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Abstract. Segmentation of three-dimensional (3D) complicated structures is of great

importance for many real applications. In this work we combine graph cut minimization

method with a variant of the level set idea for 3D segmentation based on the Mumford-

Shah model. Compared with the traditional approach for solving the Euler-Lagrange

equation we do not need to solve any partial differential equations. Instead, the min-

imum cut on a special designed graph need to be computed. The method is tested on
data with complicated structures. It is rather stable with respect to initial value and the

algorithm is nearly parameter free. Experiments show that it can solve large problems

much faster than traditional approaches.

AMS subject classifications: 65K10, 49K20, 49K35

Key words: Piecewise constant level set method, energy minimization, graph cut, segmentation,

three-dimensional.

1. Introduction

The object of this paper is to extend and test the two-dimensional (2D) graph cut algo-

rithm proposed in [2] for 3D image segmentation. The algorithm is used for minimizing

the piecewise constant level set method (PCLSM) [16], which is a region based segmentation

approach in which object boundaries are detected both with and without gradient infor-

mation. The PCLSM is minimized by finding the minimum cut on a special graph, thus we

need not solve any partial differential equations. This yields an accurate solver, which de-

tects complicated structures. The approach is fast, not very sensitive with respect to initial

value and is almost parameter free.

The level set method [18] represents evolving interfaces by embedding them in a higher

dimensional function φ, referred to as the level set function. Traditionally the evolving
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interfaces are represented by the zero level set of φ, which is usually given as a signed

distance function, and evolves under the influence of forces in the normal direction of

φ itself. This allows for representing complicated structures which do not depend on

the discretization and automatic handling of topological changes in the evolving front,

such as merging and splitting, naturally. The level set method is traditionally solved by

first deriving an Euler-Lagrange equation and then solving the problem using standard

numerical schemes. Since its introduction, the method has been widely studied within

different fields. It has been applied for image processing problems such as noise removal

and segmentation [6,7,16,19,24].

For region based image segmentation, the Chan-Vese model [7] used the level set frame-

work to solve the Mumford-Shah model [17] for two-phase problems. It was later extended

for segmenting multiphase problems [27] by representing the evolving fronts using several

φ’s. The PCLSM [16] was later introduced as an alternative region based image segmen-

tation approach for multiphase problems. It segments images using a single piecewise

constant level set function (PCLSF) φ. The method has previously been used for image

segmentation by among others [8,15,16,21,23,25,26]. Traditionally the PCLSM is solved

in a similar fashion as standard level set approaches, by deriving and solving an Euler-

Lagrange equation. This is a time consuming procedure, in particular for larger data-sets.

Recently a new method for solving the PCLSM was introduced in [2] for 2D segmenta-

tion problems. They employ graph cut for solving the problem, which is a graph based

approach for fast and accurate minimizations of energy functions. Graph cut problems

are solved by finding the minimum cut on a graph G, which is equivalent to finding the

maximum flow on G due to the duality theorem of [11]. It was shown in [13] that the min-

imum cut/maximum flow algorithms can be used for minimizing certain energy functions

in computer vision. Graph cut has previously been used for solving variational problems

by among others [3, 5, 9, 10, 12]. In this article we extend the 2D approach of [2] for

solving 3D multiphase problems, and demonstrate it for segmentation of real computed

tomography (CT) data and on synthetic magnetic resonance (MR) images of the human

brain.

An advantage using the level set method is that the evolving interface is implicitly

represented by a higher dimensional function φ. Complicated structures are therefore

naturally handled, as well as topological changes such as merging and breaking. The

level set function φ is often a signed distance function, which has to be reinitialized to

ensure a well-posed problem. Using the PCLSM no reinitialization is required, since φ

is represented by a piecewise constant function [16]. Furthermore, multiphase problems

are solved using a single φ as opposed to the approach of [27] which use several φ’s.

When the PCLSM is minimized by graph cut, the computation time is reduced significantly

compared to the original formulation, which is shown in [2]. The minimization algorithm

is robust and nearly parameter free. It remains stable for all test problems. The only user

input required is an initial guess of the mean phase values c. No initialization of φ is

required. Numerical tests have shown that it is sufficient to provide a naive initial guess

of c, with distinct values that need not be in the vicinity of the true mean phase values.

