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Abstract. The uniaxial perfectly matched layer (PML) method uses rectangular domain

to define the PML problem and thus provides greater flexibility and efficiency in deal-

ing with problems involving anisotropic scatterers. In this paper an adaptive uniaxial

PML technique for solving the time harmonic Helmholtz scattering problem is devel-

oped. The PML parameters such as the thickness of the layer and the fictitious medium

property are determined through sharp a posteriori error estimates. The adaptive finite

element method based on a posteriori error estimate is proposed to solve the PML equa-

tion which produces automatically a coarse mesh size away from the fixed domain and

thus makes the total computational costs insensitive to the thickness of the PML absorb-

ing layer. Numerical experiments are included to illustrate the competitive behavior of

the proposed adaptive method. In particular, it is demonstrated that the PML layer can

be chosen as close to one wave-length from the scatterer and still yields good accuracy

and efficiency in approximating the far fields.
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1. Introduction

We propose and study a uniaxial perfectly matched layer (PML) technique for solving

Helmholtz-type scattering problems with perfectly conducting boundary:

∆u+ k2u = 0 in R2\D̄, (1.1a)

∂ u

∂ nD

= −g on ΓD, (1.1b)

p
r

�

∂ u

∂ r
− iku

�

→ 0 as r = |x | →∞. (1.1c)
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Here D ⊂ R2 is a bounded domain with Lipschitz boundary ΓD, g ∈ H−1/2(ΓD) is deter-

mined by the incoming wave, and nD is the unit outer normal to ΓD. We assume the wave

number k ∈ R is a constant. We remark that the results in this paper can be extended to the

case when k2(x) is a variable wave number inside some bounded domain, or to solve the

scattering problems with other boundary conditions, such as Dirichlet or the impedance

boundary condition on ΓD.

Since the work of Bérénger [3] which proposed a PML technique for solving the time

dependent Maxwell equations, various constructions of PML absorbing layers have been

proposed and studied in the literature (cf., e.g., Turkel and Yefet [19], Teixeira and Chew

[18] for the reviews). The basic idea of the PML technique is to surround the computa-

tional domain by a layer of finite thickness with specially designed model medium that

would either slow down or attenuate all the waves that propagate from inside the compu-

tational domain.

The convergence of the PML method is studied in Lassas and Somersalo [13], Hohage

et al. [12] for the acoustic scattering problems for circular PML layers and in Lassas and

Somersalo [14] for general smooth convex geometry. It is proved in [12–14] that the

PML solution converges exponentially to the solution of the original scattering problem as

the thickness of the PML layer tends to infinite. We remark that in practical applications

involving PML techniques, one cannot afford to use a very thick PML layer if uniform

meshes are used because it requires excessive grid points and hence more computer time

and more storage. On the other hand, a thin PML layer requires a rapid variation of the

artificial material property which deteriorates the accuracy if too coarse mesh is used in

the PML layer.

The adaptive PML technique was proposed in Chen and Wu [8] for a scattering problem

by periodic structures (the grating problem), in Chen and Liu [6] for the acoustic scattering

problem, and in Chen and Chen [5] for Maxwell scattering problems. The main idea of

the adaptive PML technique is to use the a posteriori error estimate to determine the PML

parameters and to use the adaptive finite element method to solve the PML equations. The

adaptive PML technique provides a complete numerical strategy to solve the scattering

problems in the framework of finite element which produces automatically a coarse mesh

size away from the fixed domain and thus makes the total computational costs insensitive

to the thickness of the PML absorbing layer.

The purpose of this paper is to extend the adaptive PML technique developed for cir-

cular PML layer in [5, 6, 8] to deal with the uniaxial PML methods which are widely used

in the engineering literature. The main advantage of the uniaxial PML method as oppos-

ing to the circular PML method is that it provides greater flexibility and efficiency to solve

problems involving anisotropic scatterers. Our technique to prove the PML convergence

is different from the techniques developed in [5, 6, 8] for circular PML layers. It is based

on the integral representation of the exterior Dirichlet problem for the Helmholtz equation

and the idea of the complex coordinate stretching. To the authors’ best knowledge, this is

the first convergence proof of the uniaxial PML method in the literature. We remark that

the boundary of the uniaxial PML layer is only Lipschitz and so the results in [14] cannot

be applied.
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The layout of the paper is as follows. In Section 2 we recall the uniaxial PML formula-

tion for (1.1a)-(1.1c) by following the method of complex coordinate stretching in Chew

and Weedon [4]. In Section 3 we prove the convergence of the uniaxial PML method.

In Section 4 we introduce the finite element approximation. In Section 5 we derive the

a posteriori error estimate which includes both the PML error and the finite element dis-

cretization error. Finally in Section 6 we describe our adaptive algorithm and present two

examples to show the competitive behavior of the adaptive method.

2. The PML equation

Let D be contained in the interior of the rectangle B1 = {x ∈ R2 : |x1| < L1/2, |x2| <
L2/2}. Let Γ1 = ∂ B1 and n1 the unit outer normal to Γ1. We start by introducing the

Dirichlet-to-Neumann operator T : H1/2(Γ1)→ H−1/2(Γ1). Given f ∈ H1/2(Γ1), we define

T f =
∂ ξ

∂ n1

on Γ1,

where ξ is the solution of the exterior Dirichlet problem of the Helmholtz equation

∆ξ+ k2ξ = 0 in R2\B̄1, (2.1a)

ξ= f on Γ1, (2.1b)

p
r

�

∂ ξ

∂ r
− ikξ

�

→ 0 as r = |x | →∞. (2.1c)

It is well-known that (2.1a)-(2.1c) has a unique solution ξ ∈ H1
l oc
(R2\B̄1) (cf., e.g., Colten-

Kress [11]). Thus T : H1/2(Γ1) → H−1/2(Γ1) is well-defined and is a continuous linear

operator.

Let a : H1(Ω1)×H1(Ω1)→ C, where Ω1 = B1\D̄, be the sesquilinear form

a(ϕ,ψ) =

∫

Ω1

�

∇ϕ · ∇ψ̄− k2ϕψ̄
�

d x − 〈Tϕ,ψ〉Γ1
, (2.2)

where 〈·, ·〉Γ1
stands for the inner product on L2(Γ1) or the duality pairing between H−1/2(Γ1)

and H1/2(Γ1). The scattering problem (1.1a)-(1.1c) is equivalent to the following weak

formulation (cf., e.g., [11]): Given g ∈ H−1/2(ΓD), find u ∈ H1(Ω1) such that

a(u,ψ) = 〈g,ψ〉ΓD
, ∀ψ ∈ H1(Ω1). (2.3)

The existence of a unique solution of the scattering problem (2.3) is known (cf., e.g.,

[11], McLean [15]). Then the general theory in Babuška and Aziz [1, Chap. 5] implies

that there exists a constant µ > 0 such that the following inf-sup condition is satisfied

sup
06=ψ∈H1(Ω1)

|a(ϕ,ψ)|
‖ψ‖H1(Ω1)

≥ µ‖ϕ ‖H1(Ω1)
, ∀ ϕ ∈ H1(Ω1). (2.4)
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Now we turn to the introduction of the absorbing PML layer. Let B2 = {x ∈ R2 :

|x1| < L1/2 + d1, |x2| < L2/2 + d2} be the rectangle which contains B1. Let α1(x1) =

1+ iσ1(x1),α2(x2) = 1+ iσ2(x2) be the model medium property which satisfy

σ j ∈ C(R), σ j ≥ 0, σ j(t) = σ j(−t), and σ j = 0 for |t| ≤ L j/2, j = 1,2.

