d_{k}\left(A_{n}\right) & d_{k}\left(B_{n}^{*}\right) \tag{2.8}\\
d_{k}\left(B_{n}\right) & d_{k}\left(B_{n} A_{n}^{-1} B_{n}^{*}\right)
\end{array}\right)
$$

is also positive semi-definite. Consequently, we have

$$
\begin{equation*}
d_{k}\left(A_{n}\right) d_{k}\left(B_{n} A_{n}^{-1} B_{n}^{*}\right) \geq d_{k}\left(B_{n}\right) d_{k}\left(B_{n}^{*}\right) \tag{2.9}
\end{equation*}
$$

Note that $\delta\left(A_{n}\right)>0$ because A_{n} is Hermitian positive definite. Hence,

$$
d_{k}\left(B_{n} A_{n}^{-1} B_{n}^{*}\right) \geq d_{k}\left(B_{n}\right) d_{k}\left(A_{n}\right)^{-1} d_{k}\left(B_{n}^{*}\right), \quad k=1, \cdots, n,
$$

which yields (2.7).
Now, by using the above lemmas, we can prove the following theorems which generalize some results in $[14,16]$.

Theorem 2.2. Let $A_{n} \in \mathbb{C}^{n \times n}$ with $n \geq 1$. Then
(i) We have

$$
\begin{equation*}
\sum_{i=k}^{n} \sigma_{i}\left(c_{U}\left(A_{n}\right)\right) \leq \sum_{i=k}^{n} \sigma_{i}\left(A_{n}\right), \quad k=1, \cdots, n \tag{2.10}
\end{equation*}
$$

where $\sigma_{i}\left(c_{U}\left(A_{n}\right)\right)$ and $\sigma_{i}\left(A_{n}\right)$ denote the singular values of matrices $c_{U}\left(A_{n}\right)$ and A_{n} respectively.
(ii) If A_{n} is a Hermitian positive definite matrix and $B_{n} \in \mathbb{C}^{n \times n}$. Then

$$
\begin{equation*}
c_{U}\left(B_{n} A_{n}^{-1} B_{n}^{*}\right) \geq c_{U}\left(B_{n}\right) c_{U}\left(A_{n}\right)^{-1} c_{U}\left(B_{n}^{*}\right) \tag{2.11}
\end{equation*}
$$

In particular, we have

$$
\begin{equation*}
c_{U}\left(A_{n}^{-1}\right) \geq c_{U}\left(A_{n}\right)^{-1} \tag{2.12}
\end{equation*}
$$

Proof. For (i), by Lemma 2.1 (i),

$$
c_{U}\left(A_{n}\right)=U^{*} \delta\left(U A_{n} U^{*}\right) U
$$

For any unitarily invariant norm $\|\cdot\|$, by Lemma 2.3 , we obtain

$$
\begin{equation*}
\left\|c_{U}\left(A_{n}\right)\right\|=\left\|\delta\left(U A_{n} U^{*}\right)\right\| \leq\left\|U A_{n} U^{*}\right\|=\left\|A_{n}\right\| \tag{2.13}
\end{equation*}
$$

Thus, (i) holds by using Theorem 2.1. For (ii), since

$$
\begin{aligned}
& c_{U}\left(B_{n} A_{n}^{-1} B^{*}\right)=U^{*} \delta\left(U B_{n} A_{n}^{-1} B_{n}^{*} U^{*}\right) U=U^{*} \delta\left(\left(U B_{n} U^{*}\right)\left(U A_{n} U^{*}\right)^{-1}\left(U B_{n} U^{*}\right)^{*}\right) U \\
& c_{U}\left(B_{n}\right) c_{U}\left(A_{n}\right)^{-1} c_{U}\left(B_{n}^{*}\right)=U^{*} \delta\left(U B_{n} U^{*}\right) \delta\left(U A_{n} U^{*}\right)^{-1} \delta\left(\left(U B_{n} U^{*}\right)^{*}\right) U
\end{aligned}
$$

we only need to prove that

$$
\begin{equation*}
\delta\left(\left(U B_{n} U^{*}\right)\left(U A_{n} U^{*}\right)^{-1}\left(U B_{n} U^{*}\right)^{*}\right) \geq \delta\left(U B_{n} U^{*}\right) \delta\left(U A_{n} U^{*}\right)^{-1} \delta\left(\left(U B_{n} U^{*}\right)^{*}\right) \tag{2.14}
\end{equation*}
$$

By Lemma 2.4, this inequality holds for A_{n} being Hermitian positive definite. In particular, when $B_{n}=I$, we have (2.12).