The original PCLSM formulation is sensitive to perturbations and ill-posed problems could
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be encountered, and there are several parameters that needs to be chosen properly. It

requires a relatively good initial guess of c [16]. As in the original formulation the number

of phases can be overdetermined and some resulting phases can be empty. A disadvantage

of the presented method is that the computation time increase significantly with the size

of the data-set. More effort is therefore required to develop an even faster solver for very

large data-sets. A second disadvantage of the method is that it requires more memory than

the original PCLSM formulation. For large data-sets, and/or for problems including a large

number of phases, memory problems might be encountered.

This paper is organized as follows. In Section 2 a brief review of related theoretical

background is given, covering the Mumford-Shah model, the Chan-Vese model and the

PCLSM. In Section 3 graph based minimization of the PCLSM for 3D multiphase problems

is examined. In Section 4 we present results of the method used for solving two- and

four-phase segmentation problems, and Section 5 concludes the paper.

2. Theoretical background

2.1. The Mumford-Shah model

The Mumford-Shah model [17] is an image segmentation model where image bound-

aries are detected based on regional information in the image. This enables the model

to detect image boundaries both with and without gradient information. It seeks to ap-

proximate an image u0 defined over domain Ω by a multiphase function ũ, which is either

piecewise smooth or piecewise constant. Given n phases, there are n interfaces Γi sep-

arating the different phases. The energy functional minimized to find ũ and Γi is given

by

E(ũ,Γi) =

∫

Ω

(u0 − ũ)2 d x̄ +µ

∫

Ω\Γi

|∇ũ|2 d x̄ + ν

n
∑

i=1

∫

Γi

ds. (2.1)

For many applications, it is sufficient to consider approximation by piecewise constant

function ũ. For such minimization problems the second term disappears. In the following

only approximation by piecewise constant functions are considered.

2.2. The Chan-Vese model

The Chan-Vese model [18], also called active contour without edges, represents the

Mumford-Shah energy functional (2.1) in the level set framework. It is a two-phase seg-

mentation approach that minimize an energy functional using the level set framework,

where an image u0 ∈ Ω is approximated by a piecewise constant function ũ. The disconti-

nuities of ũ represent image boundaries, modeled by the zero level set of φ. The level set

function φ is usually given as a signed distance function. The energy functional minimized
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is

E(ũ,φ) = λ1

∫

Ω

(u0 − ũ)2H(φ) d x̄ +λ2

∫

Ω

(u0 − ũ)2(1−H(φ)) d x̄

+ ν

∫

Ω

|∇H(φ)|d x̄ +µ

∫

Ω

H(φ)d x̄ . (2.2)

The two first terms are minimized when the discontinuities of ũ lies on the object boundary,

which is when ũ is given by

ũ =

¨

c1, if φ ≥ 0,

c2, if φ < 0,
for c1 =

∫

Ω
H(φ)u0 d x̄
∫

Ω
H(φ) d x̄

, c2 =

∫

Ω
(1−H(φ))u0 d x̄
∫

Ω
(1−H(φ)) d x̄

. (2.3)

The last two terms impose regularization on the evolving interface. The parameters λ1 >

0, λ2 > 0, ν ≥ 0, µ ≥ 0 are fixed. H is the Heaviside function; H(φ) = 1 for φ( x̄) ≥ 0 and

H(φ) = 0 for φ( x̄)< 0. The constants c1 and c2 are iteratively updated at each time-step.

A multiphase extension of the Chan-Vese model was presented in [27]. It approximates an

image u0 by a piecewise constant function ũ using several level set functions φ. The zero

level set of the various φ’s represents the discontinuities of ũ.

2.3. The piecewise constant level set method

In [16] the PCLSM was presented as a new method for solving multiphase segmenta-

tion problems. It approximates an image u0 by a piecewise constant function ũ using a

single level set function φ. The function φ is now given as a step function, referred to as

the PCLSF, defined over domain Ω which has the same dimensionality as image u0. For a

n-phase segmentation, Ω is partitioned into n subdomains {Ωi}
n
i=1 and φ is defined by

φ = i ∈ Ωi, for i = 1, · · · , n. (2.4)

The discontinuities of φ now represent the interfaces instead of the frequently used zero

level set of φ. For each subdomain Ωi, a characteristic function ψi can be defined as

ψi(φ) =
1

αi

n
∏

j=1, j 6=i

(φ − j) with αi =

n
∏

k=1, k 6=i

(i− k). (2.5)

Thus ψi is equal to 1 in domain Ωi and otherwise 0. The boundary length of Ωi can be

found by computing the total variation of ψi , and the piecewise constant image function ũ

can be expressed in terms of the characteristic functions,

ũ(φ) =

n
∑

i=1

ciψi(φ) , for c1, · · · , cn constant. (2.6)

