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Abstract. In this paper we investigate several solution algorithms for the convex fea-
sibility problem (CFP) and the best approximation problem (BAP) respectively. The
algorithms analyzed are already known before, but by adequately reformulating the
CFP or the BAP we naturally deduce the general projection method for the CFP from
well-known steepest decent method for unconstrained optimization and we also give a
natural strategy of updating weight parameters. In the linear case we show the connec-
tion of the two projection algorithms for the CFP and the BAP respectively. In addition,
we establish the convergence of a method for the BAP under milder assumptions in the
linear case. We also show by examples a Bauschke’s conjecture is only partially correct.
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1. Introduction

The convex feasibility problem (CFP) is to find a point in the nonempty intersection
C =
⋂m

i=1 Ci of a family of closed convex subsets Ci ⊆ Rn, 1 ≤ i ≤ m, of the n-dimensional
Euclidean space. It is a fundamental problem in many areas of mathematics and the phys-
ical sciences. More precisely, it has been used to model significant real-world problems
including image reconstruction from projections, radiation therapy treatment planning,
and crystallography (see [7] and the references therein). The convex sets {Ci}mi=1 repre-
sent mathematical constraints obtained from the modelling of the real-world problem.

The best approximation problem (BAP) is to find the projection of a given point y ∈ Rn

onto the nonempty intersection C :=
⋂m

i=1 Ci 6= ; of a family of closed convex subsets
Ci ⊆ Rn, 1≤ i ≤ m, i.e., we need to look for a point in C which is closest to y. The relevant
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background knowledge may consult [1] and [16]. In the CFP, any point in the intersection
is acceptable to the real-world, while for the BAP it is appropriate if some point y ∈ Rn

has been obtained from modelling and computational efforts that initially did not take into
account the constraints represented by the sets {Ci}mi=1 and now one wishes to incorporate
them by seeking a point in the intersection of the convex sets which is closest to the point
y.

For the CFP a number of solution methods have been presented (see [3, 8–11, 13, 14,
21–23, 27, 28, 30]). Among them, some are particularly designed for the CFP of special
forms. Roughly speaking, these algorithms can be divided into two categories: projection
method and interior method. For the BAP, several projection-type algorithms have been
proposed to solve it. (see [2, 7, 16–18]).

The orthogonal projection PΩ(z) of a point z ∈ Rn onto a closed convex set Ω ⊆ Rn is a
point of Ω defined by

PΩ(z) := ar g min{‖z − x‖2},

where ‖.‖2 is the Euclidean norm in Rn.

The projection-type methods employ projection onto the individual convex sets in order
to reach the required point in the intersection. Obviously the solution of the BAP for any
given y is a solution of the CFP provided that

⋂m

i=1 Ci 6= ;. So it is easy to see that the
iterate projection algorithms for the BAP are usually more complicated than algorithms
for the CFP. However, we will show in Section 3 that at least in the linear case a relaxed
projection algorithm for the CFP will produce a solution of the BAP as long as taking y as
the starting point of the iteration.

In the present paper we intend to supply a relatively unified treatment for various
projection algorithms for the CFP based on the steepest descent method. We also study the
iterate behaviors of the sequential and simultaneous versions of Halpern-Lions-Wittmann-
Bauschke (HLWB) algorithm for the BAP. In particular, we establish the convergence of the
simultaneous HLWB in the linear case, which means that the algorithms can be accelerated.
Moreover we show that when

⋂m

i=1 Ci = ; a Bauschke’s conjecture is only partially correct.

This paper is organized as follows. In Section 2, based on the reformulations of the
CFP we naturally deduce the exact and surrogate relaxed projection algorithms for the
CFP, from which we suggest a more natural updating strategy of weight parameters. In
Section 3, we prove the convergence of the simultaneous HLWB algorithm in the linear
case under mild conditions. In Section 4, we discuss the simultaneous HLWB in the case of
intersection sets being empty and show that a conjecture due to Bauschke is only partially
correct.