Theorem 2.3. Let $A_{n} \in \mathbb{C}^{n \times n}$ and $B_{n} \in \mathscr{M}_{U}$. If $\operatorname{rank}\left(c_{U}\left(A_{n}\right)\right)=\operatorname{rank}\left(c_{U}\left(B_{n} A_{n}\right)\right)$, then we have

$$
\begin{equation*}
B_{n} c_{U}\left(B_{n} A_{n}\right)^{\dagger}=c_{U}\left(A_{n}\right)^{\dagger}=B_{n} c_{U}\left(A_{n} B_{n}\right)^{\dagger} \tag{2.15}
\end{equation*}
$$

Proof. Let $B_{n}=U^{*} \Lambda_{n} U \in \mathscr{M}_{U}$ where $\Lambda_{n}=\operatorname{diag}\left(\lambda_{1}, \lambda_{2}, \cdots, \lambda_{n}\right)$. By Lemma 2.1, we know that

$$
\begin{align*}
& \operatorname{rank}\left(c_{U}\left(A_{n}\right)\right)=\operatorname{rank}\left(\delta\left(U A_{n} U^{*}\right)\right), \tag{2.16a}\\
& \operatorname{rank}\left(c_{U}\left(B_{n} A_{n}\right)\right)=\operatorname{rank}\left(B_{n} c_{U}\left(A_{n}\right)\right)=\operatorname{rank}\left(\Lambda_{n} \delta\left(U A_{n} U^{*}\right)\right) \tag{2.16b}
\end{align*}
$$

Therefore, the given condition of $\operatorname{rank}\left(c_{U}\left(A_{n}\right)\right)=\operatorname{rank}\left(c_{U}\left(B_{n} A_{n}\right)\right)$ is equivalent to

$$
\begin{equation*}
\operatorname{rank}\left(\delta\left(U A_{n} U^{*}\right)\right)=\operatorname{rank}\left(\Lambda_{n} \delta\left(U A_{n} U^{*}\right)\right) \tag{2.17}
\end{equation*}
$$

Let $\delta\left(U A_{n} U^{*}\right)=\operatorname{diag}\left(a_{1}, a_{2}, \cdots, a_{n}\right)$. We have $\delta\left(U A_{n} U^{*}\right)^{\dagger}=\operatorname{diag}\left(a_{1}^{\dagger}, a_{2}^{\dagger}, \cdots, a_{n}^{\dagger}\right)$ where

$$
a_{k}^{\dagger}= \begin{cases}a_{k}^{-1}, & \text { if } a_{k} \neq 0 \\ 0, & \text { if } a_{k}=0\end{cases}
$$

for $k=1, \cdots, n$. The equality (2.17) implies that $\lambda_{k} \neq 0$ if $a_{k} \neq 0$. Thus,

$$
\Lambda_{n} \Lambda_{n}^{\dagger} \delta\left(U A_{n} U^{*}\right)^{\dagger}=\delta\left(U A_{n} U^{*}\right)^{\dagger}
$$

Hence, we have by Lemma 2.1,

$$
\begin{aligned}
B_{n} c_{U}\left(B_{n} A_{n}\right)^{\dagger} & =B_{n}\left(B_{n} c_{U}\left(A_{n}\right)\right)^{\dagger}=U^{*} \Lambda_{n} U\left(U^{*} \Lambda_{n} \delta\left(U A_{n} U^{*}\right) U\right)^{\dagger} \\
& =U^{*} \Lambda_{n}\left(\Lambda_{n} \delta\left(U A_{n} U^{*}\right)\right)^{\dagger} U=U^{*}\left(\Lambda_{n} \Lambda_{n}^{\dagger} \delta\left(U A_{n} U^{*}\right)^{\dagger}\right) U \\
& =U^{*} \delta\left(U A_{n} U^{*}\right)^{\dagger} U=\left(U^{*} \delta\left(U A_{n} U^{*}\right) U\right)^{\dagger}=c_{U}\left(A_{n}\right)^{\dagger}
\end{aligned}
$$

Similarly, we can prove $c_{U}\left(A_{n}\right)^{\dagger}=B_{n} c_{U}\left(A_{n} B_{n}\right)^{\dagger}$.