Denote by x̃ j the complex coordinate defined by

x̃ j =

¨

x j if |x j| < L j/2,
∫ x j

0
α j(t)d t if |x j| ≥ L j/2.

(2.5)

To derive the PML equation, we first notice that by the third Green formula, the solution ξ

of the exterior Dirichlet problem (2.1a)-(2.1c) satisfies

ξ= −Ψk
SL(λ) +Ψ

k
DL( f ) in R2\B̄1, (2.6)

where λ= T f ∈ H−1/2(Γ1) is the Neumann trace of ξ on Γ1, and Ψk
SL,Ψk

DL are respectively

the single and double layer potentials

Ψk
SL(λ)(x) =

∫

Γ1

Gk(x , y)λ(y)ds(y), ∀ λ ∈ H−1/2(Γ1), (2.7)

Ψk
DL( f )(x) =

∫

Γ1

∂ Gk(x , y)

∂ n1(y)
f (y)ds(y), ∀ f ∈ H1/2(Γ1). (2.8)

Here Gk is the fundamental solution of the Helmholtz equation satisfying the Sommerfeld

radiation condition

Gk(x , y) =
i

4
H
(1)
0 (k|x − y|),

where H
(1)
0 (z) is the first Hankel function of order zero.
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We follow the method of complex coordinate stretching [4] to introduce the PML equa-

tion. For any z ∈ C, denote by z1/2 the analytic branch of
p

z such that Im (z1/2) > 0 for

any z ∈ C\[0,+∞). Let ρ( x̃ , y) = [( x̃1 − y1)
2 + ( x̃2 − y2)

2]1/2 be the complex distance

and define

G̃k(x , y) =
i

4
H
(1)
0 (kρ( x̃ , y)).

It is easy to see that G̃k is smooth for x ∈ R2\B̄1 and y ∈ B̄1. Now we can define the

modified single and double layer potentials [14]

Ψ̃k
SL(λ)(x) =

∫

Γ1

G̃k(x , y)λ(y)ds(y), ∀ λ ∈ H−1/2(Γ1), (2.9)

Ψ̃k
DL( f )(x) =

∫

Γ1

∂ G̃k(x , y)

∂ n1(y)
f (y)ds(y), ∀ f ∈ H1/2(Γ1). (2.10)

It is clear that Ψ̃k
SL(λ), Ψ̃

k
DL( f ) are smooth in R2\B̄1, and

γ+DΨ̃
k
SL(λ) = γ

+
DΨ

k
SL(λ), ∀ λ ∈ H−1/2(Γ1),

γ+DΨ̃
k
DL( f ) = γ

+
DΨ

k
DL( f ), ∀ f ∈ H1/2(Γ1),

(2.11)

where γ+D : H1
l oc
(R2\B̄1) → H1/2(Γ1) is the trace operator. For any f ∈ H1/2(Γ1), let

E( f )(x) be the PML extension given by

E( f )(x) = −Ψ̃k
SL(T f ) + Ψ̃k

DL( f ) for x ∈ R2\B̄1. (2.12)

By (2.11) and (2.6) we know that

γ+DE( f ) = −γ+DΨk
SL(T f ) + γ+DΨ

k
DL( f ) = γ

+
Dξ = f on Γ1

for any f ∈ H1/2(Γ1). For the solution u of the scattering problem (2.3), let ũ = E(u|Γ1
)

be the PML extension of u|Γ1
which satisfies γ+D ũ = u|Γ1

on Γ1. Since H
(1)
0 (z) decays expo-

nentially on the upper half complex plane [6], heuristically ũ(x) will decay exponentially

when x is away from Γ1. It is obvious that ũ satisfies

∂ 2ũ

∂ x̃2
1

+
∂ 2ũ

∂ x̃2
2

+ k2ũ= 0 in R2\B̄1,

which yields the desired PML equation by the chain rule

∇ · (A∇ũ) +α1α2k2ũ = 0 in R2\B̄1,

where A= diag(α2(x2)/α1(x1),α1(x1)/α2(x2)) is a diagonal matrix.

The PML solution û in Ω2 = B2\D̄ is defined as the solution of the following system

∇ · (A∇û) +α1α2k2û= 0 in Ω2, (2.13a)

∂ û

∂ nD

= −g on ΓD, û= 0 on Γ2. (2.13b)

The well-posedness of the PML problem (2.13a)-(2.13b) and the convergence of its solu-

tion to the solution of the original scattering problem will be studied in the next section.
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3. Convergence analysis

We start by considering the Dirichlet problem of the PML equation in the layer

∇ · (A∇w)+α1α2k2w = 0 in ΩPML = B2\B̄1, (3.1a)

w = 0 on Γ1, w = q on Γ2, (3.1b)

where q ∈ H1/2(Γ2). Introduce the sesquilinear form c : H1(ΩPML)×H1(ΩPML)→ C as

c(ϕ,ψ) =

∫

ΩPML

(A∇ϕ · ∇ψ̄−α1α2k2ϕψ̄)dx .

Then the weak formulation for (3.1a)-(3.1b) is: Given q ∈ H1/2(Γ2), find w ∈ H1(ΩPML)

such that w = 0 on Γ1, w = q on Γ2, and

c(w,ψ) = 0, ∀ψ ∈ H1
0(Ω

PML). (3.2)

Notice that, for any ϕ ∈ H1(ΩPML),

Re [c(ϕ,ϕ)] =

∫

ΩPML

 

1+σ1σ2

1+σ2
1

�

�

�

�

∂ ϕ

∂ x1

�

�

�

�

2

+
1+σ1σ2

1+σ2
2

�

�

�

�

∂ ϕ

∂ x2

�

�

�

�

2

+ (σ1σ2 − 1)k2|ϕ|2
!

dx .

Since

1+σ1σ2

1+σ2
1

≥ 1

1+σ2
m

,
1+σ1σ2

1+σ2
2

≥ 1

1+σ2
m

,

where σm = maxx∈B̄2
(σ1(x1),σ2(x2)) > 0, we know by using the spectral theory of com-

pact operators that (3.2) has a unique solution for every real k except possibly for a discrete

set of values of k (see Collino and Monk [10, Theorem 2] for a similar discussion on the

PML equation in the polar coordinates). In this paper we will not elaborate on this issue

and simply make the following assumption

(H1) There exists a unique solution to the Dirichlet PML problem (3.2) in the layer.