2. Several algorithms for the CFP

In this section three well-known algorithms for the CFP are further discussed.
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2.1. The projection algorithms for the CFP revisited

It is known that for a closed convex set in Rn, there is a unique convex function associ-
ated to this set (see, e.g., [28]). Denote

Ci = {x ∈ Rn : fi(x)≤ 0}, i = 1, · · · , m,

where fi, i = 1, · · · , m are convex. Our motivation here is that using the steepest descent
method, but based on the different reformulations of the CFP, yields two known algorithm.
Particularly, we give a natural scheme of updating weight parameters for the surrogate
project algorithm for the CFP.

First we recall the steepest descent method for solving the unconstrained optimization
problem: min f (x), where f (x) is a continuously differential function in Rn. Then the
steepest descent method can be stated as follows: Given arbitrary x o, for k = 0,1, · · · ,
calculate

x k+1 = x k− tk∇ f (x k),

where tk is a suitable stepsize. (When f (x) is convex, its subgradient, denoted by ∂ f (x),
exists. At this time, the steepest descent method solving min f (x) is to replace the ∇ f (x k)

by an element ξk of ∂ f (x k).)
We know that when f (x) is differentiable, if tk is an exactly optimal stepsize for each

k, then the sequence generated by this algorithm converges to a stationary point provided
the level set of f (x) is bounded, i.e., for every α, {x : f (x) ≤ α} is bounded. However, in
the situation of f (x) being nondifferentiable, the limit point of the sequence generated by
the steepest descent method may not be a optimal solution even if it exists (see, e.g., [5]).
Since the exact stepsize is not realistic in general, various inexact linesearch strategies
have be proposed to guarantee the convergence of corresponding algorithms. Because the
reformulated problems of the CFP possess specific properties generally, such as the zero
value of optimal objective, it is more flexible to determine the inexact stepsize to ensure
the convergence of the algorithm.

Let ω be given such that

ωi > 0, i = 1, · · · , m,
m∑

i=1

ωi = 1.

Then we have the following reformulation of the CFP:

(R1) min 1
2

m∑

i=1
ωi‖x − PCi

(x)‖22.

Since it is known (see, e.g., [6]) that

∇(1
2

m∑

i=1

ωi‖x − PCi
(x)‖22) =

m∑

i=1

ωi(x − PCi
(x)) = x −

m∑

i=1

ωi PCi
(x),

applying steepest descent method to (R1) gives the following iteration for solving the CFP:

x k+1 = x k− tk(x
k−

m∑

i=1

ωi PCi
(x k)) = (1− tk)x

k+ tk

m∑

i=1

ωi PCi
(x k). (2.1)
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Setting θk = 1 − tk yields the so-called relaxed combination projection algorithm. Of
course, due to the difficulty of calculating the exact projection, the most popular idea in
the projection-type algorithms is to replace the exact projection in the above scheme by
some surrogate projection such as the half-space projection (see [27, 29] and the relevant
references therein). To see how to derive the relaxed combination projection algorithm
with the half-space surrogate projection naturally, let us consider the following reformula-
tion of the CFP:

(R2) min 1
2

m∑

i=1
ωimax2( fi(x), 0).

Obviously the
⋂m

i=1 Ci 6= ; if and only if (R2) has the optimal objective value of zero. It has
been known that

∂
�1

2

m∑

i=1

ωimax2( fi(x), 0)
�

=

m∑

i=1

ωimax( fi(x), 0)∂ fi(x),

where ∂ fi(x) denotes the subgradient of fi at x , i.e.,

∂ fi(x) = {η : f (y)≥ f (x)+ 〈η, y − x〉,∀y}, 1≤ i ≤ m.

