Some Invariant Solutions of Two-Dimensional Elastodynamics in Linear Homogeneous Isotropic Materials

Houguo Li and Kefu Huang*
Department of Mechanics and Aerospace Engineering, College of Engineering, Peking University, Beijing 100871, China

Received 20 April 2012; Accepted (in revised version) 10 October 2012
Available online 22 February 2013

Abstract

Invariant solutions of two-dimensional elastodynamics in linear homogeneous isotropic materials are considered via the group theoretical method. The second order partial differential equations of elastodynamics are reduced to ordinary differential equations under the infinitesimal operators. Three invariant solutions are constructed. Their graphical figures are presented and physical meanings are elucidated in some cases.

AMS subject classifications: 74B05, 35Q74, 22E70
Key words: Elastodynamics, group theoretical method, invariant solution.

1 Introduction

Elastodynamics is one of the oldest topics in the theory of elasticity. It began almost 200 years ago when Navier announced the general equations of equilibrium and motion of an isotropic elastic body in 1821. However, till today, known exact solutions of elastodynamics are still very limited. In [1,2], Kausel and Kachanov collected some exact solutions for classical and canonical problems in elastodynamics. The group theoretical method is a very powerful and versatile tool to find invariant solutions of differential equations, especially partial differential equations. It provides two basic ways: group transformation of known solutions and construction of invariant solutions. Chand [3] studied invariant solutions of one-dimensional wave propagation in dissipative materials. For a one-dimensional system of wave propagation equations in linear, viscoelastic and viscoplastic material, Ames and Suliciu constructed its invariant solutions in [4] and

[^0]Ames obtained its group properties and conservation laws in [5]. Bokhari [6] studied the invariant solutions of a nonlinear wave equation. It is clear that the group theoretical method is also very effective in solid mechanics. The above authors studied ($1+1$)dimensional problems in the space $R^{1+1}(x, t)$ by the group theoretical method. In this paper, we consider invariant solutions of $(2+1)$-dimensional elastodynamics in linear homogeneous isotropic materials in the space $R^{2+1}(x, y, t)$.

2 The governing equations for two-dimensional elastodynamics

Two-dimensional elastic body occupies the domain as a plane Ω. Displacement boundary is denoted by $\partial_{u} \Omega$. ρ is the mass density of the elastic body. λ, μ are Lame's coefficients. In the Cartesian coordinate system (x_{1}, x_{2}), displacement vector is $\mathbf{u}=\left(u_{1}, u_{2}\right)$. The theory of elastodynamics specializes in the case when all fields are time-dependent, t is time variable. In homogeneous isotropic media, the linear theory of two-dimensional elastodynamics without body force is the following equations in term of displacement $\mathbf{u}=\mathbf{u}\left(x_{1}, x_{2}, t\right)$

$$
\left\{\begin{array}{l}
(\lambda+\mu) \frac{\partial}{\partial x_{1}}\left(\frac{\partial u_{1}}{\partial x_{1}}+\frac{\partial u_{2}}{\partial x_{2}}\right)+\mu\left(\frac{\partial^{2}}{\partial x_{1}^{2}}+\frac{\partial^{2}}{\partial x_{2}^{2}}\right) u_{1}=\rho \frac{\partial^{2} u_{1}}{\partial t^{2}} \tag{2.1}\\
(\lambda+\mu) \frac{\partial}{\partial x_{2}}\left(\frac{\partial u_{1}}{\partial x_{1}}+\frac{\partial u_{2}}{\partial x_{2}}\right)+\mu\left(\frac{\partial^{2}}{\partial x_{1}^{2}}+\frac{\partial^{2}}{\partial x_{2}^{2}}\right) u_{2}=\rho \frac{\partial^{2} u_{2}}{\partial t^{2}}
\end{array}\right.
$$