We remark that for the circular PML method, the unique existence of the PML equation

in the layer can be proved under certain conditions on the PML medium property in [6,13].

The proof of the unique existence of the Dirichlet problem for the uniaxial PML equation

is an interesting open problem.

Throughout the paper we will use the weighted H1-norm

‖ϕ ‖H1(Ω) =
�

‖∇ϕ ‖2
L2(Ω)

+ |Ω|−1‖ϕ ‖2
L2(Ω)

�1/2
,

for any bounded domain Ω ⊂ R2, where |Ω| is the Lebesgue measure of Ω. For any ϕ ∈
H1(ΩPML), we define

‖ϕ ‖∗,ΩPML =





∫

ΩPML

 

1

1+σ2
1

�

�

�

�

∂ ϕ

∂ x1

�

�

�

�

2

+
1

1+σ2
2

�

�

�

�

∂ ϕ

∂ x2

�

�

�

�

2

+ (1+σ1σ2)k
2|ϕ|2

!

dx





1/2

.
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It is easy to see that ‖ · ‖∗,ΩPML is an equivalent norm on H1(ΩPML). Again by using the

general theory in [1, Chap. 5] we know that there exists a constant Ĉ > 0 such that

sup
06=ψ∈H1

0 (Ω
PML)

|c(ϕ,ψ)|
‖ψ‖∗,ΩPML

≥ Ĉ‖ϕ ‖∗,ΩPML . (3.3)

The constant Ĉ depends in general on the domain ΩPML and the wave number k.

Before we state the main result of this section, we make the following assumptions

on the fictitious medium property, which is rather mild in the practical applications of the

uniaxial PML method

(H2)

∫
L1
2
+d1

0

σ1(t)dt =

∫
L2
2
+d2

0

σ2(t)dt = σ, σ > 0 is a constant;

(H3) σ j(t) = σ̃ j

� |t| − L j/2

d j

�m

, m≥ 1 integer, σ̃ j > 0 is a constant, j = 1,2.

The following theorem is the main result of this section.

Theorem 3.1. Let (H1)-(H3) be satisfied. Then for sufficiently large σ > 0, the PML problem

(2.13a)-(2.13b) has a unique solution û ∈ H1(Ω2). Moreover, we have the following error

estimate

‖u− û‖H1(Ω1)
≤ CĈ−1|αm|3(1+ kL)4 e−(γkσ−1)‖ û‖H1/2(Γ1)

, (3.4a)

where

γ=
min(d1, d2)

p

(L1 + d1)
2+ (L2 + d2)

2
, L =max(L1, L2). (3.4b)

The proof of this theorem will be given in Section 3.3 which depends on the exponential

decay estimates of the PML extension in Section 3.1 and the stability estimates of the

Dirichelt problem of the PML equation in the layer in Section 3.2.

3.1. Estimates for the PML extension

We start with the following elementary lemma.

Lemma 3.1. For any z1 = a1 + ib1, z2 = a2 + ib2 with a1, b1, a2, b2 ∈ R such that a1 b1 +

a2 b2 ≥ 0 and a2
1 + a2

2 > 0, we have

Im (z2
1 + z2

2)
1/2 ≥ a1 b1 + a2 b2

p

a2
1 + a2

2

.
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Proof. For any a, b ∈ R we know that

Im (a+ ib)1/2 =

È

−a+
p

a2 + b2

2
.

Here we used the convention that z1/2 is the analytic branch of
p

z such that Im (z1/2)> 0

for any z ∈ C\[0,+∞). It is easy to check that Im (a + ib)1/2 is a decreasing function in

a ∈ R. Let z2
1 + z2

2 = a+ ib. Then

a+ ib =





Æ

a2
1 + a2

2 + i
a1 b1 + a2 b2
p

a2
1 + a2

2





2

− (a2 b1 − a1 b2)
2

a2
1 + a2

2

.

Let a′ = a+ (a2 b1 − a1 b2)
2/(a2

1 + a2
2). Since a1 b1+ a2 b2 ≥ 0, we have

Im (a′+ ib)1/2 =
a1 b1 + a2 b2
p

a2
1 + a2

2

.

On the other hand, since a′ ≥ a, we know that Im (a + ib)1/2 ≥ Im (a′ + ib)1/2. This

completes the proof.

Now let

z j = x̃ j − y j = (x j − y j) + i

∫ x j

0

σ j(t)dt.

For any x ∈ Γ2, y ∈ Ω̄1, it is easy to see that

(x j − y j)

∫ x j

0

σ j(t)dt ≥ 0.

Thus, by Lemma 3.1, ρ( x̃ , y) = (z2
1 + z2

2)
1/2 satisfies

Imρ( x̃ , y) ≥
|x1− y1| |

∫ x1

0
σ1(t)dt|+ |x2− y2| |

∫ x2

0
σ2(t)dt|

|x − y| .

Now by (H2) we have, for any x ∈ Γ2, y ∈ Ω̄1,

Imρ( x̃ , y) ≥ min(d1, d2)
p

(L1+ d1)
2+ (L2 + d2)

2
σ = γσ, (3.5)

where γ is defined in (3.4b).

We need the modified Bessel function Kν(z) of order ν , ν ∈ C, which is the solution of

the differential equation

z2
d2w

dz2
+ z

dw

dz
− (z2 + ν2)w = 0
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satisfying the asymptotic behavior

Kν(z)∼ i(
π

2z
)1/2e−z−π

4
i as |z| →∞.

Kν(z) is connected with H(1)ν (z) through the relation

Kν(z) =
1

2
πie

1
2
νπiH(1)ν (iz).

Thus we know that

G̃k(x , y) =
i

4
H
(1)
0 (kρ( x̃ , y)) =

1

2π
K0(−ikρ( x̃, y)). (3.6)

We refer to the treatise Watson [20] for extensive studies on the special function Kν(z).

Lemma 3.2. For any ν ∈ R, θ2 ≥ θ1 > 0, we have

Kν(θ2)≤ e−(θ2−θ1)Kν(θ1).

Proof. We first recall the Schläfli integral representation formula [20, P. 181], for z ∈ C
such that |arg z | < π/2,

Kν(z) =

∫ ∞

0

e−z cosh t coshν t dt. (3.7)

The lemma is a direct consequence of (3.7).

The following lemma on the estimates of the fundamental solution G̃k of the PML

equation will play an important role in the analysis in this paper.

Lemma 3.3. Let (H1)-(H3) be satisfied. Let γ,σ be so chosen that

γkσ ≥ 1. (3.8)

Then there exists a constant C > 0 depending only on γ but independent of k,σ, L j , d j ,

j = 1,2, such that for any x ∈ Γ2, y ∈ Ω̄1,

(i) |G̃k(x , y)| ≤ C e−(γkσ−1);

(ii)

�

�

�

∂ G̃k

∂ x j

�

�

� ≤ Ck|αm| e−(γkσ−1), j = 1,2;

(iii)

�

�

�

∂ G̃k

∂ y j

�

�

�≤ Ck e−(γkσ−1), j = 1,2;

(iv)

�

�

�

∂ 2G̃k

∂ x i∂ y j

�

�

�≤ Ck2|αm| e−(γkσ−1), i, j = 1,2.