Let ξi stand for an element in ∂ fi(x). If we let ω be varied from the current iteration to
the next iteration and assume that at kth iteration, ω := ωk, then applying the steepest
descent method to (R2) leads to the following scheme:

x k+1 = x k − tk

m∑

i=1

ωk
i max( fi(x

k), 0)ξk
i , (2.2)

where tk is suitable stepsize and ξk
i
∈ ∂i(x

k), for i = 1, · · · , m. From this scheme and
taking into account the optimal condition of the solution, we see that

ωk+1
i
=

ωk
i

max( f(x
k), 0)

m∑

j=1
ωk

j
max( f j(x

k), 0)
, i = 1, · · · , m

is a natural strategy of updating ωk provided that

m∑

j=1

ωk
j max( f j(x

k), 0) 6= 0.

For each i = 1, · · · , m, define the half space associated with fi(x) at x k

Hk
i = {x : fi(x

k) + 〈ξk
i , x − x k〉 ≤ 0}.

We know that the projection of x k onto Hk
i

is

PHk
i
(x k) = x k − max( fi(x

k), 0)

‖ξk
i
‖22

ξk
i .
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Thus (2.2) can be rewritten as

x k+1 = x k + tk

m∑

i=1

ωk
i ‖ξk

i ‖22(PHk
i
(x k)− x k). (2.3)

If we denote

θ k
i =

ωk
i ‖ξk

i ‖22
m∑

j=1
ωk

j
‖ξk

j
‖22

, i = 1, · · · , m, (2.4)

and

ρk = tk

m∑

j=1

ωk
j ‖ξk

j ‖22.

Then we obtain from (2.3) the following iteration

x k+1 = x k +ρk

m∑

i=1

θ k
i (PHk

i
(x k)− x k). (2.5)

This is actually the common form of the relaxed projection algorithm for solving the CFP,
see, e.g., [27]. The above argument provides a new insight of the relaxed projection
algorithm. Specially, it is not easy to get a natural scheme of updating weight parameter
θ k from only (2.5). Several strategies for updating θ k is seemly rather artificial and not
closely related to iterate step, see [3, 27, 29] and the references therein. In fact, from
the above argument we see that the natural way of updating θ k should be (2.4). Of
course, when θ k

i = 0, i.e., ωk
i = 0, a restarting strategy for θi is necessary, at least for the

convergence proof. When this situation occurs, it is suggested to use the way as used in
[27]. The above argument also tells us that slow convergence rate may occur for (2.5),
since it is actually an application of the steepest descent method. This motivates us to
study fast algorithms for the CFP when possible.

2.2. Conjugate Gradient method for the CFP

To speed up the convergence rate of the algorithms discussed in the previous subsec-
tion, we intend to show that two fast methods for solving unconstrained optimization:
Conjugate Gradient (CG) method and nonsmooth Newton method which may be used to
solve the CFP under certain conditions.

In [38], we show that the following CG method can be applied to the CFP provided
that the projections in reformulation (R1) of the CFP are easy to calculate.
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Algorithm 2.1. Let x0 be an arbitrary vector in Rn. For k = 0,1, · · · , calculate

x k+1 = x k +αkdk, (2.6)

where

dk =

¨

−gk k = 0,
−gk + βkdk−1 k > 0,

(2.7)

gk = 2
m∑

i=1

ωi(x
k− PCi

(x k)). (2.8)

The various choices of βk lead to different conjugate gradient (CG) methods, see, e.g.,
[38]. For examples, if

βk = β
FR
k =

‖gk‖22
‖gk−1‖22

,

we obtain F-R (Fletcher-Reeves) conjugate gradient method; if

βk = β
PRP
k
=
(gk)T (gk − gk−1)

‖gk−1‖22
,

we obtain P-R-P (Polak-Ribière-Polyak) conjugate gradient method. As to αk, we can use
exact or inexact linear search to obtain it. In fact we have the following (see [38])

Theorem 2.1. Assume that the objective function f (x) is bounded below, and ∇ f (x) is

Lipschitz continuous with modulus L > 0. If 0 < αk ≡ η < 1
4L

in P-R-P method, then it holds

that ∇ f (x k)
T

dk < 0 for all k. In this case, the algorithm defined by (2.6)-(2.8) converges

globally in the sense that

lim
k→+∞

‖∇ f (x k)‖2 = 0.