In order to facilitate the research invariant solutions of Eq. (2.1), we now nondimensionalize Eq. (2.1) with the characteristic length l,

$$
\begin{equation*}
x_{i}^{*}=\frac{x_{i}}{l}, \tag{2.2}
\end{equation*}
$$

where $i, j=1,2$. Substituting the dimensionless quantities into Eq. (2.1) and removing the coordinate's asterisks *, Eq. (2.1) are transformed to

$$
\left\{\begin{array}{c}
\frac{\partial}{\partial x_{1}}\left(\frac{\partial u_{1}}{\partial x_{1}}+\frac{\partial u_{2}}{\partial x_{2}}\right)+\beta\left(\frac{\partial^{2}}{\partial x_{1}^{2}}+\frac{\partial^{2}}{\partial x_{2}^{2}}\right) u_{1}=\frac{\partial^{2} u_{1}}{\partial \tau^{2}} \tag{2.3}\\
\frac{\partial}{\partial x_{2}}\left(\frac{\partial u_{1}}{\partial x_{1}}+\frac{\partial u_{2}}{\partial x_{2}}\right)+\beta\left(\frac{\partial^{2}}{\partial x_{1}^{2}}+\frac{\partial^{2}}{\partial x_{2}^{2}}\right) u_{2}=\frac{\partial^{2} u_{2}}{\partial \tau^{2}}
\end{array}\right.
$$

where

$$
\left\{\begin{array}{l}
\tau=t(\lambda+\mu)^{\frac{1}{2}} \rho^{-\frac{1}{2}} / l, \tag{2.4}\\
\beta=\mu /(\lambda+\mu)=1-2 \nu .
\end{array}\right.
$$

In accordance with the strain energy is positive definite, we deduce the Poisson's ratio v in the range from -1 to $1 / 2$. Thus the range of β is $(0,3)$. Generally v should be
positive, because longitudinal stretching often follows transverse shrinkage. Materials with a negative Poisson's ratio are rare. Therefore, we generally take $\beta=1 / 2$ in the applications.

3 Construction of invariant solutions

The group theoretical method can be used to find all symmetries of differential equations. First, it requires to solve the local Lie group of transformation admitted by the differential equations. The differential equations keep invariant under the Lie group of transformation. Specific description about the group theoretical method can be found in [7]. Infinitesimal operator admitted by Eq. (2.3) in space $R^{5}\left(x_{i}, u_{j}, \tau\right)$ will take the form

$$
\begin{equation*}
X=\xi_{i} \frac{\partial}{\partial x_{i}}+\eta_{j} \frac{\partial}{\partial u_{j}}+\omega \frac{\partial}{\partial \tau^{\prime}} \tag{3.1}
\end{equation*}
$$

where $\xi_{i}, \eta_{j}, \omega$ are unknown functions of x_{i}, u_{j}, τ. Repeated indices mean summation over the indices.

Partial derivatives of function displacements u_{j} with respect to x_{i}, τ in Eq. (2.3) have only second order

$$
\begin{equation*}
\frac{\partial^{2} u_{1}}{\partial x_{1}^{2}}, \frac{\partial^{2} u_{1}}{\partial x_{2}^{2}}, \frac{\partial^{2} u_{2}}{\partial x_{1}^{2}}, \frac{\partial^{2} u_{2}}{\partial x_{2}^{2}}, \frac{\partial^{2} u_{1}}{\partial x_{2} \partial x_{1}}, \frac{\partial^{2} u_{2}}{\partial x_{1} \partial x_{2}}, \frac{\partial^{2} u_{1}}{\partial \tau^{2}}, \frac{\partial^{2} u_{2}}{\partial \tau^{2}} . \tag{3.2}
\end{equation*}
$$

We need to extend the space $R^{5}\left(x_{i}, u_{j}, \tau\right)$ twice. The first extended space will be $R^{11}\left(x_{i}, u_{j}, \tau, u_{j, i}, u_{j, \tau}\right)$. The second extended space will be $R^{21}\left(x_{i}, u_{j}, \tau, u_{j, i}, u_{j, k i}, u_{j, \tau}, u_{j, \tau \tau}\right), i$, $j, k=1,2$. Let us denote

$$
\left\{\begin{array}{l}
x_{3}=\tau, \tag{3.3}\\
p_{i}^{j}=u_{j, i}=\frac{\partial u_{j}}{\partial x_{i}}, \\
r_{k i}^{j}=u_{j, k i}=\frac{\partial^{2} u_{j}}{\partial x_{k} \partial x_{i}} .
\end{array}\right.
$$

The first extended infinitesimal operator of the operator (3.1) is

$$
\left\{\begin{array}{l}
p r^{(1)} X=X+\zeta_{n}^{j} \frac{\partial}{\partial p_{n}^{j}} \tag{3.4}\\
\zeta_{n}^{j}=D_{n}\left(\eta_{j}\right)-p_{m}^{j} D_{n}\left(\xi_{m}\right), \\
D_{n}=\frac{\partial}{\partial x_{n}}+p_{n}^{i} \frac{\partial}{\partial u_{i}}
\end{array}\right.
$$