3. The generalized superoptimal preconditioner $t_{U}\left(A_{n}\right)$

In this section, we give some results of the generalized superoptimal preconditioner $t_{U}\left(A_{n}\right)$ (see (1.2)) introduced by Chen and Jin [6]. The following definition is needed.

Definition 3.1. A matrix is said to be stable if the real parts of all the eigenvalues are negative. A matrix is said to be semi-stable if the real parts of all the eigenvalues are not larger than zero.

Under certain conditions, $t_{U}\left(A_{n}\right)$ satisfies the following explicit formula.
Theorem 3.1. (Corollary 1 in [6]) Let $A_{n} \in \mathbb{C}^{n \times n}$ and U be any unitary matrix with \mathbf{u}_{k} being the k th row of U. Then $\mathbf{u}_{k} A_{n} \neq 0$ for any k if and only if $t_{U}\left(A_{n}\right)$ is uniquely determined by A_{n}. In this case,

$$
t_{U}\left(A_{n}\right)=c_{U}\left(A_{n} A_{n}^{*}\right) c_{U}\left(A_{n}^{*}\right)^{\dagger}
$$

Moreover,

$$
t_{U}\left(A_{n}\right)^{\dagger}=c_{U}\left(A_{n} A_{n}^{*}\right)^{-1} c_{U}\left(A_{n}^{*}\right)
$$

By means of this explicit formula, it is easy to verify the following theorem.
Theorem 3.2. Let $A_{n} \in \mathbb{C}^{n \times n}$ and U be any unitary matrix with \mathbf{u}_{k} being the kth row of U. If $\mathbf{u}_{k} A_{n} \neq 0$ for $k=1, \cdots, n$, we then have,
(i) $t_{U}\left(\alpha A_{n}\right)=\alpha t_{U}\left(A_{n}\right)$ for all $\alpha \in \mathbb{C} \backslash\{0\}$.
(ii) $t_{U}\left(A_{n}^{*}\right)=t_{U}\left(A_{n}\right)^{*}$ for any normal matrix A_{n}.
(iii) $t_{U}\left(B_{n} A_{n}\right)=B_{n} t_{U}\left(A_{n}\right)$ for any invertible matrix $B_{n} \in \mathscr{M}_{U}$.
(iv) $t_{U}\left(A_{n}\right)$ is stable (semi-stable) if and only if $c_{U}\left(A_{n}\right)$ is stable (semi-stable).

Proof. When $\mathbf{u}_{k} A_{n} \neq 0$ for $k=1, \cdots, n$, we have from Theorem 3.1,

$$
\begin{equation*}
t_{U}\left(A_{n}\right)=c_{U}\left(A_{n} A_{n}^{*}\right) c_{U}\left(A_{n}^{*}\right)^{\dagger} \tag{3.1}
\end{equation*}
$$

For (i), we obtain by (3.1),

$$
\begin{aligned}
t_{U}\left(\alpha A_{n}\right) & =c_{U}\left(\alpha A_{n} \cdot \bar{\alpha} A_{n}^{*}\right) c_{U}\left(\bar{\alpha} A_{n}^{*}\right)^{\dagger}=\alpha \cdot \bar{\alpha} \cdot \bar{\alpha}^{-1} c_{U}\left(A_{n} A_{n}^{*}\right) c_{U}\left(A_{n}^{*}\right)^{\dagger} \\
& =\alpha c_{U}\left(A_{n} A_{n}^{*}\right) c_{U}\left(A_{n}^{*}\right)^{\dagger}=\alpha t_{U}\left(A_{n}\right)
\end{aligned}
$$

For (ii), since A_{n} is normal, we have by (3.1) and Lemma 2.1 (ii),

$$
\begin{aligned}
t_{U}\left(A_{n}\right)^{*} & =\left(c_{U}\left(A_{n} A_{n}^{*}\right) c_{U}\left(A_{n}^{*}\right)^{\dagger}\right)^{*}=\left(c_{U}\left(A_{n}^{*}\right)^{\dagger}\right)^{*}\left(c_{U}\left(A_{n} A_{n}^{*}\right)\right)^{*} \\
& =c_{U}\left(A_{n}\right)^{\dagger} c_{U}\left(A_{n} A_{n}^{*}\right)=c_{U}\left(A_{n}^{*} A_{n}\right) c_{U}\left(A_{n}\right)^{\dagger}
\end{aligned}
$$

