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1. Introduction

The method of subspace corrections is a general iterative method for solving the linear
system of equations arising from the variational formulation in a Hilbert space. The mod-
ern theory of the subspace correction methods has showed that the multigrid method and
the domain decomposition method are systematically equivalent. In this paper, we study
the method of subspace corrections. We refer readers to von Neumann [7], Bramble [1],
Bramble and Zhang [2], Hackbusch [4], Griebel and Oswald [3], Trottenberg, Oosterlee
and Schüller [5], Xu [8,9] and Xu and Zikatanov [10] for the method of subspace correc-
tions.

One main focus in this paper is to provide an estimate for the rate of convergence of
the method of successive subspace corrections (MSSC) in terms of the method of parallel
subspace corrections (MPSC). This work can be considered as an extension and application
of the convergence theory by Xu and Zikatanov [10]. Based on this framework, we obtain
a formula for the convergence rate, which can be employed to derive many other estimates
related to the method of subspace corrections. We then show how the convergence rate of
the MSSC can be estimated in terms of the MPSC. Similar results and other approaches on
deriving estimates relating MSSC and MPSC are also found in earlier works [2,3,8,9].
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The remainder of this paper is organized as follows. In Section 2, we present the
variational problem in a Hilbert space and recall some notation and algorithms in [10].
In Section 3, we relate the convergence rate to the condition number of multiplicative
preconditioner and derive a formula for this condition number. In Section 4, we present
estimates for the convergence rate, using the formula for the condition number. We discuss
the special cases of the subspace correction methods in Section 5.

2. Notation and preliminaries

Let V be a Hilbert space with an inner product (·, ·) and its induced norm ‖ · ‖ and let
V ∗ be the dual space of V . We consider the variational problem:

Find u ∈ V such that for any given f ∈ V ∗

a(u, v) = 〈 f , v〉, ∀ v ∈ V. (2.1)

Here, a(·, ·) : V × V 7→ R is a continuous symmetric positive definite (SPD) bilinear form.
Since a(·, ·) is a SPD, it introduces an inner product and a norm which we denote with
(·, ·)a and ‖ · ‖a. In more classical notation, we define an operator A : V 7→ V by

(Au, v) = a(u, v) ∀u ∈ V,∀v ∈ V.

Following [10], we introduce some notation and the parallel and successive subspace cor-
rection algorithms. We first consider a collection of closed subspaces

Vk ⊂ V, k = 1, · · · , J ,

such that

(A0) V =
J∑

k=1
Vk.

Associated with each subspace Vk, we define a continuous positive definite bilinear form
ak(·, ·) to be an approximation of a(·, ·) on Vk. We point out that in general ak(·, ·) may not
be symmetric. To assure the well-posedness of the subspace problems, we assume that the
bilinear forms ak(·, ·) satisfy appropriate inf-sup conditions.

The method of parallel subspace corrections (MPSC) is an iterative algorithm that cor-
rect the residual equations in parallel in each subspace. MPSC is described as follows.

Algorithm 2.1 (MPSC). Let u0 ∈ V be given.

for ℓ= 1,2, · · ·

for i = 1 : J

Let ei ∈ Vi solve
ai(ei, vi) = f (vi)− a(uℓ−1, vi) ∀vi ∈ Vi ,

endfor
uℓ = uℓ−1 +

∑J

i=1 ei,

endfor
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Next, we outline the method of successive subspace corrections (MSSC) which corrects
successively the residual equations (sequentially in each subspace) as follows.

