
INTERNATIONAL JOURNAL OF c© 2012 Institute for Scientific
NUMERICAL ANALYSIS AND MODELING Computing and Information
Volume 9, Number 1, Pages 105–114

APPROXIMATE SIMILARITY SOLUTION TO A NONLINEAR

DIFFUSION EQUATION WITH SPHERICAL SYMMETRY

JEFF MORTENSEN, SAYAKA OLSEN, JEAN-YVES PARLANGE, AND ALEKSEY S.
TELYAKOVSKIY

Abstract. In this article we construct an approximate similarity solution to a

nonlinear diffusion equation in spherical coordinates. In hydrology this equa-

tion is known as the Boussinesq equation when written in planar or cylindrical

coordinates. Recently Li et al. [8] obtained an approximate similarity solu-

tion to the Boussinesq equation in cylindrical coordinates. Here we consider

the same problem in spherical coordinates with the prescribed power law point

source boundary condition. The resulting scaling function has a power law

singularity at the origin versus a logarithmic singularity in the cylindrical case.

Key Words. approximate solutions, similarity solutions, Boussinesq equation,

nonlinear diffusion.

1. Introduction

Nonlinear diffusion equations appear in many branches of natural sciences and
there are multiple methods to solve them, see e.g. [5, 7]. The Boussinesq equation
appearing in hydrology is an example of a diffusion equation with a linear diffusiv-
ity [4]. Some mathematical properties of this equation in planar, cylindrical and
spherical cases are analyzed in [1]. It is shown there that for certain initial and
boundary conditions the problem can be reduced to a boundary value problem for
a nonlinear ordinary differential equation using similarity transformations. Here we
consider the zero initial condition, so as shown in [3] the solutions propagate with
the finite speed. An additional complexity of the problem is due to the existence
of a free boundary that must be found during the solution process. We note that
exact solutions exist only for a very limited number of values of the parameters
describing the behavior at the boundary. As a result numerical or approximate
analytical techniques must be employed to obtain the solution. Often Shampine’s
method [11] is used to solve these problems numerically. There are many approxi-
mate analytical methods of solution. We shall list only some of them. In the planar
case you can construct approximate polynomial solutions that satisfy certain prop-
erties of the true solution of the differential equation [10, 13, 14]. In the cylindrical
case there is a logarithmic singularity at the inlet, so an approximate similarity
solution must include a logarithmic term [8]. In this article we construct an ap-
proximate similarity solution to the Boussinesq equation in spherical coordinates.
For a comprehensive review of the literature on approximate analytical solutions
for hydrologic applications see [12].

Our main goal is to expand the results of [8] from the cylindrical case to the
spherical case. While [8] deals with the construction of approximate similarity
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solution to the Boussinesq equation, here we use results of [1] to construct an
approximate similarity solution when the Boussinesq equation is considered in the
spherical setting and the flow is emanating from a point source. As emphasized in
[1] only flux boundary conditions make physical sense.

The paper is structured as follows: In Section 2 we provide the mathematical
formulation of the problem and obtain an approximate solution; In Section 3 we
compare our approximate solution against the numerical solution; We summarize
the findings in Section 4.

2. Theory

We consider the Boussinesq equation in the case of spherical symmetry

(1) θs
∂h

∂t
−

Ks

r2
∂

∂r

(

r2h
∂h

∂r

)

= 0,

where t is time and r is the distance from the point source. In hydrologic appli-
cations h is the pressure head, θs is the porosity and Ks is the conductivity. This
equation also appears in nonlinear heat conduction (e.g. [15]) with the dependent
variable being temperature.

A physically meaningful solution to this equation with specified flux at the origin
is discussed in [1]. The case of a power-law flux (α in equations (2) and (3) below
is a parameter related to the power) at the origin is special since it allows the
reduction of (1) to a nonlinear ordinary differential equation. Using dimensional
analysis analogous to Barenblatt’s [1] and Li et al.’s [8] the following two groups of
dimensionless variables can be formed

(2) h = Mt
2α−3

5 f(η)

and

(3) r = ηNt
α+1

5 ,

where f is a scaling function and η is a similarity variable. As in the cylindrical
case [8], without loss of generality we can relate constants M and N by

(4) MKs = N2θs

and we can define N in terms of the position of the front r0 where h = 0

(5) r0 = Nt
α+1

5

which implies

(6) f(1) = 0.