From $\mathbf{u}_{k} A_{n} \neq 0$, we obtain that $\mathbf{u}_{k} A_{n} A_{n}^{*} \mathbf{u}_{k}^{*}>0$ for $k=1, \cdots, n$. Since A_{n} is normal, we have $\mathbf{u}_{k} A_{n}^{*} A_{n} \mathbf{u}_{k}^{*}>0$, which implies $\mathbf{u}_{k} A_{n}^{*} \neq 0$ for $k=1, \cdots, n$. Thus, we have by Theorem 3.1,

$$
t_{U}\left(A_{n}^{*}\right)=c_{U}\left(A_{n}^{*} A_{n}\right) c_{U}\left(A_{n}\right)^{\dagger}
$$

Hence,

$$
t_{U}\left(A_{n}^{*}\right)=t_{U}\left(A_{n}\right)^{*}
$$

For (iii), let $B_{n}=U^{*} \Lambda_{n} U \in \mathscr{M}_{U}$ with $\Lambda_{n}=\operatorname{diag}\left(b_{1}, b_{2}, \cdots, b_{n}\right)$. Since B_{n} is invertible, $b_{k} \neq 0$ for $k=1, \cdots, n$. When $\mathbf{u}_{k} A_{n} \neq 0$ for $k=1, \cdots, n$, it follows that

$$
\mathbf{u}_{k} B_{n} A_{n}=\mathbf{u}_{k} U^{*} \Lambda_{n} U A_{n}=b_{k} \mathbf{u}_{k} A_{n} \neq 0
$$

Thus we obtain by Theorem 3.1,

$$
t_{U}\left(B_{n} A_{n}\right)=c_{U}\left(B_{n} A_{n} A_{n}^{*} B_{n}^{*}\right) c_{U}\left(A_{n}^{*} B_{n}^{*}\right)^{\dagger}
$$

and then by Lemma 2.1 (iii),

$$
\begin{equation*}
t_{U}\left(B_{n} A_{n}\right)=B_{n} c_{U}\left(A_{n} A_{n}^{*}\right) B_{n}^{*} c_{U}\left(A_{n}^{*} B_{n}^{*}\right)^{\dagger} \tag{3.2}
\end{equation*}
$$

From the invertibility of B_{n} and Lemma 2.1 again,

$$
\operatorname{rank}\left(c_{U}\left(B_{n}^{*} A_{n}^{*}\right)\right)=\operatorname{rank}\left(B_{n}^{*} c_{U}\left(A_{n}^{*}\right)\right)=\operatorname{rank}\left(c_{U}\left(A_{n}^{*}\right)\right)
$$

Hence, we have by Theorem 2.3 and (3.2),

$$
t_{U}\left(B_{n} A_{n}\right)=B_{n} c_{U}\left(A_{n} A_{n}^{*}\right) c_{U}\left(A_{n}^{*}\right)^{\dagger}=B_{n} t_{U}\left(A_{n}\right)
$$

For (iv), it follows from (3.1) and Lemma 2.1 (i) that

$$
t_{U}\left(A_{n}\right)=c_{U}\left(A_{n} A_{n}^{*}\right) c_{U}\left(A_{n}^{*}\right)^{\dagger}=U^{*} \delta\left(U A_{n} A_{n}^{*} U^{*}\right) \delta\left(U A_{n}^{*} U^{*}\right)^{\dagger} U
$$

Thus, $t_{U}\left(A_{n}\right)$ is stable (semi-stable) if and only if the diagonal matrix

$$
\Lambda_{n}=\delta\left(U A_{n} A_{n}^{*} U^{*}\right) \delta\left(U A_{n}^{*} U^{*}\right)^{\dagger}
$$