The second extended infinitesimal operator of the operator (3.1) is

$$
\left\{\begin{array}{l}
p r^{(2)} X=p r^{(1)} X+\sigma_{m n}^{j} \frac{\partial}{\partial r_{m n}^{j}} \tag{3.5}\\
\sigma_{m n}^{j}=\tilde{D}_{n}\left(\zeta_{m}^{j}\right)-r_{m \phi}^{j} \tilde{D}_{n}\left(\xi_{\phi}\right), \\
\tilde{D}_{n}=\frac{\partial}{\partial x_{n}}+p_{n}^{i} \frac{\partial}{\partial u_{i}}+r_{m n}^{i} \frac{\partial}{\partial p_{m}^{i},}
\end{array}\right.
$$

where $i, j, k=1,2 ; m, n, \phi=1,2,3$. Eqs. (3.4) and (3.5) exclude mixed partial derivatives of displacements u_{j} with respect to coordinates x_{i} and time τ.

According to the invariability condition of the group theoretical method, we obtain

$$
\left\{\begin{array}{l}
p r^{(2)}\left[\frac{\partial}{\partial x_{1}}\left(\frac{\partial u_{1}}{\partial x_{1}}+\frac{\partial u_{2}}{\partial x_{2}}\right)+\beta\left(\frac{\partial^{2}}{\partial x_{1}^{2}}+\frac{\partial^{2}}{\partial x_{2}^{2}}\right) u_{1}-\frac{\partial^{2} u_{1}}{\partial \tau^{2}}\right]=0, \tag{3.6}\\
p r^{(2)}\left[\frac{\partial}{\partial x_{2}}\left(\frac{\partial u_{1}}{\partial x_{1}}+\frac{\partial u_{2}}{\partial x_{2}}\right)+\beta\left(\frac{\partial^{2}}{\partial x_{1}^{2}}+\frac{\partial^{2}}{\partial x_{2}^{2}}\right) u_{2}-\frac{\partial^{2} u_{2}}{\partial \tau^{2}}\right]=0,
\end{array}\right.
$$

viz.,

$$
\left\{\begin{array}{l}
(1+\beta) \sigma_{11}^{1}+\sigma_{12}^{2}+\beta \sigma_{22}^{1}-\sigma_{33}^{1}=0, \tag{3.7}\\
(1+\beta) \sigma_{22}^{2}+\sigma_{21}^{1}+\beta \sigma_{11}^{2}-\sigma_{33}^{2}=0
\end{array}\right.
$$

where

$$
\begin{align*}
\sigma_{m n}^{\alpha}=\left(\frac{\partial}{\partial x_{n}}\right. & \left.+p_{n}^{k} \frac{\partial}{\partial u_{k}}+r_{q n}^{k} \frac{\partial}{\partial p_{q}^{k}}\right)\left[\left(\frac{\partial}{\partial x_{m}}+p_{m}^{\varphi} \frac{\partial}{\partial u_{\varphi}}\right) \eta_{\alpha}-p_{d}^{\alpha}\left(\frac{\partial}{\partial x_{m}}+p_{m}^{\varphi} \frac{\partial}{\partial u_{\varphi}}\right) \xi_{d}\right] \\
& -r_{m \beta}^{\alpha}\left(\frac{\partial}{\partial x_{n}}+p_{n}^{k} \frac{\partial}{\partial u_{k}}+r_{q n}^{k} \frac{\partial}{\partial p_{q}^{k}}\right) \xi_{\beta} . \tag{3.8}
\end{align*}
$$

Solving Eq. (3.9), we can get the following infinitesimal operator admitted by Eq. (2.3)

$$
\begin{align*}
X= & \xi_{i} \frac{\partial}{\partial x_{i}}+\eta_{j} \frac{\partial}{\partial u_{j}}+\omega \frac{\partial}{\partial \tau} \\
= & \left(c_{1}+c_{4} x_{1}-c_{5} x_{2}\right) \frac{\partial}{\partial x_{1}}+\left(c_{2}+c_{4} x_{2}+c_{5} x_{1}\right) \frac{\partial}{\partial x_{2}} \\
& +\left(-c_{5} u_{2}+c_{6} u_{1}+c_{7} s_{1}\right) \frac{\partial}{\partial u_{1}}+\left(c_{5} u_{1}+c_{6} u_{2}+c_{7} s_{2}\right) \frac{\partial}{\partial u_{2}}+\left(c_{3}+c_{4} t\right) \frac{\partial}{\partial \tau} . \tag{3.9}
\end{align*}
$$