Substituting (2) and (3) into (1) we obtain an ordinary differential equation

(7)
α+ 1

5
η
df

dη
−

2α− 3

5
f +

1

η2
d

dη

(

η2f
df

dη

)

= 0.

The exact solution exists only for α = 0. The solution propagates with finite speed
as we can see from (5). This result was first obtained in [1] and later a more rigorous
proof was provided in [3]. So far we have not imposed any conditions on α.

At the origin the boundary condition for the flux q is specified as

(8) q = −Ks4πr
2h

∂h

∂r
at r = 0.

Using (2) and (3) the above can be rewritten as

(9) q = −Ks4πNM2tα−1

[

η2f
df

dη

]

η=0

.
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Since the integral
∫ t

0
qdt̄ represents the total amount of substance injected into the

system over time, it must be finite. In view of this and (9) we see that α > 0.
Integration of equation (1) in space implies that

(10) q = 4πθs

∫ r0

0

r2
∂h

∂t
dr.

Direct integration of equation (7) over η between zero and one results in

(11)

[

η2f
df

dη

]

η=0

= −α

∫ 1

0

fη2dη.

We notice here the key difference in the change of variables (2,3) from the approach
of Barenblatt [1, 2]. In Barenblatt’s approach the position of the front η0 is not
known, while both quantities appearing in (11) are known. Here we fix the position
of the front η0 = 1, but as a result the second moment of f is no longer known.
This is an inherent feature of a free boundary problem and this boundary must be
found during the solution process.

Integrating (7) between η and 1 we obtain

(12)
df

dη
+

α+ 1

5
η = −

α

fη2

∫ 1

η

f η̄2dη̄.

From the above we have

(13)
df

dη
= −

1 + α

5
at η = 1.

Equation (7) with boundary conditions (6) and (13) at η = 1 represents a Cauchy
problem that can be solved numerically. For example, a standard Runge-Kutta
solver can be used to calculate the value of f(η) for 0 < η ≤ 1. The Taylor series
of f centered at η = 1 can be used to start the numerical calculation

(14) f ∼
α+ 1

5
(1− η) +

3α− 2

20
(1 − η)2 +

(α+ 2)α

α+ 1

5

72
(1− η)3 + · · ·

2.1. Estimate of the front position. In order to construct the approximate

solution we need to know the second moment of f , i.e.,
∫ 1

0
fη2dη. In this section

we obtain some approximate expressions for this moment. From equations (9) and
(11) we have the cumulative flux

(15)

∫ t

0

qdt̄ = Ctα,

where

(16) C = Ks4πNM2

∫ 1

0

fη2dη

and for the front position r0, we have from Eqs. (4), (5) and (16)

(17) r50 =
Kst

α+1C

4πθ2s
∫ 1

0
fη2dη

,

so we need the second moment of f in order to find r0.
From equation (12) we obtain the following asymptotic behavior as η → 0

(18) f2 ∼
2α

η

∫ 1

0

fη2dη.
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We can expand f in powers of α assuming that α is small

(19) f ∼
1

10
(1− η2) +

2

15

(

1

η
− 1 + ln

2

η + 1

)

α+ f2(η)
α2

2
+ . . .

The constant term in (19), viewed as a function of α, is the same as the constant
term in (14). The expression for f2(η) is provided in Appendix A and contains
a dilogarithmic function (e.g. [9]). Using the first two terms of equation (19) we
obtain

(20)

∫ 1

0

fη2dη ∼
1

75
+

8− 6 ln 2

135
α.

A similar result (
∫ 1

0
fη2dη ∼ 1

75
+ 13

600
α) can be obtained from the first two terms

of equation (14).
The first three terms in equation (19) result in

(21)

∫ 1

0

fη2 dη ∼
1

75
+

8− 6 ln 2

135
α+

1

135

(

476

9
−

10

3
π2 + 20 ln2 2−

152

3
ln 2

)

α2

2
.

Considering the limit of equation (7) as α → ∞ it is possible to show that f is

proportional to α. Hence,
∫ 1

0
fη2dη is proportional to α also. So following [8] we

express
∫ 1

0
fη2dη as a continued-fraction approximation

(22)

∫ 1

0

fη2dη ∼
1

75
+

8− 6 ln 2

135
α

(

1 +Aα

1 +Bα

)

.