is stable (semi-stable). Since $\mathbf{u}_{k} A_{n} \neq 0$ for $k=1, \cdots, n$, we know that $\delta\left(U A_{n} A_{n}^{*} U^{*}\right)$ is a diagonal matrix with positive diagonal entries. Therefore, Λ_{n} is stable (semi-stable) if and only if $\delta\left(U A_{n}^{*} U^{*}\right)^{\dagger}$ is stable (semi-stable). Note that $\delta\left(U A_{n}^{*} U^{*}\right)^{\dagger}$ is stable (semi-stable) if and only if $\delta\left(U A_{n}^{*} U^{*}\right)$ is stable (semi-stable) and $\delta\left(U A_{n}^{*} U^{*}\right)$ is stable (semi-stable) if and only if $\delta\left(U A_{n} U^{*}\right)$ is stable (semi-stable). Moreover, $\delta\left(U A_{n} U^{*}\right)$ is stable (semi-stable) if and only if $c_{U}\left(A_{n}\right)=U^{*} \delta\left(U A_{n} U^{*}\right) U$ is stable (semi-stable). Hence, $t_{U}\left(A_{n}\right)$ is stable (semistable) if and only if $c_{U}\left(A_{n}\right)$ is stable (semi-stable).

Remark 3.1. According to Theorem 3.2 (iv), we see that if $\mathbf{u}_{k} A_{n} \neq 0$ for $k=1, \cdots, n$, where \mathbf{u}_{k} is the kth row of U, then $t_{U}\left(A_{n}\right)$ and $c_{U}\left(A_{n}\right)$ have the same stability property.

4. Singular value relation between $t_{U}\left(A_{n}\right)^{\dagger} A_{n}$ and $c_{U}\left(A_{n}\right)^{\dagger} A_{n}$

Jin and Wei proved the following result in [15].
Theorem 4.1. (Theorem 2.2 in [15]) Let $A_{n} \in \mathbb{C}^{n \times n}$ such that $c_{U}\left(A_{n}\right)$ and $t_{U}\left(A_{n}\right)$ are invertible. If the singular values are arranged in the non-decreasing order. Then

$$
\sigma_{k}\left(t_{U}\left(A_{n}\right)^{-1} A_{n}\right) \leq \sigma_{k}\left(c_{U}\left(A_{n}\right)^{-1} A_{n}\right), \quad \text { for } k=1, \cdots, n .
$$

We extend this result to a more general case. The following lemma and theorem will be used later.
Lemma 4.1. (Lemma 3.7 in [14]) For $A_{n} \in \mathbb{C}^{n \times n}$, we have

$$
\delta\left(U A_{n} A_{n}^{*} U^{*}\right) \geq \delta\left(U A_{n} U^{*}\right) \delta\left(U A_{n}^{*} U^{*}\right) \geq 0 .
$$

Theorem 4.2. (Corollary 4.5.11 in [10]) Let A_{n} be Hermitian and $S_{n} \in \mathbb{C}^{n \times n}$. Let the eigenvalues of A_{n} and $S_{n} S_{n}^{*}$ be arranged in the non-decreasing order. For each $k=1, \cdots, n$, there exists $\theta_{k} \geq 0$ such that $\lambda_{1}\left(S_{n} S_{n}^{*}\right) \leq \theta_{k} \leq \lambda_{n}\left(S_{n} S_{n}^{*}\right)$ and

$$
\lambda_{k}\left(S_{n} A_{n} S_{n}^{*}\right)=\theta_{k} \lambda_{k}\left(A_{n}\right) .
$$

In particular, the number of positive (negative) eigenvalues of $S_{n} A_{n} S_{n}^{*}$ is less than or equal to the number of positive (negative) eigenvalues of A_{n}.

We always assume that the eigenvalues are arranged in the non-decreasing order.
Theorem 4.3. Let $A_{n} \in \mathbb{C}^{n \times n}$ and \mathbf{u}_{k} be the kth row of a unitary matrix U such that $\mathbf{u}_{k} A_{n} \neq 0$ holds for $k=1, \cdots, n$. Let $S_{n}=\delta\left(U A_{n} A_{n}^{*} U^{*}\right)^{-1} \delta\left(U A_{n}^{*} U^{*}\right) \delta\left(U A_{n} U^{*}\right)$. Then we have

$$
\sigma_{k}\left(t_{U}\left(A_{n}\right)^{\dagger} A_{n}\right)=\theta_{k} \sigma_{k}\left(c_{U}\left(A_{n}\right)^{\dagger} A_{n}\right), \quad k=1, \cdots, n,
$$

where

$$
0<\lambda_{n-m+1}\left(S_{n}\right) \leq \theta_{k} \leq \lambda_{n}\left(S_{n}\right) \leq 1
$$

with $\lambda_{n-m+1}\left(S_{n}\right)$ and $\lambda_{n}\left(S_{n}\right)$ denoting the minimum and maximum nonzero eigenvalues of S_{n} respectively.