Algorithm 2.2 (MSSC). Let u0 ∈ V be given.

for ℓ = 1,2, · · ·

uℓ−1
0 = uℓ−1

for i = 1 : J

Let ei ∈ Vi solve
ai(ei , vi) = f (vi)− a(uℓ−1

i−1 , vi) ∀vi ∈ Vi ,
uℓ−1

i
= uℓ−1

i−1 + ei,

endfor
uℓ = uℓ−1

J ,

endfor

We introduce a class of linear operators Tk : V 7→ Vk for k = 1, · · · , J , defined as

ak(Tkv, vk) = a(v, vk), ∀ v ∈ V, vk ∈ Vk. (2.2)

Thanks to the inf-sup conditions, Tk is well-defined and

(A1) R(Tk) = Vk and Tk : Vk 7→ Vk is isomorphic.

Moreover, we assume that Tk satisfies the following inequality:

(A2) ‖Tkv‖2a ≤ω(Tkv, v)a, ∀ v ∈ V for some constant ω ∈ (0,2).

In the special case that the subspace solvers are exact, we use a linear operator Pk, instead
of Tk, satisfying

a(Pkv, vk) = a(v, vk), v ∈ V, vk ∈ Vk.

Associated with Tk, we will use the notation T t
k

and T ∗
k

as adjoint operators of Tk with
respect to (·, ·) and (·, ·)a, respectively, and as its symmetrization,

T̄k = Tk + T ∗k − T ∗k Tk for k = 1, · · · , J . (2.3)

Two cases under consideration exist, depending on whether the subspace solvers are exact
or inexact. When the subspace solvers are exact, a proof based on Theorem 2.1 of a result
relating the MPSC and MSSC is given in [11]. Other proofs and different estimates can be
found in [2,3,8,9]. In the paper, we focus only on the case of the inexact subspace solvers.
In the successive subspace correction algorithm 2.2, the error propagation operator EJ is
represented as

EJ = (I − TJ )(I − TJ−1) · · · (I − T1).

Once we have the form of EJ , then its symmetrized version is also observed, namely,

E∗J EJ = (I − T ∗1 )(I − T ∗2 ) · · · (I − T ∗J )(I − TJ )(I − TJ−1) · · · (I − T1).



New Estimates for the Rate of Convergence of the Method of Subspace Corrections 47

In what follow, we need an additive preconditioned operator T and a multiplicative pre-
conditioned operator T̄ such that

T =

J∑

k=1

T̄k and T̄ = I − E∗J EJ ,

respectively. We remark that T =
∑J

k=1 T̄k can be viewed as the so-called symmetrized
version of the parallel subspace correction algorithm. Also, we can define a SPD additive
preconditioner B̄a and a SPD multiplicative preconditioner B̄m in more classical sense so
that

B̄aA= T and B̄mA= T̄ , (2.4)

respectively. As is well known (see [3,9,10]), an additive preconditioner satisfies:

(B̄−1
a v, v) = (T−1v, v)a = inf∑

k vk=v

J∑

k=1

(T̄−1
k

vk, vk)a. (2.5)

We recall the following results [10, Theorem 4.2 and Corollary 4.3]:

Theorem 2.1 (Theorem 4.2, [10]). Under the assumptions (A0), (A1) and (A2), the follow-

ing identity holds:

‖EJ‖
2
a = ‖(I − TJ )(I − TJ−1) · · · (I − T1)‖a = 1−

1

1+ c0
, (2.6)

where

c0 = sup
‖v‖a=1

inf∑
k vk=v

J∑

k=1

�
Tk T̄−1

k
T ∗k
� J∑

j=k

v j − T−1
k

vk

�
,

J∑

j=k

v j − T−1
k

vk

�
a
<∞. (2.7)

Corollary 2.1 (Corollary 4.3, [10]). Suppose that the subspace solvers are exact. Under the

assumption (A0), the following identity holds:

‖EJ‖
2
a = ‖(I − PJ )(I − PJ−1) · · · (I − P1)‖a = 1−

1

1+ c0
, (2.8)

where

c0 = sup
‖v‖a=1

inf∑
k vk=v

J∑

i=1

‖Pk

∑

j>k

v j‖
2
a. (2.9)

In the following, we will drop the subscript J . Unless stated otherwise, E denotes EJ .
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3. MSSC and MPSC as preconditioners

From Theorem 2.1 it follows that the multiplicative (MSSC) iterations are convergent.
If we now consider the preconditioner B̄m defined by the symmetrized MSSC iteration,
then we have (for all v ∈ V )

‖v‖2a ≤ (B̄
−1
m v, v)≤ K‖v‖2a.