The Mumford-Shah energy functional (2.1) can now be rewritten as the PCLSM energy

functional

E(c,φ) =

∫

Ω

(u0 − ũ(φ))2d x̄ +
ν

2

n
∑

i=1

∫

Ω

|∇ψi(φ)|d x̄. (2.7)
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Division by 2 of the regularization term corrects for counting each interface twice. An

expression for the constants c1, · · · , cn in (2.6) is obtained by minimizing the energy func-

tional for fixed φ, which yields

ci =

∫

Ω
u0ψi(φ) d x̄
∫

Ω
ψi(φ)

2 d x̄
, ∀ i = 1, · · · , n. (2.8)

Thus, ci is the mean phase value of u0 for subdomain Ωi and c= {c1, · · · , cn}. Similarly, φ

is minimized for fixed c.

Minimizing the regularization term for eachψi in (2.7) is a time consuming procedure

that can significantly slow down the convergence rate of the numerical scheme. It is natural

to explore the possibility of regularizing φ itself, as it can be expressed in terms of its

characteristic functions as

φ =

n
∑

i=1

iψi(φ). (2.9)

The derivative of φ and ψi(φ) are respectively

∇φ =
n
∑

i=1

i∇ψi(φ) and ∇ψi(φ) =ψ
′
i(φ)∇φ, (2.10)

and resultingly we have

|∇φ| ≤
n
∑

i=1

|i||∇ψi(φ)| and

n
∑

i=1

|∇ψi(φ)| ≤
n
∑

i=1

|ψ′i(φ)||∇φ|. (2.11)

Therefore, the following relation exists

β1(n)|∇φ| ≤
n
∑

i=1

|∇ψi(φ)| ≤ β2(n)|∇φ|, (2.12)

where β1(n) and β2(n) are positive functions depending on n, as previously mentioned

in [8]. Thus the level set function φ can be regularized directly to obtain a faster solver,

and the simplified energy functional then becomes

E(c,φ) =

∫

Ω

(u0 − ũ(φ))2 d x̄ + ν

∫

Ω

|∇φ| d x̄. (2.13)

We solve the energy functional by

min
c,φ

E(c,φ), subject to φ ∈ {1, · · · , n}, (2.14)

to segment u0 into piecewise constant regions.
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3. PCLSM using graph cut

Solving the Euler-Lagrange equation derived for the PCLSM is a quite time consuming

operation [2, 25, 26]. This is a major limitation of the method. In [2] a novel graph

based approach for fast solving of 2D multiphase segmentation problems using the PCLSM

was presented. Here we extend their approach for handling of 3D problems and test

the efficiency of the approach for solving such problems. The method is tested on both

synthetic and real data.

The idea of [2] is to discretize the PCLSM energy functional (2.13) directly to obtain a

minimization problem that is graph representable. The discretization yields

Ed(c,φ) =
∑

p∈D

(u0
p − ũp)

2∆+ νT Vd (φ), (3.1)

where p = (i, j, k) corresponds to voxels in input image u0 and the approximated image

function is ũp = ũ(φ(p)). D is the discrete domain with the same dimensionality as u0.

Thus, if the number of voxels in u0 is (Nx × Ny × Nz), then

D= {(i, j, k), i = 1, · · · , Nx , j = 1, · · · , Ny , k = 1, · · · , Nz}. (3.2)

The grid spacing is given by ∆i for direction i and ∆ =
∏3

i=1∆i. The constant ν controls

the influence of the regularization term T Vd(φ), which is the discrete total variation of φ.

For different neighborhood systems, the value of ν should vary to obtain the same amount

of smoothing. Following the ideas of [5, 20] the authors chose to approximate T Vd using

a modified L1-norm for an 8-neighborhood system. For 3D problems we apply either a 6-

or 26-neighborhood system about a voxel p, defined as

N6 = {(i ± 1, j, k), (i, j ± 1, k), (i, j, k± 1)}, (3.3a)

N26 = {(i ± 1, j, k), (i, j ± 1, k), {(i ± 1, j± 1, k),

{(i ± 1, j, k± 1), (i, j± 1, k± 1), (i ± 1, j± 1, k± 1), (i, j, k± 1)}. (3.3b)

The regularization term can then be represented on discrete form as

T Vd (φ) =
∑

p∈D

∑

q∈Nκ(p)

1

2
ωpq|φp −φq|, for ωpq =

∆

‖p− q‖2
. (3.4)

ωpq is the edge weight between voxel p and q, divided by 2 sinceωpq =ωqp. Interestingly,

the derived weight ωpq is similar to that of the discrete Cauchy-Crofton formula derived

in [3], which does not depend on level set. For solving this problem it is necessary to create

a special graph, outlined in Section 3.1. The graph based minimization problem is further

described in Section 3.2 and in Section 3.3 the numerical details are given.