Next we obtain a relationship between A and B. Since for α near zero

(1 +Aα)
1

1 +Bα
= (1 +Aα)[1 −Bα+B2α2 −B3α3 + · · · ]

= 1 + (A−B)α− [AB −B2]α2 + · · · ]

= 1 + (A−B)α+O(α2)

the right side of (22) can be rewritten
∫ 1

0

fη2 dη ≈
1

75
+

8− 6 ln 2

135
α[1 + (A−B)α +O(α2)].

Comparing coefficients of α2 between this last equation and equation (21) yields,

8− 6 ln 2

135
(A −B) =

1

2
·

1

135

(

476

9
−

10

3
π2 + 20 ln2 2−

152

3
ln 2

)

.

Thus the relationship between A and B is

(23) A−B =
1

2
·

1

8− 6 ln 2

(

476

9
−

10

3
π2 + 20 ln2 2−

152

3
ln 2

)

≈ −0.7185656.

We need an additional equation to find the values of A and B. Multiplying (12)
by fη2dη2 and integrating over η from zero to one, we obtain the following results
for all the terms in (12):

Term 1 on the left-hand side of (12)
∫ 1

0

fη2
df

dη
dη2 =

∫ 1

0

η3
df2

dη2
dη2 = η3f2|10 −

∫ 1

0

f2dη3 = −

∫ 1

0

f2dη3.

Term 2 on the left-hand side of (12)
∫ 1

0

α+ 1

5
ηfη2dη2 =

α+ 1

5

∫ 1

0

fη3dη2.
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The term on the right-hand side of (12)

−α

∫ 1

0

∫ 1

η

f(η̄)η̄2dη̄dη2 = −
α

2

∫ 1

0

∫ 1

η2

f(η̄)η̄dη̄2dη2

= −
α

2

∫ 1

0

f(η̄)η̄

[

∫ η̄2

0

dη2

]

dη̄2 = −
α

2

∫ 1

0

fη3dη2.

Combining the above equations results in

(24)

∫ 1

0

fdη3 =
15

7α+ 2

∫ 1

0

f2dη3 +

∫ 1

0

(1− η2)fdη3.

Substituting the first two terms for f from (19) into the right-hand side of the
above equation (24) we arrive at

(25)
∫ 1

0
fη2 dη ∼

1

75
+

8− 6 ln 2

135
α
1 +Aα

1 +Bα

where A = 1
2
3047−900 ln2 2−60 ln 2

600−450 ln 2
and B = 7

2
.

The estimate given by (25) is too large since f2 behaves as 1/η2 near η = 0, while
from (18) we know that it behaves as 1/η. The only difference in the equation below
from (25) is that when we square the first two terms in (19) which represent f , we
drop the α2 term.

(26)
∫ 1

0
fη2 dη ∼

1

75
+

8− 6 ln 2

135
α
1 +Aα

1 +Bα

where A = 1
2
749−420 ln 2
200−150 ln 2

and B = 7
2
. This expression underestimates the second

moment because the coefficient of 1/η term as η → 0 is 2α
75

while we know from
(18) that it should be larger. Equation (23) confirms that the estimate of equation
(26) is too low while that of equation (25) is too high. B − A in (26) is too large
while it is too low in (25). So we take the geometric average of the A terms in (25)
and (26) which should be better

(27)

∫ 1

0

fη2 dη ∼
1

75
+

8− 6 ln 2

135
α
1 +Aα

1 +Bα

where A = 1
2

√

3047−900 ln2 2−60 ln 2
600−450 ln 2

· 749−420 ln 2
200−150 ln 2

and B = 7
2
.

One more analytic expression can be obtained by taking B = 7
2
, while A is

chosen to satisfy (23). This should provide a better fit for small values of α, since
we fit the second moment of f up to the quadratic term in α

(28)

∫ 1

0

fη2 dη ∼
1

75
+

8− 6 ln 2

135
α
1 +Aα

1 +Bα

where B = 7
2
and from (23)

A =
7

2
+

1

2
·

1

8− 6 ln 2

(

476

9
−

10

3
π2 + 20 ln2 2−

152

3
ln 2

)

.