As a consequence from Theorem 2.1, the condition number of the preconditioned operator
B̄mA is K , and also we have K = c0 + 1. Clearly, estimating K is equivalent to estimating
c0. In some applications, it is more convenient to work with K , for example when the
preconditioner is directly defined, without using the error propagation operator (see [6]
for such approach). In this section we derive a formula for K , which is similar to the one
that is used in case of additive preconditioner (2.5). We begin with stating and proving
auxiliary results (Lemma 3.1–3.3 below).

Lemma 3.1. The following identities hold for k = 1, . . . , J:

I + Tk T̄−1
k

T ∗k (I − T−1
k
) = Tk T̄−1

k
, (3.1)

((T ∗k )
−1− I)Tk T̄−1

k
T ∗k (T

−1
k
− I) = T̄−1

k
− I . (3.2)

Proof. Let Sk = (T
∗
k
)−1 + T−1

k
− I . It follows from the definition of T̄k that S−1

k
=

Tk T̄−1
k

T ∗
k
. Then we have

I + Tk T̄−1
k

T ∗k (I − T−1
k
) = S−1

k

�
Sk + I − T−1

k

�

= S−1
k

�
(T ∗k )

−1 + T−1
k
− I + I − T−1

k

�

= S−1
k
(T ∗k )

−1 = Tk T̄−1
k

.

This proves the first relation (3.1) stated in the lemma. The proof of (3.2) is found in [10,
Lemma 4.9]. �

The formula for the condition number is given in Theorem 3.1 below. Its proof requires
two technical results, Lemma 3.2 and Lemma 3.3, which are “local”, in a sense that they
hold for any fixed v ∈ V .

Lemma 3.2. Given an arbitrary decomposition v =
∑J

k=1 vk of v ∈ V . Then we have

‖v‖2a + c0(v) = K(v), (3.3)

where

c0(v) =

J∑

k=1

�
Tk T̄−1

k
T ∗

k
(wk + (I − T−1

k
)vk), (wk + (I − T−1

k
)vk)

�
a

,

K(v) =

J∑

k=1

(T̄−1
k
(vk + T ∗k wk), (vk + T ∗k wk))a,

with wk =
∑J

i=k+1 vi.
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Proof. Direct calculations lead to

(v, v)a+

J∑

k=1

�
Tk T̄−1

k
T ∗k (wk + (I − T−1

k
)vk), wk + (I − T−1

k
)vk

�
a

= (

J∑

k=1

vk,
J∑

k=1

vk)a+

J∑

k=1

�
Tk T̄−1

k
T ∗k (wk + (I − T−1

k
)vk), wk + (I − T−1

k
)vk

�
a

=

J∑

k=1

h
(vk, vk)a + 2(vk, wk)a +

�
Tk T̄−1

k
T ∗k (wk + (I − T−1

k
)vk), wk + (I − T−1

k
)vk

�
a

i
.

For each term in the sum above, we observe that

(vk, vk)a + 2(vk, wk)a +
�

Tk T̄−1
k

T ∗k (wk + (I − T−1
k
)vk), wk + (I − T−1

k
)vk

�
a

= (vk, vk)a + (Tk T̄−1
k

T ∗k (I − T−1
k
)vk, (I − T−1

k
)vk)a

+ 2
�
(vk, wk)a + (Tk T̄−1

k
T ∗

k
(I − T−1

k
)vk, wk)a

�
+ (Tk T̄−1

k
T ∗

k
wk, wk)a.