Proof. We have by Lemma 2.1 (i),

$$
c_{U}\left(A_{n}\right)^{\dagger} A_{n}=U^{*} \delta\left(U A_{n} U^{*}\right)^{\dagger} U A_{n}
$$

Thus,

$$
\begin{aligned}
& \left(c_{U}\left(A_{n}\right)^{\dagger} A_{n}\right)\left(c_{U}\left(A_{n}\right)^{\dagger} A_{n}\right)^{*} \\
= & U^{*} \delta\left(U A_{n} U^{*}\right)^{\dagger} U A_{n} A_{n}^{*} U^{*} \delta\left(U A_{n}^{*} U^{*}\right)^{\dagger} U \sim N, \quad(" \sim " \text { similar to })
\end{aligned}
$$

where $N \equiv \delta\left(U A_{n} U^{*}\right)^{\dagger} U A_{n} A_{n}^{*} U^{*} \delta\left(U A_{n}^{*} U^{*}\right)^{\dagger}$ is a Hermitian positive semi-definite matrix. Since $\mathbf{u}_{k} A_{n} \neq 0$ for all k, we know that $t_{U}\left(A_{n}\right)$ is uniquely determined by A_{n} (see Theorem 3.1) and in this case,

$$
t_{U}\left(A_{n}\right)^{\dagger} A_{n}=c_{U}\left(A_{n} A_{n}^{*}\right)^{-1} c_{U}\left(A_{n}^{*}\right) A_{n}=U^{*} \delta\left(U A_{n} A_{n}^{*} U^{*}\right)^{-1} \delta\left(U A_{n}^{*} U^{*}\right) U A_{n}
$$

Therefore,

$$
\begin{aligned}
& \left(t_{U}\left(A_{n}\right)^{\dagger} A_{n}\right)\left(t_{U}\left(A_{n}\right)^{\dagger} A_{n}\right)^{*} \\
= & U^{*} \delta\left(U A_{n} A_{n}^{*} U^{*}\right)^{-1} \delta\left(U A_{n}^{*} U^{*}\right) U A_{n} A_{n}^{*} U^{*} \delta\left(U A_{n} U^{*}\right) \delta\left(U A_{n} A_{n}^{*} U^{*}\right)^{-1} U \sim M,
\end{aligned}
$$

where

$$
M \equiv \delta\left(U A_{n} A_{n}^{*} U^{*}\right)^{-1} \delta\left(U A_{n}^{*} U^{*}\right) U A_{n} A_{n}^{*} U^{*} \delta\left(U A_{n} U^{*}\right) \delta\left(U A_{n} A_{n}^{*} U^{*}\right)^{-1}
$$

is a Hermitian positive semi-definite matrix. Let $S_{n}=\delta\left(U A_{n} A_{n}^{*} U^{*}\right)^{-1} \delta\left(U A_{n}^{*} U^{*}\right) \delta\left(U A_{n} U^{*}\right)$. It is easy to see from Lemma 4.1 that the eigenvalues of S_{n} satisfy

$$
\begin{equation*}
0 \leq \lambda_{k}\left(S_{n}\right) \leq 1, \quad k=1, \cdots, n \tag{4.1}
\end{equation*}
$$

Note that

$$
\begin{aligned}
& \delta\left(U A_{n}^{*} U^{*}\right)=\delta\left(U A_{n}^{*} U^{*}\right) \delta\left(U A_{n} U^{*}\right) \delta\left(U A_{n} U^{*}\right)^{\dagger} \\
& \delta\left(U A_{n} U^{*}\right)=\delta\left(U A_{n}^{*} U^{*}\right)^{\dagger} \delta\left(U A_{n}^{*} U^{*}\right) \delta\left(U A_{n} U^{*}\right)
\end{aligned}
$$