It is easy to see the requirements in the above theorem are satisfied by (R1). In [38],
our preliminary experiments show that the CG method is superior to the CQ algorithm
for some randomly selected split feasibility problem (SFP). It is well-known that the SFP
is a particular case of the CFP (see [6] and the references therein) and the CQ algorithm
is an application of the steepest descent method with fixed stepsize (see [38]). Likewise,
it seems promising to use Algorithm 2.1 to solve the CFP based on (R1) as long as the
associated projections can be easily obtained.

3. Simultaneous HLWB for the BAP in the linear case

In this section, we are concerned with the BAP. Given a vector y in Rn, the BAP is to
find a point in intersection sets of some closed convex sets of Rn, which is closest to y.
Denote C =
⋂m

i=1 Ci. The BAP is to solve the following specific optimization problem:
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(P1) min 1
2
‖x − y‖22 s.t. x ∈⋂mi=1 Ci.

As pointed out in [7], the iterative projection algorithms for the BAP, such as the algo-
rithms of Dykstra and others, are more complicated than algorithms for the CFP because
they must have, in their iterative steps, some built-in "memory" mechanism to the original
point whose projection is sought after. However, at least for the linear case, we show below
that the iterative scheme (2.1) for the CFP can be applied to the BAP with y as the starting
point of the procedure.

Let ω > 0 be the weight parameter. Then the simultaneous HLWB for the BAP is as
follows (see, e.g., [2, 7, 12])

x k+1 = ρk y + (1−ρk)

m∑

i=1

ωi PCi
(x k). (3.1)

Obviously, this iteration is easily executed. In [7], Censor carried out several experi-
ments based on several algorithms for the BAP, including the sequential and simultaneous
HLWB, without theoretical analysis. From Censor’s experiments we see that the simulta-
neous HLWB has much slow convergence rate compared with the sequential HLWB. It is
quite strange, since the simultaneous algorithm seems a good way to speed up the conver-
gence of the sequential algorithm. There are two possible factors responsible for the slow
convergence: one is the slow rate of ρk approaching to 0, and another one is the constant
weight parameter. Probably using the dynamic strategies of updating ω, such as that in
[27] or that mentioned in the previous section for the CFP, is preferred. Of course, this may
lead to difficulty in analyzing the convergence of the algorithm. Below, we will establish
the convergence of the iteration (3.1) in the linear case with less requirements.

In [2, 7], {ρk} is required to satisfy following conditions:

(C1) ρk→ 0 as k→ +∞;

(C2)
∑∞

k=0ρk = +∞;

(C3) For any given positive integer m,
∑∞

k=0 |ρk −ρk+m| < +∞.
In order to speed up the convergence rate of the algorithm, it will be significant to re-

move the conditions (C2) and (C3). For the convenience of the analysis, first we transform
the BAP into a simpler equivalent form.

Denote z = x − y. Then (P1) is equivalent to finding the projection of the origin onto
⋂m

i=1 Ĉi, where Ĉi = Ci − {y} for i = 1, · · · , m, i.e.,

(P2) min ‖z‖22 s.t. z ∈⋂mi=1 Ĉi.

Theorem 3.1. Let Ĉi = {z ∈ Rn : aT
i

z = bi}, where ai is a family of standardly orthogonal

vectors, i.e., ‖ai‖2 = 1, i = 1, · · · , m and aT
i

a j = 0, i 6= j. If {ρk} satisfy (C1), then the

sequence generated by (3.1) converges to the solution of the BAP.