Where $c_{i}(i=1, \cdots, 7)$ are some integral constants.
The base of the Lie algebra L corresponding to the Lie group G admitted by Eq. (2.3)
is

$$
\left\{\begin{array}{l}
X_{1}=\frac{\partial}{\partial x_{1}}, \quad X_{2}=\frac{\partial}{\partial x_{2}}, \quad X_{3}=\frac{\partial}{\partial \tau^{\prime}} \tag{3.10}\\
X_{4}=x_{1} \frac{\partial}{\partial x_{1}}+x_{2} \frac{\partial}{\partial x_{2}}+\tau \frac{\partial}{\partial \tau^{\prime}} \\
X_{5}=x_{1} \frac{\partial}{\partial x_{2}}-x_{2} \frac{\partial}{\partial x_{1}}+u_{1} \frac{\partial}{\partial u_{2}}-u_{2} \frac{\partial}{\partial u_{1}}
\end{array}\right.
$$

and

$$
\left\{\begin{array}{l}
Y_{1}=u_{1} \frac{\partial}{\partial u_{1}}+u_{2} \frac{\partial}{\partial u_{2}}, \tag{3.11}\\
Y_{\infty}=s_{1} \frac{\partial}{\partial u_{1}}+s_{2} \frac{\partial}{\partial u_{2}},
\end{array}\right.
$$

where $\mathbf{s}=\left(s_{1}, s_{2}\right)$ is an arbitrary solution of Eq. (2.3).
The infinitesimal operators in (3.10) determine a five dimensional Lie algebra L_{5} corresponding to a Lie group G_{5}. The infinitesimal operators in (3.11) determine an infinite Lie algebra L_{∞} corresponding to a normal subgroup N of the Lie group G. Here, we provide types of transformation corresponding base of the Lie algebra L_{5}. The results are shown in Table 1.

Table 1: Types of transformation corresponding base of the Lie algebra L_{5}.

Operators	Types of transformation	Physical explanation
X_{1}, X_{2}, X_{3}	$x_{1}^{*}=x_{1}+a_{1}, x_{2}^{*}=x_{2}+a_{2}, \tau^{*}=\tau+a_{3}$	Translation transformations
X_{4}	$x_{1}^{*}=x_{1} \exp a_{4}, x_{2}^{*}=x_{2} \exp a_{4}, \tau^{*}=\tau \exp a_{4}$	Stretching transformation
X_{5}	$x_{1}^{*}=x_{1} \cos a_{5}+x_{2} \sin a_{5}, x_{2}^{*}=-x_{1} \sin a_{5}+x_{2} \cos a_{5}$ $u_{1}^{*}=u_{1} \cos a_{5}+u_{2} \sin a_{5}, u_{2}^{*}=-u_{1} \sin a_{5}+u_{2} \cos a_{5}$	Rotation
transformation		

We can be taken \mathbf{s} as a general solution in the theory of elastodynamics, e.g., GreenLame solution, Cauchy-Kovalevski-Somigliana solution, Naghdi-Hsu type solution and Boussinesq-Papkovitch-Neuber solution in [8]. Thus, according to the properties of the group theoretical method, general solution also is a kind of invariant solutions under some infinitesimal operators or combined infinitesimal operators.

We shall solve several invariant solutions below with the help of the Lie algebra L_{5} admitted by the differential equations (2.3).
a) The infinitesimal operator

$$
X_{4}=x_{1} \frac{\partial}{\partial x_{1}}+x_{2} \frac{\partial}{\partial x_{2}}+\tau \frac{\partial}{\partial \tau}
$$

gives invariant

$$
J=\frac{x_{1}}{\tau} .
$$

Figure 1: The solution surface of u_{1} for $\beta=1 / 2$.

Figure 2: The solution surface of u_{2} for $\beta=1 / 2$.