Then we have

$$
\begin{equation*}
M=S_{n} N S_{n}^{*} \tag{4.2}
\end{equation*}
$$

Let P be a permutation matrix such that

$$
P^{-1} \delta\left(U A_{n} U^{*}\right) P=\left(\begin{array}{cc}
D_{m} & 0 \tag{4.3}\\
0 & 0
\end{array}\right)
$$

where D_{m} is an m-by- m diagonal matrix whose diagonal entries are all the nonzero diagonal entries of $\delta\left(U A_{n} U^{*}\right)$. Therefore,

$$
\begin{align*}
P^{-1} S_{n} P & =\left(P^{-1} \delta\left(U A_{n} A_{n}^{*} U^{*}\right)^{-1} P\right)\left(P^{-1} \delta\left(U A_{n}^{*} U^{*}\right) P\right)\left(P^{-1} \delta\left(U A_{n} U^{*}\right) P\right) \\
& =\left(\begin{array}{cc}
G_{m} & 0 \\
0 & 0
\end{array}\right) \tag{4.4}
\end{align*}
$$

where G_{m} is also an m-by- m diagonal matrix with nonzero diagonal entries. Obviously, the diagonal entries of G_{m} contain all the nonzero eigenvalues of S_{n}. It follows from (4.2) that

$$
\begin{align*}
P^{-1} M P & =P^{-1} S_{n} N S_{n}^{*} P=\left(P^{-1} S_{n} P\right)\left(P^{-1} N P\right)\left(P^{-1} S_{n} P\right)^{*} \\
& =\left(\begin{array}{cc}
G_{m} & 0 \\
0 & 0
\end{array}\right)\left(P^{-1} N P\right)\left(\begin{array}{cc}
G_{m} & 0 \\
0 & 0
\end{array}\right)^{*} . \tag{4.5}
\end{align*}
$$

We partition $P^{-1} M P$ and $P^{-1} N P$ as in the following forms:

$$
P^{-1} M P=\left(\begin{array}{ll}
M_{1} & M_{2}^{*} \\
M_{2} & M_{3}
\end{array}\right) \quad \text { and } \quad P^{-1} N P=\left(\begin{array}{cc}
N_{1} & N_{2}^{*} \\
N_{2} & N_{3}
\end{array}\right),
$$

where M_{1} and N_{1} are m-by- m submatrices. It is easy to see from (4.5) that

$$
P^{-1} M P=\left(\begin{array}{cc}
M_{1} & 0 \tag{4.6}\\
0 & 0
\end{array}\right)
$$

with $M_{1}=G_{m} N_{1} G_{m}^{*}$. Moreover, by (4.3) and

$$
N=\delta\left(U A_{n} U^{*}\right)^{\dagger} U A_{n} A_{n}^{*} U^{*} \delta\left(U A_{n}^{*} U^{*}\right)^{\dagger},
$$

we have

$$
\begin{aligned}
\left(\begin{array}{cc}
N_{1} & N_{2}^{*} \\
N_{2} & N_{3}
\end{array}\right) & =P^{-1} N P=\left(P^{-1} \delta\left(U A_{n} U^{*}\right)^{\dagger} P\right)\left(P^{-1} U A_{n} A_{n}^{*} U^{*} P\right)\left(P^{-1} \delta\left(U A_{n}^{*} U^{*}\right)^{\dagger} P\right) \\
& =\left(\begin{array}{cc}
D_{m}^{-1} & 0 \\
0 & 0
\end{array}\right)\left(P^{-1} U A_{n} A_{n}^{*} U^{*} P\right)\left(\begin{array}{cc}
\left(D_{m}^{*}\right)^{-1} & 0 \\
0 & 0
\end{array}\right) .
\end{aligned}
$$

Thus,

$$
P^{-1} N P=\left(\begin{array}{cc}
N_{1} & 0 \tag{4.7}\\
0 & 0
\end{array}\right) .
$$

Note that $M_{1}=G_{m} N_{1} G_{m}^{*}$. By Theorem 4.2, we know that there exists $d_{k} \geq 0$ such that $\lambda_{1}\left(G_{m} G_{m}^{*}\right) \leq d_{k} \leq \lambda_{m}\left(G_{m} G_{m}^{*}\right)$ and

$$
\begin{equation*}
\lambda_{k}\left(M_{1}\right)=d_{k} \lambda_{k}\left(N_{1}\right), \quad k=1, \cdots, m, \tag{4.8}
\end{equation*}
$$