Here αm =max
x∈Γ2

(|α1(x1)|, |α2(x2)|).
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Proof. By the Schläfli integral representation formula (3.7), it is easy to see that

|K0(z)| < K0(Re (z)) for any z ∈ C such that Re (z) > 0. Thus, by (3.6) and Lemma

3.2, if k Imρ( x̃ , y) ≥ 1,

|G̃k| ≤
1

2π
|K0(−ikρ( x̃, y))| ≤ 1

2π
K0(kImρ( x̃ , y))≤ 1

2π
K0(1)e

−(kImρ( x̃ ,y)−1).

This proves (i) by (3.5) and (3.8). To show (ii) we first notice that

∂ G̃k

∂ x j

= − ik

2π
K ′0(−ikρ( x̃ , y))

∂ ρ( x̃ , y)

∂ x j

=
ik

2π
K1(−ikρ( x̃, y))

( x̃ j − y j)α j(x j)

ρ( x̃ , y)
,

where we have used the identity K ′0(z) = −K1(z). Note that when |x − y| ≥ 2σ, we have

|ρ( x̃ , y)| ≥ |Re (z2
1 + z2

2)|1/2 ≥ (|x − y|2 − 2σ2)1/2 ≥ 1p
2
|x − y|,

where z j = ( x̃ j − y j). Thus for any x ∈ Γ2, y ∈ Ω̄1,

| x̃ j − y j |
|ρ( x̃ , y)| ≤

p
2
(|x − y|2 +σ2)1/2

|x − y| ≤ p2

�

1+
σ2

|x − y|2
�1/2

≤
p

10

2
. (3.9)

On the other hand, when |x − y| ≤ 2σ, by (3.5) we know that Imρ( x̃, y) ≥ γσ. Thus

for any x ∈ Γ2, y ∈ Ω̄1,

| x̃ j − y j|
|ρ( x̃, y)| ≤

(|x − y|2 +σ2)1/2

Imρ( x̃ , y)
≤ γ−1

(|x − y|2 +σ2)1/2

σ
≤p5γ−1. (3.10)

This proves (ii) again by using (3.8) and Lemma 3.2. Similarly, we can prove (iii).

To prove (iv) we note that

∂ 2G̃k

∂ x i∂ y j

=
k2

2π
K ′1(−ikρ( x̃, y))

−( x̃ i − yi)( x̃ j − y j)αi(x i)

ρ( x̃, y)2

+
ik

2π
K1(−ikρ( x̃ , y))

−ρ2δi jαi(x i) + ( x̃ i − yi)( x̃ j − y j)αi(x i)

ρ3
.

By using the identity K ′1(z) = −1

2
(K0(z) + K2(z)), we have

|K ′1(−ikρ( x̃, y))| ≤ 1

2
( |K0(−ikρ( x̃, y))|+ |K2(−ikρ( x̃, y))| )

≤ e−(γkσ−1)
1

2
(K0(1) + K2(1)) = e−(γkσ−1)|K ′1(1)|.

Therefore, by using (3.9)-(3.10) we obtain
�

�

�

�

�

∂ 2G̃k

∂ x i∂ y j

�

�

�

�

�

≤ Ck2|αm| e−(γkσ−1)+ Ck|αm|σ−1 e−(γkσ−1)

≤ Ck2|αm| e−(γkσ−1),
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where in the last inequality we have used the assumption (3.8) to conclude that σ−1 ≤ kγ.

This completes the proof.

Now we are in the position to estimate the modified single and double layer potentials

Ψ̃k
SL, Ψ̃k

DL. Throughout the paper we shall use the weighted H1/2(Γ j) norm, j = 1,2,

‖ v ‖H1/2(Γ j)
=

�

|Γ j|−1‖ v ‖2
L2(Γ j)

+ |v|21
2

,Γ j

�1/2

,

where

|v|21
2

,Γ j

=

∫

Γ j

∫

Γ j

|v(x)− v(x ′)|2
|x − x ′|2 ds(x)ds(x ′).

Lemma 3.4. For any f ∈ H1/2(Γ1), let

v(x) = Ψ̃k
DL( f ) =

∫

Γ1

∂ G̃k(x , y)

∂ n1(y)
f (y)ds(y)

be the double layer potential. Then

‖ v ‖H1/2(Γ2)
≤ C |αm|(1+ kL)2 e−(γkσ−1)‖ f ‖H1/2(Γ1)

,

where L =max(L1, L2).

Proof. For any x ∈ Γ2, by Lemma 3.3, we know that

|v(x)| ≤ ‖∂n1(y)
G̃k(x , ·)‖L∞(Γ1)

‖ f ‖L1(Γ1)
≤ Ck e−(γkσ−1)‖ f ‖L1(Γ1)

.

Hence

|Γ2|−1/2‖ v ‖L2(Γ2)
≤ Ck e−(γkσ−1)‖ f ‖L1(Γ1)

.

It is easy to see that, for any x , x ′ ∈ Γ2,

|v(x)− v(x ′)| ≤ C‖∇x v‖L∞(Γ2)
|x − x ′|.

Thus

|v| 1
2

,Γ2
≤ C |Γ2| ‖∇x v‖L∞(Γ2)

≤ C |Γ2| max
x∈Γ2,y∈Γ1

|∇y∇x G̃k(x , y)| ‖ f ‖L1(Γ1)

≤ Ck2|αm| |Γ2| e−(γkσ−1)‖ f ‖L1(Γ1)
.

Since ‖ f ‖L1(Γ1)
≤ C |Γ1| ‖ f ‖H1/2(Γ1)

≤ C L‖ f ‖H1/2(Γ1)
, we conclude that

‖ v ‖H1/2(Γ2)
≤ C |αm|(1+ kL)2 e−(γkσ−1)‖ f ‖H1/2(Γ1)

.

This completes the proof.
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Lemma 3.5. For any λ ∈ H−1/2(Γ1), let

v(x) = Ψ̃k
SL(λ) =

∫

Γ1

G̃k(x , y)λ(y)ds(y)

be the single layer potential. Then

‖ v ‖H1/2(Γ2)
≤ C |αm|(1+ kL)2 e−(γkσ−1)‖λ‖H−1/2(Γ1)

,

where L =max(L1, L2).

Proof. For any x ∈ Γ2, we know that

|v(x)| ≤ C‖λ‖H−1/2(Γ1)
‖ G̃k(x , ·)‖H1/2(Γ1)

≤ C‖λ‖H−1/2(Γ1)
‖ G̃k(x , ·)‖H1(Ω1)

≤ C‖λ‖H−1/2(Γ1)
(‖ G̃k(x , ·)‖L∞(Ω1)

+ |Ω1|1/2‖∇y G̃k(x , ·)‖L∞(Ω1)
)

≤ C‖λ‖H−1/2(Γ1)
(1+ kL) e−(γkσ−1),

where we have used Lemma 3.3. Hence

|Γ2|−1/2‖ v ‖L2(Γ2)
≤ C(1+ kL) e−(γkσ−1)‖λ‖H−1/2(Γ1)

.