We now use Lemma 3.1 to obtain

(vk, vk)a + 2(vk, wk)a +
�

Tk T̄−1
k

T ∗
k
(wk + (I − T−1

k
)vk), wk + (I − T−1

k
)vk

�
a

= (T̄−1
k

vk, vk)a + 2((I + Tk T̄−1
k

T ∗
k
(I − T−1

k
))vk, wk)a+ (T̄

−1
k

T ∗
k

wk, T ∗
k

wk)a

= (T̄−1
k

vk, vk)a + 2(Tk T̄−1
k

vk, wk)a + (T̄
−1
k

T ∗
k

wk, T ∗
k

wk)a.

Combining these results together results in

(v, v)a+ c0(v)

=

J∑

k=1

(T̄−1
k

vk, vk)a+ 2
J∑

k=1

(T̄−1
k

vk, T ∗k wk)a+

J∑

k=1

(T̄−1
k

T ∗k wk, T ∗k wk)a

=

J∑

k=1

(T̄−1
k
(vk + T ∗k wk), vk + T ∗k wk)a = K(v). �

Next we prove a relation between the action of the multiplicative preconditioner T̄ and
K(v), for any v ∈ V .

Lemma 3.3. For v ∈ V , we have

(B̄−1
m v, v) = (T̄−1v, v)a = inf∑

k vk=v

J∑

k=1

(T̄−1
k
(vk + T ∗k wk), vk + T ∗k wk)a, (3.4)

where wk =
∑

i>k vi.
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Proof. We will follow the procedure of the proof of [10, Theorem 4.2]. Let T
e

,S
ee
, T
e
∗, w̃

and φ̃ be defined as in [10, Theorem 4.2]. We note that I − E∗E = T̄ and

(T̄ v, v)a = ((I − E∗E)v, v)a = ‖v‖
2
a −‖Ev‖2a = (Te

(S
ee
+ T
e
∗T
e
)−1T

e
∗v, v)a,

which implies that

T̄ = T
e
(S
ee
+ T
e
∗T
e
)−1T

e
∗.

For any w ∈ V , let

w̃ = (S
ee
+ T
e
∗T
e
)−1T

e
∗w and v = T

e
w̃.

By writing

S
ee
w̃ = (S

ee
+ T
e
∗T
e
)w̃ − T

e
∗T
e

w̃ = T
e
∗w − T

e
∗T
e

w̃,

we immediately see that for any φ̃ ∈ N (T
e
),

(S
ee
w̃, φ̃)V J = 0 and (S

ee
w̃, w̃)V J ≤ (S

ee
(w̃+ φ̃), (w̃ + φ̃))V J ,

which yields

(S
ee
w̃, w̃)V J = inf

T
e

ṽ=v
(S
ee
ṽ, ṽ)V J ,

where (·, ·)V J is the usual inner product in the product space. It follows from the simple
identity

T̄ = T̄ 2 + T
e
(S
ee
+ T
e
∗T
e
)−1S

ee
(S
ee
+ T
e
∗T
e
)−1T

e
∗

that

(T̄−1v, v)a = (v, v)a+ (See
w̃, w̃)V J .

Mixing them together brings in

(T̄−1v, v)a = (v, v)a+ inf
T
e

ṽ=v
(S
ee
ṽ, ṽ)V J = inf

T
e

ṽ=v
K(v),

where Lemma 3.2 is used in the last equality. This completes the proof. �

As we pointed out, Lemma 3.2 and Lemma 3.3 imply that

(B̄−1
m v, v) = (T̄−1v, v)a = inf∑

k vk=v
K(v),

for v ∈ V . From the relations that we have shown above, we obtain
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Theorem 3.1. Under the assumptions (A0), (A1) and (A2), the following identity holds

‖E‖2a = 1−
1

K
, (3.5)

where

K = sup
v∈V

‖v‖a=1

inf∑
k vk=v

K(v), (3.6)

where K(v) is defined as in Lemma 3.2.