We can obtain one more set of values for A and B by equating the right hand
side expression in (22) when α → ∞ with the numerically calculated value of the
integral (see Table 1). So we need to solve

lim
α→∞

[

3 ·
8− 6 ln 2

135
·

α

α+ 1
·
1 +Aα

1 +Bα

]

= 3 ·
8− 6 ln 2

135
·
A

B
= 0.0739.
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To be consistent with the earlier obtained expressions we take B = 7/2 and obtain
A ≈ 3.03. We need to note that unlike the previous approximations for the second
moment of f , this last one is semi-analytical in that we need to calculate the integral
numerically for the limit α → ∞. After that has been done, the integral for any
other values of α is obtained from the right hand side of (22).

2.2. Improved approximations for f . In this section we obtain a new approx-
imation for f(η). Using this new approximation and Eqs. (2), (3), (17), we can
obtain the value of h and the position of the front r0. The exact solution for f
when α = 0 contains 1− η2, so we construct approximate solution for f in powers
of (1− η2). It will be shown below that the new approximation replicates the exact
solution for α = 0. In light of equation (18) we operate with f2 not f . Here we
have an expansion of f2 in powers (1− η2).

(29) f2 =

(

α+ 1

10

)2

(1−η2)2+
α(α + 1)

80
(1−η2)3+

α(137α+ 112)

11520
(1−η2)4+ · · ·

The above expansion holds for values of η close to 1, while near 0 we have a
singularity described by (18). Similar to the cylindrical case treated in [8], for
α = 0 equation (29) reduces to the exact solution f = (1 − η2)/10 as does (14).
Our goal is to obtain a uniform approximation for all values of η. We rewrite (29)
as

(30) f2
1 =

p
∑

n=1

Zn(1− η2)n+1.

If p = 3, then

(31) Z1 =

(

α+ 1

10

)2

; Z2 =
α(α + 1)

80
and Z3 =

α(137α+ 112)

11520
.

We use a three-term expansion as was done in the cylindrical case [6, 8]. Further
terms in the expansion can be obtained if a higher accuracy is desired.

Combining expressions from (30) and (18) we obtain

(32) f2 ∼ f2
1 + 2α

[

1

η
−

m+1
∑

n=0

Cn(1− η2)n

]

∫ 1

0

fη2dη,

where

C0 = 1, C1 =
1

2
, C2 =

3

8
, C3 =

5

16
, C4 =

35

128
, · · ·

and
∑m+1

n=0 Cn(1 − η2)n represents the expansion of 1/η near η2 = 1. The above
approximation behaves like equation (18) near η2 = 0 for any m. Thus we can hope
that this approximation produces sufficiently accurate results for all η. In the next
section we compare (32) against the numerical solution.

3. Results

The approximate solution of equation (7) which we obtain through equation (32)
depends on the second moment of f . So for comparison purposes we will tabulate
several different approaches to calculation of this second moment and afterwards
discuss the accuracy of the approximate solution that is obtained from equation
(32) using one of these second moments of f .

Table 1 shows
∫

f dη3/(α+1). The integral has been divided by α+1 to obtain
a finite limit as α → ∞. In passing, we note that when α → ∞ the power law
flux at the origin reduces to an exponential flux: see Appendix B. The table has
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Table 1. Calculated values of
∫
f dη3

α+1
using different methods

α = 0.5 α = 1 α = 1.5 α = 2 α = 5 α → ∞
Eq. (27) 0.0539 0.0604 0.0643 0.0669 0.0732 0.0796
Eq. (28) 0.0514 0.0559 0.0584 0.0600 0.0640 0.0678
A = 3.03 0.0527 0.0582 0.0614 0.0636 0.0688 0.0739
Numerical 0.0527 0.0583 0.0616 0.0637 0.0689 0.0739

analytical estimates for this normalized integral from equations (27) and (28) for
values of α = 1/2, 1, 1.5, 2, 5, α→ ∞. A highly accurate numerical calculation of the
integral is included for comparison purposes. There is also a semi-analytical entry
labeled A = 3.03 which depends upon numerical estimates of the limiting value of
the integral as α → ∞. However, once this limiting value has been computed this
semi-analytical method provides a formula for other choices of α.