3.1. Graph representation

A graph G = (V,E) consists of a set of vertices V and a set of directed edges E that

connect the vertices. To represent the discrete PCLSM (3.1) on graph G, a special graph



3D PCLSM Minimization by Graph Cut 409

structure need to be constructed. The idea of [2] is to generate a graph with an extra

dimension when compared to the input image u0. Such a graph structure enables us to

represent multiphase segmentation problems, and allows us to differentiate between the

different phases. In 3D, their approach corresponds to creating a multi-volume graph.

Similar graph structures have also been considered in [10,14].

The set of vertices V in the multi-volume graph G can be defined as

V = {vp,l | ∀p ∈ D, l ∈ {1, · · · , n− 1}} ∪ {vs} ∪ {vt} (3.5)

for a n-phase problem. Index l specifies which volume vertex vp,l belongs to, and each

vertex vp,l corresponds to a voxel p = (i, j, k). The dimensionality of each volume should

correspond to the dimensionality D of the input image u0, as is defined in (3.2). Notice

that the set V also contains two special vertices, the source vs and the sink vt . They are

referred to as terminal nodes and are used for partitioning V into two disjoint sets. For

two-phase segmentation problems it is sufficient to construct a single volume graph.

The set of edges E in graph G can be divided into two groups. The first group is the

between volume edge set ED, connecting adjacent volumes as well as the first and last

volume to the terminal nodes. The data term edges can then be defined as

ED =

�

⋃

p∈D

Ep

�

. (3.6)

For each vertex p ∈ D, for all volumes, the vertex edge set Ep can be defined as

Ep = {(vs, vp,1)∪
n−2
l=1
(vp,l , vp,l+1)∪ (vp,n−1, vt)}. (3.7)

The between volume edges are denoted by (vp,l , vp,l+1) and the edges connected to ter-

minal nodes are denoted by (vs, vp,1) and (vp,n−1, vt). Note that not all vertices in V are

connected by an edge e to the terminal nodes. The second group of edges are the within

volume directional edges ER. These are the regularization edges, defined by

ER = {(vp,l , vq,l) | ∀p ∈ D, q ∈ Nκ(p), l ∈ {1, · · · , n− 1}}. (3.8)

Nκ(p) is the neighborhood system about vertex vp,l , usually defined as in (3.3) for 3D

systems. Thus there are directed edges from vp,l to vq,l and from vq,l to vp,l . The total set

of edges E in graph G is now given by

E = ER ∪ ED. (3.9)

For a more detailed description of the graph construction, we refer to [2].

Each edge e in edge set E (3.9) is assigned an edge weightωe derived from the discrete

PCLSM energy function (3.1). From the data term the edge weights of ED (3.6) are derived

and given by

ωe(vs, vp,1) = (u
0(p)− c1)

2∆, ∀p ∈ D,

ωe(vp,l , vp,l+1) = (u
0(p)− cl+1)

2∆, ∀p ∈ D, l = {1, · · · , n− 2}.

ωe(vp,n−1, vt) = (u
0(p)− cn)

2∆, ∀p ∈ D,

(3.10)
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For two-phase problems the expression for the edge weighs is reduced to

ωe(vs, vp) = (u
0(p)− c1)

2∆, ∀p ∈ D,

ωe(vp, vt) = (u
0(p)− c2)

2∆, ∀p ∈ D.
(3.11)

The edge weights of ER in (3.8) are derived from the regularization term and given by

ωe(vp,l , vq,l) =ωpq, ∀p ∈ D, q ∈ Nκ=6,26, l = {1, · · · , n− 1}, (3.12)

where ωpq is as defined in (3.4). The weights in ER do not depend on the level in graph G.