On the other hand, similar argument as in Lemma 3.4 yields

|v| 1
2

,Γ2
≤ C |Γ2| ‖∇x v‖L∞(Γ2)

≤ C L‖λ‖H−1/2(Γ1)
max
x∈Γ2

‖∇x G̃k(x , ·)‖H1/2(Γ1)

≤ C L‖λ‖H−1/2(Γ1)
max
x∈Γ2

‖∇x G̃k(x , ·)‖H1(Ω1)

≤ C L‖λ‖H−1/2(Γ1)
max
x∈Γ2

�

‖∇x G̃k(x , ·)‖L∞(Ω1)
+ |Ω1|1/2‖∇y∇x G̃k(x , ·)‖L∞(Ω1)

�

.

Again by using Lemma 3.3 we obtain

|v| 1
2

,Γ2
≤ C |αm|(1+ kL)2 e−(γkσ−1)‖λ‖H−1/2(Γ1)

.

This completes the proof.

The following theorem is the main result of this subsection.

Theorem 3.2. Let (H1)-(H3) and (3.8) be satisfied. For any f ∈ H1/2(Γ1), let E( f ) be the

PML extension defined in (2.12). Then there exists a constant C depending only on γ but

independent of k,σ, L j , d j , j = 1,2, such that

‖E( f )‖H1/2(Γ2)
≤ C |αm|(1+ kL)2 e−(γkσ−1)‖ f ‖H1/2(Γ1)

,

where L =max(L1, L2).

Proof. This theorem is a direct consequence of Lemmas 3.4-3.5 and the continuity of

the Dirichlet-to-Neumann operator T : H1/2(Γ1)→ H−1/2(Γ1).
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3.2. The PML equation in the layer

In this subsection we derive the stability estimates for the Dirichlet problem of the PML

equation in the layer.

Theorem 3.3. Let (H1) be satisfied. For q ∈ H1/2(Γ2), let w be the solution of the PML

equation in the layer (3.1a)-(3.1b). Then there exists a constant C > 0 independent of k,σ

such that

‖∇w ‖L2(ΩPML) ≤ CĈ−1|αm|2(1+ kL)‖q ‖H1/2(Γ2)
,









∂ w

∂ n1









H−1/2(Γ1)

≤ CĈ−1|αm|2(1+ kL)2‖q ‖H1/2(Γ2)
.

Proof. For any ζ ∈ H1(ΩPML) such that ζ = q on Γ2 and ζ = 0 on Γ1. By the inf-sup

condition in (3.3) and using (3.2), we know that

Ĉ‖w − ζ‖∗,ΩPML ≤ sup
06=ψ∈H1

0(Ω
PML)

|c(w − ζ,ψ)|
‖ψ‖∗,ΩPML

= sup
06=ψ∈H1

0 (Ω
PML)

|c(ζ,ψ)|
‖ψ‖∗,ΩPML

.

By Cauchy-Schwarz inequality

|c(ζ,ψ)| ≤ C max
x∈ΩPML

�

|α2|, |α1|, |ΩPML|1/2 k |α1| |α2|
(1+σ1σ2)

1/2

�

‖ζ‖H1(ΩPML)‖ψ‖∗,ΩPML

≤ C(1+ kL)|αm| ‖ζ‖H1(ΩPML)‖ψ‖∗,ΩPML . (3.11)

Notice that

‖ζ‖∗,ΩPML ≤ C |αm|(1+ kL)‖ζ‖H1(ΩPML),

by the triangle inequality and the trace inequality, we conclude that

‖w ‖∗,ΩPML ≤ CĈ−1|αm|(1+ kL)‖q ‖H1/2(Γ2)
. (3.12)

This shows the first estimate in the theorem by using the definition of ‖ · ‖∗,ΩPML .

Next, since A(x) reduces to the identity matrix on Γ1, we know that, for any ψ ∈
H1(ΩPML) such that ψ= 0 on Γ2,

−
∫

Γ1

∂ w

∂ n1

ψ̄=

∫

∂ΩPML

A∇w · n ψ̄ =
∫

ΩPML

(A∇w · ∇ψ̄+∇ · (A∇w))dx

=

∫

ΩPML

(A∇w · ∇ψ̄− k2α1α2wψ̄)dx ,

where we have used (3.1a) and the formula of integration by parts. Again by Cauchy-

Schwarz inequality and the argument in (3.11) we get
�

�

�

�

�

∫

Γ1

∂ w

∂ n1

ψ̄

�

�

�

�

�

≤ C(1+ kL)|αm| ‖w ‖∗,ΩPML‖ψ‖H1(ΩPML).

This completes the proof by using (3.12) and the trace inequality.
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3.3. Convergence of the PML problem

The purpose of this section is to prove Theorem 3.1. We start by introducing the

approximate Dirichlet-to-Neumann operator T̂ : H1/2(Γ1) → H−1/2(Γ1) associated with

the PML problem. Given f ∈ H1/2(Γ1), let T̂ f = ∂ ζ/∂ n1|Γ1
, where ζ ∈ H1(ΩPML) be the

solution of the PML problem in the layer

∇ · (A∇ζ)+α1α2k2ζ = 0 in ΩPML, (3.13a)

ζ = f on Γ1, ζ = 0 on Γ2. (3.13b)

By assumption (H1), T̂ is well-defined.

Lemma 3.6. Let (H1)-(H3) and (3.8) be satisfied. We have, for any f ∈ H1/2(Γ1),

‖T f − T̂ f ‖H−1/2(Γ1)
≤ CĈ−1|αm|3(1+ kL)4 e−(γkσ−1)‖ f ‖H1/2(Γ1)

.

Proof. For any f ∈ H1/2(Γ1), let E( f ) be the PML extension defined in (2.12). Denote

by γ+N v = ∂ v/∂ n1|Γ1
be the Neumann trace on Γ1 for any function v defined on R2\B̄1. It

is easy to see that

γ+N Ψ̃
k
SL(λ) = γ

+
NΨ

k
SL(λ), γ+N Ψ̃

k
DL( f ) = γ

+
NΨ

k
DL( f )

for any λ ∈ H−1/2(Γ1) and f ∈ H1/2(Γ1). Thus, by (2.6),

γ+NE( f ) = −γ+NΨk
SL(T f ) + γ+NΨ

k
DL( f ) = γ

+
Nξ = T f .

By (3.13a)-(3.13b), we know that T f − T̂ f = ∂ w/∂ n1|Γ1
, where w = E( f )−ζ ∈ H1(ΩPML)

satisfies

∇ · (A∇w) +α1α2k2w = 0 in ΩPML,

w = 0 on Γ1, w = E( f ) on Γ2.