4. On the relation between MSSC and MPSC

In this section, we give a new convergence estimate of MSSC in terms of the MPSC. In
order to relate the convergence rate of MSSC to the MPSC, we need the following Lemma
(proof can be found in Griebel and Oswald [3] or Bramble and Zhang [2]).

Lemma 4.1. ([2]) Let A(·, ·) be a symmetric positive definite bilinear form on MJ ×MJ and

let Dk : Mk→ Mk be symmetric and positive definite. Assume that

J∑

k, j=1

A(uk, v j)≤ K

 
J∑

k=1

(Dkuk,uk)

! 1
2
 

J∑

k=1

(Dkvk, vk)

! 1
2

,

holds for any uk, vk ∈ Mk. Then

J∑

k=1

J∑

j>k

A(uk, v j)≤
1

2
⌈log2 J⌉K

 
J∑

k=1

(Dkuk,uk)

! 1
2
 

J∑

k=1

(Dkvk, vk)

! 1
2

,

holds for any uk, vk ∈ Mk.

4.1. Upper bounds

We first recall the parameter ω, which is defined on the assumption (A2). Now we
define a new parameter σ to be the smallest real number that satisfies the following in-
equality:

(T̄−1
k

T ∗k v, T ∗k v)≤ σ2(T̄kv, v), ∀ v ∈ V. (4.1)

We would like to discuss more about the new parameter σ and, in particular, elaborate
on its role. Since TkPk = Tk, T ∗

k
Pk = T ∗

k
and T̄kPk = T̄k, it suffices to consider the above

inequality for v ∈ Vk. This means that σ2 is the largest eigenvalue of the generalized
eigenvalue problem

Tk T̄−1
k

T ∗k x = µT̄k x .

If Y is an operator, defined as follows:

Y = T̄
−1/2
k

�
Tk T̄−1

k
T ∗k

�
T̄
−1/2
k

�
= [T̄

−1/2
k

Tk T̄
−1/2
k

] · [T̄−1/2
k

T ∗k T̄
−1/2
k

]
�

,
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then σ2 becomes the largest eigenvalue of Y . The definition of Y entails that

σ = ‖T̄−1/2
k

Tk T̄
−1/2
k
‖.

For instance, if Tk is self-adjoint, then we see that σ = 1
2−ω

, whence σ2 = 1
(2−ω)2

. Indeed,

it follows from (A2) that

(T̄kv, v)a = ((2Tk − T 2
k )v, v)a = 2(Tkv, v)a− (T

2
k v, v)a

≥ 2(Tkv, v)a−ω(Tkv, v)a

≥ (2−ω)(Tkv, v)a.

When Tk is not self-adjoint, then 1
2−ω
≤ σ. Indeed, it follows from [10, Lemma 4.1] † that

(T̄kv, v)a = 2(Tkv, v)a−‖Tkv‖2a ≥ 2(Tkv, v)a−
ω

2−ω
(T̄kv, v)a,

whence

(Tkv, v)a ≤
1

2−ω
(T̄kv, v)a.

The desired inequality comes from a fact that

ρ(T̄
−1/2
k

Tk T̄
−1/2
k

)≤ ‖T̄−1/2
k

Tk T̄
−1/2
k
‖.

The following theorem is another main result in the paper, which shows that the con-
vergence rate of MSSC can be estimated directly in terms of MPSC.

Theorem 4.1. Assume that the subspace solvers are inexact and that T is the additive pre-

conditioned operator, namely,

T =

J∑

k=1

T̄k.