A cut C on graph G is a set of edges C ⊂ E which separates the vertices into two disjoint

sets Vs and Vt , by separating the terminal nodes so that vs ∈ Vs and vt ∈ Vt . The cost of

this cut C is the sum over all edges in C, given by

|C|=
∑

e∈C

ωe. (3.13)

The minimum cut is the cut with the smallest total cost. It is the cut which also minimize

the energy function [4]. Therefore, to minimize the discrete PCLSM (3.1) the minimum

cut need to be computed. For a cut to be an admissible cut, it should sever at least one,

and not more than one, edge in the data term edge set ED for each vertex p ∈ D. That is,

for each vertex edge set Ep the cut should sever exactly one edge. If for a given p ∈ D, the

cut does not sever an edge in Ep, it is not a valid cut since it does not separate the terminal

nodes vs and vt . If it severs more than one edge in Ep, then the cut cannot be a minimum

cut since severing a single edge will always lead to a smaller total cost [2].

Fig. 1 illustrates how a graph G is constructed for 2D segmentation problems. In (a)

the ordinary graph used for two-phase problems is displayed and in (b) the extended graph

used in the case of three-phase problems. The cut C partitions the vertices into two sets so

that vs ∈ Vs and vt ∈ Vt . The planar edges corresponds to ER and the vertical edges to ED.

For illustration purposes only edges in the cut C are shown for ED. For the extended graph

G in (b) the vertical edges between the planes are used to further differentiate between

phases. In both (a) and (b) the corresponding segmentation of the cut C is displayed below

the graph.

3.2. Graph based minimization

For an admissible cut C on a graph G, as defined in the previous section for multiphase

problems, the PCLSF φ can be constructed by taking into account the edges in the cut,

E ⊂ C, and their level in graph G, as is illustrated in Fig. 1(c). Thus, for n-phase problems

φ can be defined as

φ(p) =







1, if (vs, vp,1) ∈ C,

l + 1, if (vp,l , vp,l+1) ∈ C,

n, if (vp,n−1, vt) ∈ C,

∀ p ∈ D, l = {1, · · · , n− 2}. (3.14)
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(a) Graph G

Cut

vs

vt
(b) Extension of G

Cut

Cut

vs

vt
(c) Define φ

Cut

Cut

�

�

�

=1

=2

=3

ïs

ït

p1

p2

p1
p2

p3

p1
p2

p3

Figure 1: In (a) an illustration of an ordinary 2D graph G onstrution is shown, whih an be usedfor representing two-phase problems. The ut C partitions V into two sets so that vs ∈ Vs and vt ∈ Vt .The edge set ER are the planar edges, and the vertial edges orrespond to edge set ED. For illustrationpurposes only edges in the ut C are shown for ED, and the orresponding segmentation is displayed below.In (b) the graph has been extended to a multi-planar graph for handling three-phase problems. Thebetween plane edges in set ED are used to partition the graph further. The orresponding segmentationis also displayed. In () an illustration is given of how φ is de�ned by taking into aount the edges in
C and their level in G.
The discontinuities of φ corresponds to the current segmentation of the given problem.

For two-phase segmentation problems where graph G only include a single volume, the

definition of φ is reduced to

φ(p) =

¨

1, if (vs, vp) ∈ C,

2, if (vp, vt) ∈ C,
∀ p ∈ D. (3.15)

If the cut C is admissible, then φ is a single value function. For a given φ which fulfills

(3.14), corresponding discrete characteristic functions ψi can be calculated. These are

defined as

ψi(φ) =

¨

1, for φ = i,

0, otherwise,
for i = 1, · · · , n, (3.16)
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which is a discrete version of (2.5). The approximate image function ũ(φ) can then, for a

fixed φ, be specified as

ũ(φ) =

n
∑

i=1

ciψi(φ), for ci =

∑

p∈D

u0
pψi(φp)

∑

p∈D

ψi(φp)
2

, ∀ i = 1, · · · , n, (3.17)

which is the discrete version of (2.6) and (2.8).

To link the discrete PCLSM energy function Ed(c,φ) in (3.1) to the graph G, edge

weights are assigned to all edges E in G from Ed(c,φ), as done for the data term edge

weights ωe(·) in (3.10) and regularization term edge weights ωe(vp,l , vq,l) in (3.12). The

cost of an arbitrary cut C on graph G is then equal to |C| = Ed(c,φ). The energy function

Ed(c,φ) can therefore be minimized by solving the minimum cut problem,

min
C cuton G

|C|=min
φ

Ed(c,φ)

=min
φ

∑

p∈D

(u0
p − ũp)

2∆+ ν
∑

p∈D

∑

q∈Nκ(p)

1

2
ωpq|φp −φq|. (3.18)

This is the cut which also minimize the continuous energy functional (2.14). For a more

detailed exposition of the minimization approach in 2D, we refer to [2].