By Theorem 3.3 and Theorem 3.2,









∂ w

∂ n1









H−1/2(Γ1)

≤ CĈ−1|αm|2(1+ kL)2‖E( f )‖H1/2(Γ2)

≤ CĈ−1|αm|3(1+ kL)4 e−(γkσ−1)‖ f ‖H1/2(Γ1)
.

This completes the proof.

Proof of Theorem 3.1: We first prove the estimate (3.4a). Let û be the solution of the

PML problem (2.13a)-(2.13b). Simple integration by parts implies that

a(û,ψ) + 〈Tû− T̂ û,ψ〉Γ1
= 〈g,ψ〉ΓD

, ∀ψ ∈ H1(Ω1).

Subtracting with (2.3) we get

a(u− û,ψ) = 〈Tû− T̂ û,ψ〉Γ1
, ∀ψ ∈ H1(Ω1).
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Thus, by the inf-sup condition (2.4) and Lemma 3.6,

‖u− û‖H1(Ω1)
≤ CĈ−1|αm|3(1+ kL)4 e−(γkσ−1)‖ û‖H1/2(Γ1)

. (3.14)

This is the desired estimate (3.4a).

Now we turn to the well-posedness of the PML problem. By the Fredholm alternative

theorem we only need to show the uniqueness of the PML problem (2.13a)-(2.13b). For

that purpose we let g = 0 in (2.13a)-(2.13b). By the uniqueness of the scattering problem

we know that the corresponding scattering solution u = 0 in Ω1. Thus (3.14) implies

‖ û‖H1(Ω1)
≤ CĈ−1|αm|3(1+ kL)4 e−(γkσ−1)‖ û‖H1/2(Γ1)

≤ CĈ−1|αm|3(1+ kL)4 e−(γkσ−1)‖ û‖H1(Ω1)
.

Thus for sufficiently large σ we conclude that û = 0 on Ω1. That û also vanishes in

Ω2 is a direct consequence of the unique continuation theorem (cf., e.g., [16, P. 92]). This

completes the proof of Theorem 3.1.

4. Finite element approximation

In this section we introduce the finite element approximations of the PML problems

(2.13a)-(2.13b). From now on we assume g ∈ L2(ΓD). Let b : H1(Ω2)× H1(Ω2)→ C be

the sesquilinear form given by

b(ϕ,ψ) =

∫

Ω2

�

A∇ϕ · ∇ψ̄−α1α2k2ϕψ̄
�

d x . (4.1)

Denote by H1
(0)
(Ω2) = {v ∈ H1(Ω2) : v = 0 on Γ2}. Then the weak formulation of (2.13a)-

(2.13b) is: Given g ∈ L2(ΓD), find û ∈ H1
(0)
(Ω2) such that

b(û,ψ) =

∫

ΓD

gψ̄ds, ∀ψ ∈ H1
(0)
(Ω2). (4.2)

Let M h be a regular triangulation of the domain Ω2. We assume the elements K ∈ Mh

may have one curved edge align with ΓD so that Ω2 = ∪K∈Mh
K . Let Vh ⊂ H1(Ω2) be the

conforming linear finite element space over Ω2, and

◦
V h = {vh ∈ Vh : vh = 0 on Γ2}.

The finite element approximation to the PML problem (2.13a)-(2.13b) reads as follows:

Find uh ∈
◦
V h such that

b(uh,ψh) =

∫

ΓD

gψ̄h ds, ∀ψh ∈
◦
V h. (4.3)
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Following the general theory in [1, Chap. 5], the existence of unique solution of the dis-

crete problem (4.3) and the finite element convergence analysis depend on the following

discrete inf-sup condition

sup

06=ψh∈
◦
V h

|b(ϕh,ψh)|
‖ψh ‖H1(Ω2)

≥ µ̂ ‖ϕh ‖H1(Ω2)
, ∀ ϕh ∈

◦
V h, (4.4)

where the constant µ̂ > 0 is independent of the finite element mesh size. Since the

continuous problem (4.2) has a unique solution by Theorem 3.1, the sesquilinear form

b : H1
(0)
(Ω2)× H1

(0)
(Ω2)→ C satisfies the continuous inf-sup condition. Then a general ar-

gument of Schatz [17] implies (4.4) is valid for sufficiently small mesh size h< h∗. In this

paper we are interested in a posteriori error estimates and the associated adaptive method.

Thus in the following, we simply assume the discrete problem (4.3) has a unique solution.

For any K ∈Mh, we denote by hK its diameter. Let Bh denote the set of all sides that

do not lie on ΓD and Γ2. For any e ∈ Bh, he stands for its length. For any K ∈ Mh, we

introduce the residual:

Rh :=∇ · (A∇uh|K) +α1α2k2uh|K . (4.5)

For any interior side e ∈ Bh which is the common side of K1 and K2 ∈ Mh, we define the

jump residual across e:

Je := (A∇uh|K1
− A∇uh|K2

) · νe, (4.6)

using the convention that the unit normal vector νe to e points from K2 to K1. If e = ΓD∩∂ K

for some element K ∈Mh, then we define the jump residual

Je := 2(∇uh|K ·nD + g). (4.7)

For any K ∈Mh, we define the local error estimator η
K

as

η
K
=

 

‖hKRh ‖2L2(K)
+

1

2

∑

e⊂∂ K

he‖ Je ‖2L2(e)

!1/2

. (4.8)

The following theorem is the main result of this paper, whose proof will be given in the

next section.

Theorem 4.1. Let (H1)-(H3) and (3.8) be satisfied. Then there exists a constant C > 0

depending only on γ and the minimum angle of the mesh Mh such that the following a

posterior error estimate is valid

‖u− uh ‖H1(Ω1)
≤ CĈ−1|αm|2(1+ kL)





∑

K∈Mh

η2
K





1/2

+CĈ−1|αm|3(1+ kL)4 e−(γkσ−1)‖uh ‖H1/2(Γ1)
.
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5. A posteriori error analysis

For any ϕ ∈ H1(Ω1), let ϕ̃ be its extension in ΩPML such that

∇ · (Ā∇ϕ̃) +α1α2k2ϕ̃ = 0 in ΩPML, (5.1a)

ϕ̃ = ϕ on Γ1, ϕ̃ = 0 on Γ2. (5.1b)

Lemma 5.1. Let (H1) be satisfied. For any ϕ,ψ ∈ H1(ΩPML), we have

〈T̂ϕ,ψ〉Γ1
= 〈T̂ψ̄, ϕ̄〉Γ1

.

Proof. By definition, T̂ϕ = ∂ ξ/∂ n1 on Γ1, where ξ satisfies

∇ · (A∇ξ)+α1α2k2ξ = 0 in ΩPML,

ξ= ϕ on Γ1, ξ= 0 on Γ2.

Similarly, T̂ψ̄ = ∂ ζ/∂ n1 on Γ1, where ζ satisfies the same equation but ζ = ψ̄ on Γ1,

ζ = 0 on Γ2. Integrating by parts we know that

0= −
∫

ΩPML

(A∇ξ · ∇ζ−α1α2k2ξ · ζ)−
∫

Γ1

∂ ξ

∂ n1

· ζ,

0= −
∫

ΩPML

(A∇ζ · ∇ξ−α1α2k2ζ · ξ)−
∫

Γ1

∂ ζ

∂ n1

· ξ.