Proof. Obviously the assumption implies that m ≤ n, because for each iterate point zk,

PĈi
(zk) = zk − (aT

i zk − bi)ai.
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Then at this time the simultaneous HLWB for solving (P2) can be written as follows:

zk+1 = (1−ρk)

m∑

i=1

ωi

�

zk − (aT
i zk − bi)ai

�

.

Denote A= (a1, · · · , am)
T , b = (b1, · · · , bm)

T , A(ω) = (
p
ω1a1, · · · ,pωmam)

T and b(ω) =

(
p
ω1 b1, · · · ,pωm bm)

T . Hence the above iteration scheme can be written as

zk+1 = (1−ρk)
�

zk − AT (ω)A(ω)zk + AT (ω)b(ω)
�

with the initial point z0 = 0. Because

A(ω)AT (ω) = diag(ω1, · · · ,ωm),

we know that from matrix theory that there exists an orthogonal matrix G such that

GT AT (ω)A(ω)G = (A(ω)G)T (A(ω)G) = diag(ω1, · · · ,ωm,
︷ ︸︸ ︷

0, · · · , 0).
It directly follows that eT

j (A(ω)G) = 0 for j = m+ 1, · · · , n. Therefore we obtain that

GT zk+1 = (1−ρk)
�

(I − GT AT (ω)A(ω)G)(GT zk) + GT AT (ω)b(ω)
�

.

More precisely,

eT
i GT zk+1 = (1−ρk)

�

(1−ωi)e
T
i (G

T zk) + eT
i (A(ω)G)b(ω)
�

, i = 1, · · · , m

and
eT

j GT zk+1 = (1−ρk)e
T
j (G

T zk), j = m+ 1, · · · , n.

By recursion and taking into account z0 = 0, we have for i = 1, · · · , m,

eT
i GT zk+1 = sk

i eT
i (A(ω)G)

T b(ω)), (3.2)

where

sk
i = (1−ρk) + (1−ωi)(1−ρk)(1−ρk−1)

+ · · ·+ (1−ωi)
k(1−ρk)(1−ρk−1) · · · (1−ρ0). (3.3)

Since ρk → 0+ and 0 < 1−ωi < 1, the infinite series (3.3) is convergent, so is the
sequence {eT

i (G
T zk)} for i = 1, · · · , m.

For j = m+ 1, · · · , n, it is easy to see that eT
j (G

T zk)≡ 0. It can be verified that

sk
i = (1−ρk)(1+ (1−ωi)s

k−1
i
).

Let ŝi be the limit point of {sk
i }. Thus one gets

ŝi = 1+ (1−ωi)ŝi.
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Therefore ŝi = 1/ωi. It immediately follows from (3.2) that

eT
i GT zk+1 = sk

i eT
i (A(ω)G)

T b(ω))→ eT
i (A(ω)G)

T b(ω))/ωi as k→∞.

Denote the accumulation point of zk by z∗. Then we conclude that z∗ = AT b. By the
KKT conditions for the constrained optimization, it is easy to see that z∗ = AT b is the
optimal solution of the BAP

min
1

2
‖z‖22 s.t. aT

i z = bi, i = 1, · · · , m.

This completes the proof of the theorem. �

Corollary 3.1. In the above theorem, if we denote

Ĉi = {z ∈ Rn : aT
i z ≤ bi}, i = 1, · · · , m

and assume that the sequence {zk} never falls into the interior of Ĉi for each i = 1, · · · , m,

then the sequence {zk} converges to the solution of the BAP (P2).

Remark 3.1. In fact, as long as ai(i = 1, · · · , m) are linearly independent, Theorem 3.1 and

its corollary still hold. Therefore we may let ρk ≡ 0 in order to speed up the convergence

of the algorithm in this case. It is expected that Theorem 3.1 holds as long as each Ĉi is a

polyhedron.

In the following, we show that the relaxed combination projection algorithm (2.1) for
solving the CFP can be applied to the BAP under certain conditions. Let us rewrite (2.1) as

Algorithm 3.1. Given a positive sequence {ρk} such that ρk ∈ (0,1) and an arbitrary
initial point x0, for k = 1,2, · · · , calculate

x k+1 = ρk x k + (1−ρk)

m∑

i=1

ωi PCi
(x k).