We now turn our attention to calculation of the scaling function f . For compar-
ison purposes we obtain a numerical solution of equation (7) to validate our new
approximate solutions attained from (32). To achieve this, we rewrite equation (7)
as a system of first order ordinary differential equations and use Eqs. (6) and (13)
as the initial conditions at η = 1. To deal with the singularity in the equations
at η = 1 we use (14) to obtain the starting values of f and f ′ for the numerical
calculation. A highly accurate Runge-Kutta-based procedure is then used to obtain
numerical values of the scaling function f .

The graphs in Figures 1, 2 and 3 are obtained by using the semi-analytical result
for the second moment of f in conjunction with equation (32). Henceforth, we
will call this the semi-analytical method. Figure 1 shows the graphs of f/(α + 1)
obtained using the semi-analytical method for m = 1, 2 and 3, as well as f/(α +
1) obtained numerically, and finally f/(α + 1) obtained using equation (14) with
three terms: in each case α = 1. Figure 2 shows the differences of the numerical
calculation of f/(α+1) with the semi-analytical method for α = 1 and m = 1, 2, 3.
In contrast to the graphs in Figure 1, the graphs of f/(α + 1) in Figure 3 are
obtained by varying α and holding m fixed. As the graphs reveal, the quality of
these approximate solutions is very good. Finally, we note that upon taking α = 0
equation (32) replicates the exact solution.

4. Conclusions

In this article we constructed an approximate similarity solution to a nonlinear
diffusion equation with spherical symmetry and a zero initial condition with a flux
point source boundary condition. As a result solutions propagate with finite speed
and there is a power law singularity at the origin. The resulting approximate scaling
function has the same singularity as the true scaling function at the source. While
near the front it resembles the Taylor series expansion of the true solution. The
combination of these features assures that we have uniform approximation for all
values of the similarity variable. Comparison of the approximate solution with a
highly accurate numerical solution is favorable. Moreover the approximate solution
replicates the known exact solution for one value of the exponent α describing the
behavior at the origin.
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Figure 1. Normalized scaling function f/(α+1) versus similarity
variable η. Graphs obtained numerically and analytically when
A = 3.03 (m = 1, 2 and 3) and Eq. (14) with three terms. All
graphs are for α = 1.
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Figure 2. Difference between the analytical solutions for different
m and the numerical solution. Solid line for m = 3, dashed-dotted
line for m = 2 and dashed line for m = 1.
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6. Appendix A. Expression for f2(η)

Here we provide the expression for f2(η). To find the terms in the expansion of f
in powers of α we use the differential equation (7) and collect terms with the same
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α)

Figure 3. Graphs of f/(1+α) versus η obtained numerically and
analytically with equation (32) (m = 3) for α = 1/2, 1, 2, 5. The
lowest curve corresponds to α = 1/2, next to α = 1, etc. Dots
represent the numerical solution.

powers of α.
(A.1)

f2(x) =
8

15

(

1

1 + x
−

1

2

)

−
512

135

(

(

−2 +
2

1 + x

)−1

+ 1

)

+
112

45

1

1 + x
ln

(

2

1 + x

)(

−2 +
2

1 + x

)−1

−
32

45

(

(

−2 +
2

1 + x

)−2

− 1

)

−
8

45

1

1 + x
ln

(

2

1 + x

)

−
8

135
ln

(

2

1 + x

)

+
8

9
dilog

(

2

1 + x

)

+
8

45
ln2

(

2

1 + x

)

+
16

45
ln

(

2−
2

1 + x

)

,

where the dilogarithmic function stands for the integral of a special form (e.g. [9]).

7. Appendix B. Limit of large α

Here we illustrate that the limit of the solution as α → ∞ corresponds to an
exponential flux at the origin—similar to a result in [2]. We employ the transfor-
mation g = (1 + α)f and z = (1 + α)η to modify equation (7):

(B.1)
z

5

dg

dz
−

2α− 3

5(α+ 1)
g +

1

z2
d

dz

(

z2g
dg

dz

)

= 0.

Now we consider the solution to equation (1) under the transformations

(B.2) h = A exp

(

2kt

5

)

g(z)

and

(B.3) r = zN exp

(

kt

5

)

,
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where

(B.4) A =
N2kθs
Ks

.

As a result equation (1) becomes

(B.5)
1

5
η
dg

dη
−

2

5
g +

1

η2
d

dη

(

η2g
dg

dη

)

= 0.

Thus as in the case of cylindrical symmetry [8], the above equation implies that in
the limit the power-law flux reduces to an exponential flux at the origin.
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