Since A is a diagonal matrix, the first integrals on the right-hand side of the above two

equations are equal. Thus 〈T̂ϕ, ζ̄〉Γ1
= 〈T̂ψ̄,ξ〉Γ1

. This completes the proof since ξ =

ϕ,ζ = ψ̄ on Γ1.

Lemma 5.2 (Error representation formula). For any ϕ ∈ H1(Ω1), which is extended to be a

function ϕ̃ ∈ H1(Ω2) according to (5.1a)-(5.1b), and ϕh ∈
◦
V h, we have

a(u− uh,ϕ) =

∫

ΓD

g(ϕ−ϕh)− b(uh, ϕ̃− ϕ̃h) + 〈Tuh− T̂uh,ϕ〉Γ1
. (5.2)

Proof. By (2.3) and the definitions (2.2) and (4.1),

a(u− uh,ϕ)

=

∫

ΓD

gϕ̄−
∫

Ω1

(A∇uh · ∇ϕ̄−α1α2k2uhϕ̄) + 〈Tuh,ϕ〉Γ1

=

∫

ΓD

gϕ̄− b(uh, ϕ̃) +

∫

ΩPML

(A∇uh · ∇ ¯̃ϕ−α1α2k2uh
¯̃ϕ) + 〈Tuh,ϕ〉Γ1

. (5.3)
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On the other hand, by multiplying (5.1a) by ūh, integrating by parts, and recalling that n1

is the unit outer normal to Γ1 which points outside Ω1, we deduce that

−
∫

ΩPML

(Ā∇ϕ̃ · ∇ūh−α1α2k2ϕ̃ūh)−
�

∂ ϕ̃

∂ n1

,uh

�

Γ1

= 0,

which is equivalent to

∫

ΩPML

(A∇uh · ∇ ¯̃ϕ−α1α2k2uh
¯̃ϕ) = −

®

∂ ¯̃ϕ

∂ n1

, ūh

¸

Γ1

. (5.4)

Since by the definition of T̂ : H1/2(Γ1)→ H−1/2(Γ1),

∂ ¯̃ϕ

∂ n1

�

�

�

Γ1

= T̂ ϕ̄,

we obtain by substituting (5.4) into (5.3) that

a(u− uh,ϕ) =

∫

ΓD

gϕ̄− b(uh, ϕ̃) + 〈Tuh,ϕ〉 − 〈T̂ ϕ̄, ūh〉.

This completes the proof upon using Lemma 5.1 and (4.3).

Proof of Theorem 4.1: First, we construct a Clément type interpolation operator Πh :

H1
(0)
(Ω2)→

◦
V h, where

H1
(0)
(Ω2) = {v ∈ H1(Ω2) : v = 0 on Γ2}.

Let Nh = {ai}Ni=1 be the set of the nodes ofMh which is interior to Ω2 or on the boundary

ΓD, and {φi}Ni=1 be the corresponding nodal basis of Vh. Define ∆i = suppφi ∩Ω2. Then

the interpolation operator Πh : H1
(0)
(Ω2)→ Vh is defined by

Πhv(x) =

N
∑

i=1

 

1

|∆i|

∫

∆i

v(x)d x

!

φi(x).

Since the nodes on Γ2 are not included in the definition of Πh, we know that Πhv ∈ ◦V h.

Moreover, by slightly modifying the argument in Chen and Nochetto [7, Lemmas 3.1-3.2],

one can show that the operator Πh enjoys the following interpolation estimates, for any

v ∈ H1
(0)
(Ω2),

‖ v −Πhv ‖L2(K) ≤ ChK‖∇v ‖L2(K̃), ‖ v −Πhv ‖L2(e) ≤ Ch1/2
e ‖∇v ‖L2(ẽ), (5.5)

where K̃ and ẽ are the union of all elements in Mh having non-empty intersection with

K ∈Mh and the side e, respectively.
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Now we take ϕh = Πhϕ̃ ∈
◦
V h in the error representation formula (5.2) to get

a(u− uh,ϕ) =

∫

ΓD

g(ϕ−Πhϕ)− b(uh, ϕ̃−Πhϕ̃) + 〈Tuh− T̂uh,ϕ〉Γ1

:= II1+ II2 + II3. (5.6)

We observe that, by integration by parts and using (4.5)-(4.7),

II1 + II2 =
∑

K∈Mh

 
∫

K

Rh(ϕ̃−Πhϕ̃)dx +
∑

e⊂∂ K

1

2

∫

e

Je(ϕ̃−Πhϕ̃)ds

!

.

By using standard argument in the a posteriori error analysis and (5.5) we get

|II1 + II2| ≤ C
∑

K∈Mh

 

‖hKRh ‖2L2(K)
+

1

2

∑

e⊂∂ K

‖h1/2
e Je ‖2L2(e)

!1/2

‖∇ϕ̃ ‖L2(K̃)

≤ C





∑

K∈Mh

η2

K





1/2

‖∇ϕ̃ ‖L2(Ω2)
.

By the argument in Theorem 3.3, we deduce that

‖∇ϕ̃ ‖L2(ΩPML) ≤ CĈ−1|αm|2(1+ kL)‖ϕ ‖H1/2(Γ1)

≤ CĈ−1|αm|2(1+ kL)‖ϕ ‖H1(Ω1)
.

Thus

|II1+ II2| ≤ CĈ−1|αm|2(1+ kL)





∑

K∈Mh

η2

K





1/2

‖ϕ ‖H1(Ω1)
.

By Lemma 3.6, we obtain

|II3| ≤ CĈ−1|αm|3(1+ kL)4 e−(γkσ−1)‖uh ‖H1/2(Γ1)
‖ϕ ‖H1/2(Γ1)

.

Therefore, by the inf-sup condition (2.4), we finally get

‖u− uh ‖H1(Ω1)
≤ C sup

06=ϕ∈H1(Ω1)

|a(u− uh,ϕ)|
‖ϕ ‖H1(Ω1)

≤ CĈ−1|αm|2(1+ kL)





∑

K∈Mh

η2
K





1/2

+CĈ−1|αm|3(1+ kL)4 e−(γkσ−1)‖uh ‖H1/2(Γ1)
.