Then

‖E‖2a = 1−
1

K
,

where K in (3.6) is bounded above by

K ≤
1

λmin(T )

�
1+
σ(log2 J)λmax(T )

2

�2

. (4.2)

Proof. Let us fix v ∈ V and take any decomposition v =
∑J

k=1 vk of v and set wk =∑
j>k v j. We will here employ an inner product (·, ·)T̄−1

k
on Vk and its induced norm ‖·‖T̄−1

k
,

defined by

(·, ·)T̄−1
k

:= (T̄−1
k
·, ·)a and ‖ · ‖T̄−1

k
:= (·, ·)1/2

T̄−1
k

,

†Here, we need the following inequality given in [10, Lemma 4.1]: ‖Tk v‖2
a
≤ ω

2−ω
(T̄k v, v)a, ∀ v ∈ V .
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respectively. It follows from several applications of the Cauchy-Schwarz inequality that

J∑

k=1

‖vk + T ∗k wk‖
2
T̄−1

k

≤
J∑

k=1

‖vk‖
2
T̄−1

k

+ 2
J∑

k=1

‖vk‖T̄−1
k
‖T ∗k wk‖T̄−1

k
+

J∑

k=1

‖T ∗k wk‖
2
T̄−1

k

≤
J∑

k=1

‖vk‖
2
T̄−1

k

+ 2σ
J∑

k=1

‖vk‖T̄−1
k
‖wk‖T̄k

+σ2
J∑

k=1

‖wk‖
2
T̄k

≤
�
[S1(v)]

1/2+σ[S2(v)]
1/2
�2

,

where

S1(v) =

J∑

k=1

‖vk‖
2
T̄−1

k

, and S2(v) =

J∑

k=1

‖wk‖
2
T̄k

.

It is readily to see that sup‖v‖a=1 inf∑
k vk=v S1(v) is equal to [λmin(T )]

−1. Therefore, the
main part for proving this theorem is to get an estimate of the form

S2(v)≤ C2S1(v), (4.3)

since taking the infimum on both sides of (4.3) over all decompositions v =
∑

k vk of v and
the supremum over all v ∈ V such that ‖v‖= 1 indicates

K ≤ [λmin(T )]
−1(1+σC)2.

Accordingly, we will focus on finding a constant C in (4.3). By the definition of T , we get
that

[λmax(T )]
−1‖v‖2a ≤ (T

−1v, v)a ≤ S1(v).

Also the Cauchy-Schwarz inequality is applied to have

(u, v)a =

J∑

j,k=1

(u j , vk)a ≤ ‖u‖a‖v‖a ≤ λmax(T )[S1(u)]
1/2[S1(v)]

1/2.

Lemma 4.1 implies that

J∑

k=1

(uk, wk)a =

J∑

k=1

(uk,
J∑

j=k+1

v j)a ≤
1

2
(log2 J)λmax(T )[S1(u)]

1/2[S1(v)]
1/2.

A simple replacement of uk with T̄kwk in the above inequality leads to

S2(v)≤
1

2
(log2 J)λmax(T )[S2(v)]

1/2[S1(v)]
1/2.

Dividing both sides by [S2(v)]
1/2 and taking the square ultimately provide

C =
1

2
(log2 J)(λmax(T )),

in (4.3). This completes the proof. �
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4.2. Lower bound in a special case

We will now derive a lower bound in the case when Tk =ωPk whereω ∈ (0,2). Setting
wk =

∑
i>k vi, k = 1, · · · , J − 1. From (2.5) and Lemma 3.3

(B̄−1
a v, v) = inf∑

k vk=v

J∑

k=1

1

ω
‖vk‖

2
a,

(B̄−1
m v, v) = inf∑

k vk=v

J∑

k=1

1

2ω−ω2
‖Pk(vk +ωwk)‖

2
a.

(4.4)

Assume that the actions of B̄m and B̄a are given by (4.4). We will prove the following
inequality.