where $\lambda_{1}\left(G_{m} G_{m}^{*}\right)$ and $\lambda_{m}\left(G_{m} G_{m}^{*}\right)$ denote the minimum and maximum eigenvalues of $G_{m} G_{m}^{*}$ respectively. From (4.6), (4.7) and (4.8), we derive

$$
\lambda_{k}(M)=d_{k} \lambda_{k}(N),
$$

where $\lambda_{1}\left(G_{m} G_{m}^{*}\right) \leq d_{k} \leq \lambda_{m}\left(G_{m} G_{m}^{*}\right)$ for $k=1, \cdots, n$. Thus,

$$
\sigma_{k}\left(t_{U}\left(A_{n}\right)^{\dagger} A_{n}\right)=\sqrt{d_{k}} \sigma_{k}\left(c_{U}\left(A_{n}\right)^{\dagger} A_{n}\right), \quad k=1, \cdots, n .
$$

Let $\theta_{k}=\sqrt{d_{k}}, k=1, \cdots, n$. From (4.4) and the fact that G_{m} is a diagonal matrix with nonzero diagonal entries, we have by (4.1),

$$
0<\lambda_{n-m+1}\left(S_{n}\right) \leq \theta_{k} \leq \lambda_{n}\left(S_{n}\right) \leq 1
$$

where $\lambda_{n-m+1}\left(S_{n}\right)$ and $\lambda_{n}\left(S_{n}\right)$ denote the minimum and maximum nonzero eigenvalues of S_{n} respectively.

Acknowledgments The work was supported by the research grant UL020/08-Y2/MAT/ JXQ01/FST from University of Macau.

References

[1] A. Ben-Israel and T. Greville, Generalized Inverses: Theory and Applications, 2nd edition, Springer-Verlag, New York, 2003.
[2] R. Chan and X. Jin, An Introduction to Iterative Toeplitz Solvers, SIAM, Philadelpha, 2007.
[3] R. Chan, X. Jin and M. Yeung, The circulant operator in the Banach algebra of matrices, Linear Algebra Appl., 149 (1991), pp. 41-53.
[4] R. Chan and M. Ng, Conjugate gradient methods for Toeplitz systems, SIAM Review, 38 (1996), pp. 427-482.
[5] T. Chan, An optimal circulant preconditioner for Toeplitz systems, SIAM J. Sci. Statist. Comput., 9 (1988), pp. 766-771.
[6] J. Chen and X. Jin, The generalized superoptimal preconditioner, Linear Algebra Appl., 432 (2010), pp. 203-217.
[7] C. Cheng, X. Jin and Y. Wei, Stability properties of superoptimal preconditioner from numerical range, Numer. Linear Algebra Appl., 13 (2006), pp. 513-521.
[8] C. Estatico, A class of filtering superoptimal preconditioners for highly ill-conditioned linear systems, BIT, 42 (2002), pp. 753-778.
[9] C. Estatico and S. Serra-Capizzano, Superoptimal approximation for unbounded symbols, Linear Algebra Appl., 428 (2008), pp. 564-585.
[10] R. Horn and C. Johnson, Matrix Analysis, Cambridge University Press, Cambridge, 1985.
[11] R. Horn and C. Johnson, Topics in Matrix Analysis, Cambridge University Press, Cambridge, 1991.
[12] T. Huckle, Circulant and skew circulant matrices for solving Toeplitz matrix problems, SIAM J. Matrix Anal. Appl., 13 (1992), pp. 767-777.
[13] X. Jin, Developments and Applications of Block Toeplitz Iterative Solvers, Kluwer Academic Publishers, Dordrecht, and Science Press, Beijing, 2002.
[14] X. Jin, Preconditioning Technique for Toeplitz Systems, Higher Education Press, Beijing, 2010.
[15] X. Jin and Y. Wei, A short note on singular values of optimal and superoptimal preconditioned matrices, Inter. J. Comput. Math., 84 (2007), pp. 1261-1263.
[16] X. Jin and Y. Wei, A survey and some extensions of T. Chan's preconditioner, Linear Algebra Appl., 428 (2008), pp. 403-412.
[17] E. Tyrtyshnikov, Optimal and superoptimal circulant preconditioners, SIAM J. Matrix Anal. Appl., 13 (1992), pp. 459-473.

[^0]: *Corresponding author. Email addresses: ya87402@umac.mo (H.-K. Pang), xqjin@umac.mo (X.-Q. Jin)