3.3. Numerical details

Numerically, the minimum cut problem in (3.18) is solved by iteratively minimizing

min
C(t) cut on G

|C(t)| =min
φ t

∑

p∈D

(u0
p − ũt

p)
2∆+ ν
∑

p∈D

∑

q∈Nκ(p)

1

2
ωpq|φ

t
p −φ

t
q|. (3.19)

For each time step t the minimum cut is found which depend on the time dependent value

of ũt in the data term, which again depend on the mean phase values ct = (c t
1, · · · , c t

n).

After a single iteration, the minimum cut does not necessarily minimize functional (2.14).

The optimal solution is first found when the mean phase values c = (c1, · · · , cn) do not

change significantly from one iteration to the next.

For each iteration, the edge weights ωe(·) of the data term are updated for the time

dependent phase values ct ,

ωt
e(vs, vp,1) = (u

0(p)− c t
1)

2∆, ∀p ∈ D,

ωt
e(vp,l , vp,l+1) = (u

0(p)− c t
l+1
)2∆, ∀p ∈ D, l = {1, · · · , n− 2}.

ωt
e(vp,n−1, vt) = (u

0(p)− c t
n)

2∆, ∀p ∈ D,

(3.20)

The index p corresponds to a voxel in u0 and c t
l

is the mean value of phase l. The within

volume edge weightsωe(vp,l , vq,l) (3.12) do not change. The only user interaction required

for solving the problem is an initial guess of the mean phase vector c0, since φ need



3D PCLSM Minimization by Graph Cut 413

not be initialized. After each iteration, the PCLSF φ t can be defined as in (3.14) and

the characteristic functions ψt
l

can be defined as in (3.16). Furthermore, once φ t and

ψt
l

has been specified, the approximate image function ũt and the mean phase values

ct = (c t
1, · · · , c t

n) can be updated by (3.17). An outline of the numerical approach is given

in Algorithm 3.1.

Algorithm 3.1. Construct a graph G = (V,E) and assign edge weights to all edges

using ωe(vp,l , vq,l) (3.12) and ωe(·) (3.20), given an initial phase value guess c0 =

(c0
1 , · · · , c0

n). Then (2.14) can be minimized iteratively by solving

1) Compute minimum cut of G (3.19) for c0.

2) Update ct , t = 1.

3) while(‖ct − ct−1‖ ≥ ε), ε small

i) Update weights ωe(·) as in (3.20).

ii) Compute minimum cut of G (3.19) for ct .

iii) Update ct , t++.

4. Results

For relatively large data-sets, it is nearly impossible to use the original PCLSM due

to the expense of computation. Minimizing the PCLSM energy functional by graph cut,

a very fast solver for relatively large data-set is obtained. Steady-state solution is now

found in a matter of minutes using very few iterations, as shown in Table 1 for volumes of

different sizes. This is in particular true for N6 neighborhood systems, for N26 system the

method is still a bit time consuming especially for larger data-set. Also for N6 systems the

computation time increase rapidly the larger the data-set is, but on an entirely different

time scale. Thus, future effort is required to developing an even faster solver for the graph

based minimization problem for very large data-sets. In [2] the graph cut approach for

solving the PCLSM in 2D was compared to a traditional Euler-Lagrange approach. They

showed that the graph cut approach solves the problems much faster than the traditional

approach, obtaining very similar segmentation results. For volume segmentation we have

previously experienced that it takes many hours to solve similar problems using an Euler-

Lagrange approach.

A second factor that influence the computation time is the number of phases included

in the segmentation problem. This is illustrated in Table 2 for three different volumes

of varying sizes for 2-, 4-, 10- and 15-phase problems. Observe that the computation

time increase significantly with both the size of the volume and for increasing number of

phases. Although solving segmentation problems with a large number of phases is not

very common, this illustrates the importance of developing an even faster solver. Due

to memory problems, the computations has not been performed for 10- and 15-phase

problems on the largest data-set.



414 T. P. Gurholt and X. TaiTable 1: Compares omputation time and number of iterations for minimizing (3.19) for varying volumesizes and neighborhood systems, N6 and N26. Observe that when N6 systems are applied the solutionis found very fast for all test ases. For N26 systems the omputation time inrease, in partiular forthe two largest volumes. For both N6 and N26 systems, the solution is found using few iterations. Theproblem is solved by maximum �ow, implemented in C++, based on the work of [4℄.
N6 N26

Volume Size No. of It. Time (min.) No. of It. Time (min.)