2−ω

4
(B̄−1

a v, v)≤ (B̄−1
m v, v). (4.5)

Indeed, let v ∈ V be such that v =
∑J

k=1 vk with vk ∈ Vk. Applying some obvious identities
and the Cauchy-Schwarz inequality, we have

J∑

k=1

‖vk‖
2
a ≤

J∑

k=1

‖vk‖
2
a +

ω

2−ω
(v, v)a =

J∑

k=1

‖vk‖
2
a +

ω

2−ω
(

J∑

k=1

vk,
J∑

m=1

vm)a

=

J∑

k=1

‖vk‖
2
a +

ω

2−ω

J∑

k=1

‖vk‖
2
a +

2

2−ω

J∑

k=1

(vk,ωPkwk)a

=

�
1+

ω

2−ω

� J∑

k=1

‖vk‖
2
a +

2

2−ω

J∑

k=1

(vk,ωPkwk)a

=
2

2−ω

J∑

k=1

(vk, Pk(vk +ωwk))a

≤
2

2−ω

 
J∑

k=1

‖vk‖
2
a

!1/2 J∑

k=1

‖Pk(vk +ωwk)‖
2
a

!1/2

.

5. Other estimates of K and K(v)

In this section, we discuss multilevel methods and we explain about how K in (3.6)
can be estimated, when each of the Tk is itself a parallel (successive) sub-subspace solver.
We further assume that the subspaces are nested:

V1 ⊂ V2 ⊂ · · · ⊂ VJ ,

and that there exist operators Πk : V 7→ Vk satisfying

R(Πi −Πi−1)⊂ Vi , with Π0 = 0, and ΠJ = I .



New Estimates for the Rate of Convergence of the Method of Subspace Corrections 55

We then have a telescopic decomposition

v =

J∑

k=1

vk with vk = (Πk −Πk−1)v, (5.1)

then we have

K ≤ sup
‖v‖=1

J∑

k=1

‖vk + T ∗k (v−Πkv)‖2
T̄−1

k

. (5.2)

In the case that Πk = Pk is the a-orthogonal projection, then the right side of the inequal-
ity (5.2) can be reduced to

K ≤ sup
‖v‖=1

J∑

k=1

‖vk‖
2
T̄−1

k

. (5.3)

5.1. MPSC as sub-subspace solver

Let us assume that on each subspace Vk, Tk is given by

Tk =

nk∑

i=1

Tk,i,

which is an additive preconditioned operator on Vk. We then have

(T−1
k

vk, vk)a = inf∑
vk,i=vk

nk∑

i=1

(T−1
k,i vk,i, vk,i)a.

Also, we see that

‖vk‖
2
T̄−1

k

≤ (2−ω)−1(T−1
k

vk, vk)a.

Combining the inequalities above with (5.3) yields

K ≤ (2−ω)−1 sup
‖v‖a=1

J∑

k=1

 
inf∑
vk,i=vk

nk∑

i=1

(Tk,ivk,i, vk,i)a

!
,

which can be generalized to

K ≤ (2−ω)−1 sup
‖v‖a=1

inf∑
k vk=v

J∑

k=1

 
inf∑

vk,i=vk+T∗
k
(
∑

j>k v j)

 
nk∑

i=1

(Tk,i vk,i, vk,i)a

!!
.
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5.2. MSSC as a sub-subspace solver

We suppose that T̄k is given by a multiplicative preconditioned operator on each sub-
space Vk. Then we have

(T̄−1
k

vk, vk)a = inf∑
i vk,i=vk

nk∑

i=1

(T̄−1
k,i (vk,i + T ∗k,i(

∑

j>i

vk, j)), vk,i + T ∗k,i(
∑

j>i

vk, j))a.

Consequently, we get

K ≤ sup
‖v‖a=1

inf∑
k vk=v

J∑

k=1

inf∑
i vk,i=vk

nk∑

i=1

(T̄−1
k,i (vk,i + T ∗k,i(

∑

j>i

vk, j)), vk,i + T ∗k,i(
∑

j>i

vk, j))a.

6. Concluding remarks

The study presented here was motivated by the new representation for the convergence
rate of multiplicative methods in Lemma 3.2. We have shown how this new representation
can be used in deriving upper and lower bounds for the convergence rate of MSSC method.
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