It has been known that the sequence generated by Algorithm 3.1 converges to a point
in
⋂m

i=1 Ci under certain conditions provided
⋂m

i=1 Ci 6= ;, see, e.g., [7]. It is natural to ask
whether or not the limit point of the sequence generated by Algorithm 3.1 is the projection
of the starting point onto the intersection. If it is the case, the rich results for the CFP may
be helpful for the research of the BAP. In fact we have the following

Theorem 3.2. Assume Ĉi = {z ∈ Rn : aT
i z = bi}, ai, i = 1, · · · , m, is linearly independent

vectors. If {ρk} satisfy condition (C1), then the sequence {x k} generated by Algorithm 3.1
with the origin as the starting point converges to the solution of (P2).

The proof of this theorem is similar to that of Theorem 3.1 and we omit it. Furthermore,
we have the following conjecture.

Conjecture 3.1. Suppose that {ρk} satisfy condition (C1) and
⋂m

i=1 Ci 6= ;. Set y as the

initial point of the scheme, then the sequence produced by Algorithm 3.1 converges to the

projection of y onto
⋂m

i=1 Ci.
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4. Some results when
⋂m

i=1 Ci = ;

Throughout this section we assume
⋂m

i=1 Ci = ;, i.e., the CFP is an inconsistent system.
It is already well-known that when

⋂m

i=1 Ci 6= ;, both the sequential and simultaneous
HLWB are convergent as long as the positive sequence {ρk} satisfies conditions (C1)-(C3)
in Section 3.

However, in practical applications, it is unknown in advance if
⋂m

i=1 Ci is empty. It is
interesting to know the properties of the sequential and simultaneous HLWB or Algorithm
3.1 when
⋂m

i=1 Ci = ;.
In [25], Iusem and De Pierro gave several conditions which ensure that {x : x =
∑m

i=1ωi PCi
(x)} is nonempty.

Theorem 4.1. Assume
⋂m

i=1 Ci = ; and

n

x : x =

m∑

i=1

ωi PCi
(x)
o

6= ;.

If ρk ∈ (0,1) satisfies
∞∑

k=1

(1−ρk
2) = +∞, (4.1)

then the sequence generated by Algorithm 3.1 converges to a fixed point of the operator
∑m

i=1ωi PCi
.

Proof. Let x∗ be a fixed point of
∑m

i=1ωi PCi
, i.e.,

x∗ =
m∑

i=1

ωi PCi
(x∗).

Denote Ni = I − PCi
, i = 1, · · · , m, where I is the identity operator. It is already known that

〈Ni(x)− Ni(y), x − y〉 ≥ ‖Ni(x)− Ni(y)‖22 (4.2)

for any x , y ∈ Rn. Then we have that

‖x k+1− x∗‖22
= ‖(x k− x∗)− (1−ρk)(x

k−
m∑

i=1

ωi PCi
(x k))‖22

= ‖(x k− x∗)− (1−ρk)

m∑

i=1

ωiNi(x
k)‖22

= ‖x k− x∗‖22 − 2(1−ρk)
D

x k− x∗,
m∑

i=1

ωi(Ni(x
k)− Ni(x

∗))
E

+ Sk
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≤ ‖x k − x∗‖22 − 2(1−ρk)

m∑

i=1

ωi‖Ni(x
k)− Ni(x

∗)‖22 + Sk

≤ ‖x k − x∗‖22 − 2(1−ρk)‖
m∑

i=1

ωi(Ni(x
k)− Ni(x

∗))‖22+ Sk

= ‖x k − x∗‖22 − (1−ρk
2)‖

m∑

i=1

ωi(Ni(x
k)− Ni(x

∗))‖22, (4.3)

where

Sk = (1−ρk)
2‖

m∑

i=1

ωi(Ni(x
k)− Ni(x

∗))‖22.