(45× 45× 25) 12 0.2000 8 0.3667

(90× 90× 50) 8 0.7167 17 10.5667

(180× 180× 100) 9 8.5833 17 142.2000Table 2: The table ompares the omputation time for segmenting image volumes of di�erent sizesfor problems of varying number of phases. Observe that the omputation time inrease signi�antlyboth with the number of phases and with the size of the image volume. Due to memory problems,the omputations ould not be performed on the largest data-set for 10- and 15-phase problems. Allomputations are performed using a N6 neighborhood system.
Time (min.)

Volume Size 2-Phase 4-Phase 10-Phase 15-Phase

(45× 45× 25) 0 0.0833 0.3333 0.5000

(90× 90× 50) 0.0167 0.6167 2.1167 3.7500
(180× 180× 100) 0.1500 5.1333 − −

4.1. Real CT data

The method has been tested by segmenting a real 3D CT data-set of an unknown ob-

ject. The object has a complicated topology with sharp edges, narrow ridges and a partly

spiraling behavior with sharp twists and turns. Using a two-phase approach we are able to

segment the object, as shown for different intermediate slices in Fig. 2. In column (a) the

original data is displayed, in (b) the resulting segmentation and in (c) the segmentation

boundary overlaid the original data. We see that the method is capable of capturing com-

plicated structures within a volume, which has varying properties. By visual evaluation of

these slices it is confirmed that our segmentation approach works satisfactory. In fact the

segmentation perfectly match the conceptual boundary.

Scrolling through the volume slice-by-slice it is very difficult, if even possible, to imag-

ine the structure of the object. It is first after segmenting the object and reconstructing it,

that it is possible to comprehend its true structure, which is displayed in Fig. 3. In (a) the

full reconstructed object is displayed, and in (b) and (c) different angles of a sub-volume

is displayed. Observe that we are able to reconstruct the spiral interior shape of the object

from the segmentation. In the presented example we have used a N26 neighborhood system

in graph G. It is, however, interesting to observe that almost the same output is obtained

using a N6 system. Visually no difference is observed between the two approaches. This

suggest that it is sufficient to use a N6 neighborhood system, which is more computational

efficient than a N26 system, to obtain a good segmentation of the data-set.
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(a) Original Data (b) Segmentation (c) Segmentation Outline

Figure 2: In olumn (a) three di�erent slies of the original data are displayed. Column (b) displays thesegmented data of the same slies and in () the ontour of the segmented data overlaid the originaldata. The segmented data orrespond to an output harateristi funtion ψ as de�ned in (3.16).Observe in () that good segmentation results are obtained, where the segmentation perfetly maththe oneptual boundary. The segmentation is obtained using a N26 neighborhood system.

(a) Reconstructed Object (b) Sub View (c) Sub ViewFigure 3: Displays di�erent views of the reonstruted objet based on the segmentation. In (a) thefull objet is displayed, and in (b) and () two di�erent sub volume views. Observe that we are able toreonstrut the spiraling shape to the interior of the objet.
4.2. Synthetic MR data

The method has also been tested on synthetic MR data (T1) of a normal human brain,

obtained from [1]. It has 7% noise, 20% intensity non-uniformity and the voxel spacing

is 1mm in all direction. In this paper, we work with a sub-volume u0 of this data-set with

(217× 181× 106) voxels, which do not include e.g. empty slices or eye features. When

segmenting u0 using a four-phase PCLSM approach, the resulting characteristic functions

ψi are prone to have skull features as shown in Fig. 4 for a given slice. The original data is

displayed in (a) and in (b)-(e) the characteristic functions are displayed, ψ1 through ψ4.
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(a) u0 (b) ψ1 (c) ψ2 (d) ψ3 (e) ψ4Figure 4: In (a) syntheti MR data u0 obtained from [1℄ is displayed for a given slie. The resultingharateristi funtions {ψ1,ψ2,ψ3,ψ4} obtained when segmenting u0 using a four-phase PCLSM ap-proah are displayed in (b)-(e) for the same slie. Observe that skull features are present in all ψ's. Toextrat the CSF in (), the gray matter in (d) and the white matter in (e) the removal of skull featuresis required. The segmentation is obtained using a N6 neighborhood system.
The white regions of {ψ1,ψ2,ψ3,ψ4} correspond to the segmented data for a given phase,

while the black regions do not belong to the segmentation for the same phase. To extract

the cerebrospinal fluid (CSF), gray and white matter given respectively in ψ2, ψ3 and ψ4

the skull feature should be removed.