Under this infinitesimal operator, invariant solution will take the form

$$
\left\{\begin{array}{l}
u_{1}=f(J), \tag{3.12}\\
u_{2}=g(J) .
\end{array}\right.
$$

Substituting the invariant solution into Eqs. (2.3), we arrive at the following equations

$$
\left\{\begin{array}{l}
\left(J^{2}-\beta-1\right) \frac{d^{2} f}{d J^{2}}+2 J \frac{d f}{d J}=0, \tag{3.13}\\
\left(J^{2}-\beta\right) \frac{d^{2} g}{d J^{2}}+2 J \frac{d g}{d J}=0
\end{array}\right.
$$

These (3.13) are second order ordinary differential equations. Let us integrate the above equation and obtain

$$
\left\{\begin{array}{l}
u_{1}=f\left(x_{1}, \tau\right)=\frac{c_{1}}{2 \sqrt{\beta+1}} \ln \frac{\left(\sqrt{\beta+1}-x_{1} / \tau\right)}{\left(\sqrt{\beta+1}+x_{1} / \tau\right)}+c_{2} \tag{3.14}\\
u_{2}=g\left(x_{1}, \tau\right)=\frac{c_{3}}{2 \sqrt{\beta}} \ln \frac{\left(\sqrt{\beta}-x_{1} / \tau\right)}{\left(\sqrt{\beta}+x_{1} / \tau\right)}+c_{4}
\end{array}\right.
$$

where $c_{1}, c_{2}, c_{3}, c_{4}$ are integral constants.
The graphical figures of displacements f, g corresponding to $c_{i}=1 ; \beta=1 / 2$ are shown in Figs. 1 and 2.
b) Let us denote κ is an arbitrary constant. The combined infinitesimal operator $\kappa X_{3}+$ X_{1} and infinitesimal operator X_{2} give invariant $J=\tau-\kappa x_{1}$. Under these infinitesimal operators, invariant solution will take the form

$$
\left\{\begin{array}{l}
u_{1}=f(J) \tag{3.15}\\
u_{2}=g(J)
\end{array}\right.
$$

Figure 3: The solution surface of u_{1} for $\kappa=2$.
Substituting the invariant solution into Eq. (2.3), we arrive at the following equations

$$
\left\{\begin{array}{l}
{\left[(1+\beta) \kappa^{2}-1\right] \frac{d^{2} f}{d]^{2}}=0} \tag{3.16}\\
\left(\beta \kappa^{2}-1\right) \frac{d^{2} g}{d]^{2}}=0
\end{array}\right.
$$

When $\kappa^{2} \neq 1 /(1+\beta)$ and $\kappa^{2} \neq 1 / \beta$, we integrate Eq. (3.16) and obtain

$$
\left\{\begin{array}{l}
u_{1}=f=c_{1}\left(\tau-\kappa x_{1}\right)+c_{2}, \tag{3.17}\\
u_{2}=g=c_{1}\left(\tau-\kappa x_{1}\right)+c_{2},
\end{array}\right.
$$

where $c_{1}, c_{2}, c_{3}, c_{4}$ are integral constants. This invariant solution is the solution of onedimensional wave propagation equations, namely traveling wave solution. According to the solution (3.17), wave displacement field has nothing to do with the media. The graphical figure of displacement u_{1} correspond to $c_{i}=1 ; \kappa=2$ is shown in Fig. 3. The graphical figure of displacement u_{2} is similar in form to displacement u_{1}.
c) The combined infinitesimal operator $\kappa X_{3}+X_{1}$ and infinitesimal operator X_{4} give invariant $J=\left(\tau-\kappa x_{1}\right) / x_{2}$. Under these infinitesimal operators, invariant solution will take the form

$$
\left\{\begin{array}{l}
u_{1}=a_{1} F(J)+a_{2} G(J), \tag{3.18}\\
u_{2}=a_{2} F(J)+a_{1} G(J),
\end{array}\right.
$$

where a_{1}, a_{2} are arbitrary constants.

The invariant solution are substituted into Eq. (2.3), thus

$$
\begin{align*}
& G(\chi)=-\frac{\kappa}{2} \ln \frac{\beta\left[\left(\tau-\kappa x_{1}\right)^{2} / x_{2}^{2}+\kappa^{2}\right]-1}{(1+\beta)\left[\left(\tau-\kappa x_{1}\right)^{2} / x_{2}^{2}+\kappa^{2}\right]-1}, \tag{3.19a}\\
& F(\chi)= \begin{cases}x_{2} /\left(\tau-\kappa x_{1}\right), & \beta \kappa^{2}=1 \\
\arctan \sqrt{\beta}\left(\tau-\kappa x_{1}\right) /\left(x_{2} \sqrt{\beta \kappa^{2}-1}\right), & \beta \kappa^{2}>1 \\
\frac{1}{2} \ln \frac{\left(\tau-\kappa x_{1}\right) / x_{2}-\sqrt{\beta} / \sqrt{1-\beta k^{2}}}{\left(\tau-\kappa x_{1}\right) / x_{2}+\sqrt{\beta} / \sqrt{1-\beta k^{2}}}, & \beta \kappa^{2}<1\end{cases} \tag{3.19b}
\end{align*}
$$