Since ρk ∈ (0,1), it follows that {‖x k−x∗‖22} is monotonically decreasing and therefore
is convergent and bounded. Moreover, it follows from (4.1) that

inf‖
m∑

i=1

ωi(Ni(x
k)− Ni(x

∗))‖22 = inf‖
m∑

i=1

ωiNi(x
k)‖22 = 0. (4.4)

Assume that x̂ is an accumulation point of {x k} such that
∑m

i=1ωiNi( x̂) = 0, i.e., x̂ =
∑m

i=1ωi PCi
( x̂). Thus x̂ is a fixed point of the operator

∑m

i=1ωi PCi
and we put it in place

of x∗ in the previous argument. Since {‖x k − x̂‖22} is convergent and a subsequence of it
converges to zero, we have that the entire sequence converges to x̂ . �

For the sequential HLWB, Bauschke [2] made a conjecture that ‖x k‖2 →∞ as k→∞
when
⋂m

i=1 Ci = ;. The following examples show that this conjecture is only partially true.

Example 4.1. Let C1 = {(x1, x2) : x1 ≥ 1}, and C2 = {(x1, x2) : (x1 + 1)2 + x2
2 ≤ 1}.

Obviously, C1

⋂

C2 = ;. Set the initial point x0 = (1
3
, 1). One easily verifies that the

sequence {x k} generated by the sequential HLWB has two accumulation points x̂1 = (1,0)
and x̂2 = (0,0). More precisely, x2l−1→ x̂1 and x2l → x̂2 as l →∞.

Example 4.2. Let C1 = {(x1, x2) ≥ (0,0) : x1 x2 ≥ 1} and C2 = {(x1, x2) : x2 ≤ 0}. Obvi-
ously C1

⋂

C2 = ;. It can be verified that the sequence {x k} generated by the sequential
HLWB satisfies that ‖x k‖2→∞ as k→∞.

For the simultaneous HLWB, we give the following example.

Example 4.3. As in Example 4.1, we assume that C1 = {(x1, x2) : x1 ≥ 1}, and C2 =

{(x1, x2) : (x1 + 1)2 + x2
2 ≤ 1}. It can be verified that the sequence {x k} generated by

the simultaneous HLWB converges to ω1(1,0) +ω2(0,0) = ω1(1,0), a fixed point of the
operator ω1PC1

+ω2PC2
, where ω1,ω2 > 0 and ω1 +ω2 = 1.

From Example 4.3 and some other examples we have following conjecture.

Conjecture 4.1. Assume that ωi > 0, 1≤ i ≤ m, and
∑m

i=1ωi = 1.
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• If the operator
∑m

i=1ωi PCi
has fixed points, then there exists fixed point x̂ such that

(1) The PCi
(( x̂)), 1≤ i ≤ m, are the all accumulation points of sequence {x k} generated

by the sequential HLWB.

(2) The sequence {x k} produced by the simultaneous HLWB converges to x̂.

• If
∑m

i=1ωi PCi
has no fixed points, then the sequences generated by either the sequen-

tial HLWB or the simultaneous HLWB is unbounded. In this case, Algorithm 3.1 also

generates an unbounded sequence.

5. Conclusions

In this note, based on the reformulations of the CFP and the steepest descent method,
we further discussed several well-known algorithms for the CFP. In the linear case we show
the connection between two projection algorithms for the CFP and the BAP respectively.
It is well-known that the projection-type methods greatly depend on the efficient compu-
tations of the projection. To this end, some surrogate projection methods, in which the
exact projection is replaced by some suitable approximate projections, were proposed to
overcome the drawback of the exact projection methods.

In conclusion, the projection-type algorithms for the CFP or the BAP require less smooth-
ness assumptions, so they are easily executed. The other advanced methods should be
applied when better smoothness conditions of the functions are available.
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