To remove skull features we have developed a simple skull stripping approach. It is

based on the observation that the characteristic function ψ1 from Fig. 4(b), which mostly

segments out the background, resembles a mask. Therefore we derive a mask M from ψ1

for the removal of skull features. It is created by employing the morphological operation

of closing to create a single, closed, object where the gap which is observed in ψ1 has been

removed. Closing is defined as

ψC
1 =ψ1 • S= (ψ1 ⊕ S)⊖ S, (4.1)

where ψC
1 is the closing of ψ1 using a flat circular structuring element S. The computation

of ψC
1 is therefore done in a slice-by-slice manner. The closing operation performs first a

dilation operation ⊕, then erosion⊖. Dilation can be viewed as a region growing operation

in which pixels are added to the object boundary. Erosion can on the contrary be viewed

as a region shrinking operation in which pixels are removed from the boundary. For more

information about morphological operations consider e.g. [22]. Once ψC
1 is found, the

mask M can be defined as

M =ψC
1 < 1. (4.2)

Skull features are then removed from {ψ2,ψ3,ψ4} by multiplying them with M. After

removing the skull features, the largest group of connected components are extracted from

the volume using labeling to eliminate random groups of voxels. A danger using this

approach is that there is no way to guarantee that the mask M do not interfere with CSF,

gray and white matter which lies within. By inspection, however, we have not found this

to be a problem as long as an appropriate structuring element S is chosen. For real MR

data, this skull stripping approach should be further developed.

Fig. 5 shows the original MR data in column (a) for selected sagittal, coronal and ax-

ial planes. In column (b)-(d) the anatomical models from [1] (underlay) are compared
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(a) Original Data (b) Gray Matter (c) White Matter (d) CSF

Figure 5: In olumn (a) the original data is displayed for a given sagittal, oronal and axial planes.In (b)-(d) the orresponding planes from the segmentation is ompared with the anatomial models(underlay) from [1℄ for eah tissue lass. The red ontour outlines the segmented gray matter in (b),white matter in () and CSF in (d). We observe that the segmentations detets the major trends inthe anatomial model. The small deviations might ome from e.g. the amount of smoothing in theregularization term. Another reason ould be that more than these three anatomial models are usedwhen reating the syntheti data volume. Our segmentation in (b) outline the internal ventriles �lledwith CSF, whih is not due to gray mater but to a narrow ridge of voxels between white matter andCSF.
(a) Gray Matter (b) White MatterFigure 6: Volume display of the reonstruted gray and white matter.

with the extracted gray matter, white matter and CSF using our approach for the same

planes. Visual verification confirms that the segmented data corresponds well with the

major trends in the original data, and it is verified that it detects the boundaries of the

anatomical models. Small deviations comes from e.g. combining more than these three
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anatomical models to create the full brain, the smoothing effect of the regularization term,

and also from displaying only connected components. For gray matter we observe a devi-

ation in the coronal plane. In the apex there is a small artifact that has not been removed.

Also the internal ventricles which are filled by CSF are outlined in the gray matter segmen-

tation. This is not due to actual gray matter, but to a narrow ridge of voxels in the input

data which can be observed between CSF and white matter. For white matter we observe

that the detected data corresponds well with the anatomical model. For CSF, in the apex of

the sagittal and coronal plane we observe that the model detects slightly more data than

the anatomical model indicates. By comparing the segmentation with the original data we

do, however, observe that the voxel intensity in this region is very close to that of CSF. The

segmentation model is therefore found to perform satisfactory for this data-set. In Fig. 6

the reconstructed subvolumes from the segmented data of the gray and white matter are

displayed. These volume views confirms that the detected data has the expected shape.

Due to computation time requirement for larger data-sets, using a N26 neighborhood

system to segment u0 is too time consuming, as was shown in Table 1. Full volume segmen-

tation has therefore only been performed using a N6 system. For sub-volumes of u0 similar

results are, however, obtained using N26 systems. It requires less weight on constant value

ν to obtain the same amount of smoothing.

5. Conclusion

We have demonstrated that the PCLSM can be minimized by graph cut for volume

image segmentation on both synthetic and real data with complicated structures. This

yields accurate segmentation for both N6 and N26 neighborhood systems which converges

swiftly to the optimal solution for relatively large data-sets. The computation time increase

more rapidly for N26 systems with the size of the data-set. It is also influenced by the

number of phases in the segmentation problem. For real time applications future work is

required to derive an even faster graph cut solver for very large data-sets. The convergence

rate of the presented solver is much faster than ordinary Euler-Lagrange approaches.
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