Here, we show that invariant solution $\mathbf{u}\left(x_{1}, x_{2}, \tau\right)$ is a stationary self-similar solution when $\tau=0$. The graphical figures of displacements u_{1} correspond to $a_{1}=a_{2}=1 ; \tau=1$; $\beta=1 / 2 ; \kappa=\sqrt{2}, 2,0.5$ are shown in Figs. 4, 5 and 6.

Figure 4: The solution surface of u_{1} for $\beta \kappa^{2}=1$.

Figure 5: The solution surface of u_{1} for $\beta \kappa^{2}>1$.

Figure 6: The solution surface of u_{1} for $\beta \kappa^{2}<1$.
Figs. 4, 5 and 6 showed discontinuities of the invariant solutions. Regarding this, we hereby make the following explanations. In continuum mechanics, the displacement field \mathbf{u} will be a continuous function of the coordinate vector \mathbf{x} at any time and no fragmentation and overlap of media micelle. As we known, sudden jump or discontinuity of some physical variables on both sides of the shock surface in fluid mechanics, there may be one or more discontinuity surfaces in solid mechanics, their physical variables also have some discontinuities on both sides of the discontinuity surface. For example, an impulse load acts on the plate side and it is parallel to middle plane of the plate. In the plate, stress, strain and displacement fields show some discontinuities in wave fronts. The plate is divided into two regions by the shock wave. But stress, strain and displacement fields are continuous in each region. It should be noted, this analogy also has its limits, because a quasilinear PDE governs the system in fluid mechanics, but in the current setting, we considered a fully linear PDE.

4 Concluding remarks

Construction of solutions is effective one of the ways to find invariant solutions of differential equations. In this work, we have shown how to construct invariant solutions of two-dimensional elastodynamics using the group theoretical method. We know that the governing equations for two-dimensional elastodynamics are second order partial differential equations. The symmetries of elastodynamics, via their infinitesimal operators, reduce the governing equations to ordinary differential equations. Difficulty in solving the governing equations is lowered. We construct some invariant solutions of two-dimensional elastodynamics in linear homogeneous isotropic materials, present their graphical figures, and elucidate physical meanings of invariant solutions in some
cases. For example, the invariant solution under operators $\kappa X_{3}+X_{1}$ and X_{2} is a traveling wave solution.

References

[1] E. KAUSEL, Fundamental Solutions in Elastodynamics: A Compendium, Cambridge: Cambridge University Press, 2006.
[2] M. Kachanov, L. Shafiro and I. Tsukrov, Handbook of Elasticity Solutions, Dordrecht/Boston/London: Kluwer Academic Publishers, 2003.
[3] R. Chand, D. T. Davy and W. F. Ames, On the similarity solutions of wave propagation for a general class of non-linear dissipative materials, Int. J. Nonlinear Mech., 11(3) (1976), pp. 191205.
[4] W. F. Ames and I. Suliciu, Some exact solutions for wave propagation in viscoelastic, viscoplastic and electrical transmission lines, Int. J. Nonlinear Mech., 17(4) (1982), pp. 223-230.
[5] K. A. Ames, Group properties of a one-dimensional system of equations for wave propagation in various media, Int. J. Nonlinear Mech., 24(1) (1989), pp. 29-39.
[6] A. H. Bokhari, A. H. Kara and F. D. Zaman, Exact solutions of some general nonlinear wave equations in elasticity, Nonlinear Dyn., 48(1-2) (2007), pp. 49-54.
[7] L. V. Ovsiannikov, Group Analysis of Differential Equations (translated by Y. Chapovsky, Translation edited by William F. Ames), New York: Academic Press, 1980.
[8] D. S. Chandrasekharaiah, Naghdi-Hsu type solution in elastodynamics, Acta Mech., 76(3-4) (1989), pp. 235-241.

[^0]: *Corresponding author.
 Email: aodingfulie@gmail.com (K. Huang)