This completes the proof.
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6. Implementation and numerical examples

In this section, we present several numerical examples to illustrate the performance of

the adaptive uniaxial PML method. The computations are carried out by using the PDE

toolbox of MATLAB. The PML parameters are determined through the a posteriori error

estimate in Theorem 4.1. Note that in Theorem 4.1 that the a posteriori error estimate

consists of two parts: the PML error and the finite element discretization error. First we

choose L1, L2 such that D ⊂ B1 and choose d1, d2 such that

d1

L1

=
d2

L2

= χ, (6.1)

where χ is a constant. Then we choose χ and σ such that the exponentially decaying

factor:

ω = e−(γkσ−1) = e
−
�

χ

χ+1

min(L1,L2)p
L2
1
+L2

2

kσ−1
�

≤ 10−8, (6.2)

which makes the PML error negligible compared with the finite element discretization

errors. By (H3),

σ j(t) = σ̃ j

� |t| − L j/2

d j

�m

, j = 1,2, (6.3)

where σ̃1, σ̃2 are determined from σ as follows

σ̃ j =
(m+ 1)σ

d j

, j = 1,2. (6.4)

Once the PML region and the medium property are fixed, we use the standard finite el-

ement adaptive strategy to modify the mesh according to the a posteriori error estimate.

Now we describe the adaptive uniaxial PML method used in the paper.

Algorithm 6.1. Given tolerance TOL > 0. Let m= 2.

• Choose L1, L2 such that D ⊂ B1;

• Choose χ and σ such that the exponentially decaying factor ω ≤ 10−8;

• Set d1, d2 and σ̃1, σ̃2 according to (6.1),(6.4);

• Set the computational domain Ω2 = B2\D̄ and generate an initial mesh Mh over

Ω2;

•While EF EM =
�

∑

K∈Mh
η2

K

�1/2

> TOL do

- refine the meshMh according to the strategy:

if ηK >
1

2
maxK∈Mh

ηK , refine the element K ∈Mh

- solve the discrete problem (4.3) onMh

- compute error estimators onMh

end while
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Example 6.1 Example 6.2dist χ σ dist χ σ

0.1λ 1.0 9λ 1.0λ 0.5 20λ

1.0λ 1.0 9λ 1.0λ 1.0 14λ

5.0λ 1.0 9λ 1.0λ 2.0 10λ

0.1λ 1.0 19λTable 2: The number of nodes required to ahieve the given relative error of the far �eld for di�erenthoies of dist for Example 6.1. The exat far �eld is 0.22507908-0.22507908i.
Error dist= 0.1λ dist= 1.0λ dist= 5.0λ

10% 295 557 5111

1% 997 5556 16845

0.1% 2989 16006 >114848

Now we report two numerical examples to demonstrate the efficiency of the proposed

algorithm. We scale the error estimator for determining finite element meshes by a default

factor 0.15 as in the PDE toolbox of MATLAB.

Example 6.1. Let D = [−λ/2,λ/2]× [−λ/2,λ/2]. We consider the scattering problem

whose exact solution is known: u = H
(1)
0 (k|x |), where k = 2π/λ and so λ is the wave-

length. Define dist=min{|x − x ′|, x ∈ ΓD, x ′ ∈ Γ1}
as the minimum distance between the scatterer to the inner boundary of the PML layer. We

want to test the influence of the different choices of the size of B1. Fix χ = 1.0 and take

different dist, that is, in the first step we choose different L1 and L2. Table 1 shows the

different choices of the PML parameters dist,χ and σ determined by the relation (6.2).

In the following we simply take λ= 1.0 to fix the exact solution.

Fig. 2 shows the log Nk-log‖u− uk ‖H1(Ω1)
curves, where Nk is the number of nodes of

the meshMk and uk is the finite element solution of (4.3) over the meshMk. It indicates

that for different choices of dist, the meshes and the associated numerical complexity are

quasi-optimal: ‖u− uk ‖H1(Ω1)
≈ CN

−1/2

k
is valid asymptotically.

One of the important quantities in the scattering problems is the far field pattern:

u∞( x̂) =
e

i π
4

p
8πk

∫

∂ D

�

u(y)
∂ e−ik x̂ ·y

∂ ν(y)
− ∂ u(y)

∂ ν(y)
e−ik x̂·y

�

ds(y), x̂ =
x

|x | .

We compute the far field u∞( x̂), x̂ = (cos(θ), sin(θ))T in the observation direction θ =

π/4. Table 2 shows the number of nodes required to achieve the given relative error of

the far field for different choices of PML parameter dist. It demonstrates clearly that for

given relative error, a smaller dist is preferred in terms of number of nodes used. Thus

for the same accuracy of the far fields, we can choose small dist which will largely save

the computational costs.
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Figure 2: The quasi-optimality of the adaptivemesh re�nements of ‖u−uN‖H1(Ω1)
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Figure 3: The geometry of the satterer for Ex-ample 6.2.
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Figure 5: The real part of the far-�eld patterns inthe inident diretion for Example 6.2.
Example 6.2. This example is taken from [10] which concerns the scattering of the plane

wave uI = eikx1 from a perfectly conducting metal. The scatter D is contained in the box

{x ∈ R2 : −2 < x1 < 2.2,−0.7 < x2 < 0.7} as plotted in Fig. 3. We take k = 2π, that

is the wave length λ = 1.0. Let dist = 1.0 and thus the scatterer is contained in the

box B̄1 = [−3.2,3.2] × [−1.7,1.7]. The different choices of PML parameters χ and σ

determined by the relation (6.2) are shown in Table 1.

Fig. 4 shows the log Nk-logEk curves, where Nk is the number of nodes of the meshMk

and the

Ek =
� ∑

K∈Mk

η2
K

�1/2

is the associated a posteriori error estimate. It indicates that the meshes and the associated

numerical complexity are quasi-optimal: Ek ≈ CN
−1/2

k
is valid asymptotically.

Figs. 5 and 6 show the far fields in the incident direction θ = 0 and the reflective
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Figure 6: The real part of the far-�eld patterns in the re�etive diretion for Example 6.2.
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Figure 7: The mesh of 3754 nodes after 16 adaptive iterations when dist = 1.0 and χ = 1.0 for Example6.2.

Figure 8: The real part of the solution of the PML problem for Example 6.2.
direction θ = π. We observe that the far fields are insensitive to the thickness of the PML

layers.

Then we take χ = 1.0 and test the influence of different choices of dist as in Example

6.1. Table 3 shows the number of nodes required to achieve the given relative error of the



136 Z. Chen and X. M. WuTable 3: The number of nodes required to ahieve the given relative error of the far �elds in bothinident and re�etive diretions for di�erent hoies of dist for Example 6.2. The far �elds in the lastadaptive step when dist = 1.0λ and χ = 1.0 are hosen as the exat far �elds.
Error_inc dist= 0.1λ dist= 1.0λ Error_ref dist= 0.1λ dist= 1.0λ

10% 568 1032 10% 549 492

1% 7315 12614 1% 2871 5183

0.1% 29882 62605 0.1% 9812 23156

far fields in both incident and reflective directions for different choices of PML parameterdist. It again shows that for the same accuracy of the far fields, a smaller dist is a better

choice.

In Fig. 7 we show the mesh after 16 adaptive iterations when dist= 1.0 and χ = 1.0.

We observe that the mesh near the boundary Γ2 is rather coarse, because the solution is

rather small there due to the exponential damping of the PML layer. Fig. 8 shows the real

part of the PML solution when dist= 1.0 and χ = 1.0.
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