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Abstract. Several recently developed AUSM-family numerical flux functions (SLAU,
SLAU2, AUSM+-up2, and AUSMPW+) have been successfully extended to compute
compressible multiphase flows, based on the stratified flow model concept, by fol-
lowing two previous works: one by M.-S. Liou, C.-H. Chang, L. Nguyen, and T.G.
Theofanous [AIAA J. 46:2345-2356, 2008], in which AUSM+-up was used entirely, and
the other by C.-H. Chang, and M.-S. Liou [J. Comput. Phys. 225:840-873, 2007], in
which the exact Riemann solver was combined into AUSM+-up at the phase inter-
face. Through an extensive survey by comparing flux functions, the following are
found: (1) AUSM+-up with dissipation parameters of Kp and Ku equal to 0.5 or greater,
AUSMPW+, SLAU2, AUSM+-up2, and SLAU can be used to solve benchmark prob-
lems, including a shock/water-droplet interaction; (2) SLAU shows oscillatory behav-
iors [though not as catastrophic as those of AUSM+ (a special case of AUSM+-up with
Kp=Ku=0)] due to insufficient dissipation arising from its ideal-gas-based dissipation
term; and (3) when combined with the exact Riemann solver, AUSM+-up (Kp=Ku=1),
SLAU2, and AUSMPW+ are applicable to more challenging problems with high pres-
sure ratios.
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Nomenclature

a = speed of sound [m/s]
α = volume fraction
Cp = specific heat at constant pressure, 1004.5 for air and 4186 for water [J/(kg K)]
C∗

p = interfacial pressure coefficient, 2.0

χ = function in SLAU
E = total energy per unit mass [J/kg]
E,F = inviscid (numerical) flux vectors in x and y directions, respectively
ε = small positive value, such as 10−7

g = gravity constant, 9.8 [m/s2], or function in SLAU
G = cubic function
γ = specific heat ratio, 1.4 for air and 2.8 for water
H = total enthalpy [J/kg]
Kp,Ku = dissipation coefficients in AUSM+-up
M = Mach number
p = pressure [Pa]
PR = pressure ratio, pL/pR

Q = conservative variable vector
ρ = density [kg/m3]
S = area of cell interface [m2]
T = temperature [K]

V = cell volume [m3], or velocity [m/s]
u,v = velocity components in Cartesian coordinates [m/s]
x,y = Cartesian coordinates [m]

Subscripts
L, R = left and right running wave components
g = gas phase
j = (current) cell index
k = k-th phase (k=1, 2 or g,l)
l = liquid phase
n = normal component to cell interface
m = Newton iteration stage
∞ = freestream or reference value
1/2 = cell-interfacial value

Superscripts
int = interfacial value
max, min = maximum and minimum values
+, - = left- and right-side values at cell interface
− = arithmetically averaged value of both sides at cell interface

1 Introduction

Although the present computational fluid dynamics (CFD) technologies for compressible
flows enable us to simulate a wide variety of flow physics, we still have issues in dealing
with high- and low-speed flows:

1) High-speed flows (M > 1.5, super- and hypersonic): Shock anomalies [1–4], diffi-
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(a) (b)

Figure 1: Illustrations of stratified flow model concept (g: gas, l: liquid), (a) Generic; (b) 1D, discretized.

culty in wall-heating prediction [5–8].

2) Low-speed flows (M < 0.1, nearly incompressible): convergence difficulty [9, 10]
and dissipation control [11, 12] (still debated, specifically in unsteady cases [13]).

In addition, these flow regimes sometimes coexist in realistic problems and/or multi-
phase flows — this is why it is desirable to pursue a universally usable method for
high-speed, low-speed, and multiphase flows, and we feel AUSM-family schemes are
promising because they possess the following features:

1) They are robust and accurate for resolving shock waves at high speeds [4, 7, 8].

2) All speed variants (e.g., AUSM+-up, SLAU2) are available that are applicable to low
speeds [11, 12, 14, 15].

3) No differentiation of a flux function or its eigenstructure is required, hence allowing
a straightforward application to complex equation-of-state (EOS) of multiphase flows
[16].

In the past decade, several attempts have been made to extend AUSM-family schemes to
multiphase flow computations with success (e.g., in [16–20]). Among them, the following
two novel approaches should be noted, both falling into two-fluid modeling (also known
as effective-fluid modeling, EFM), based on the stratified flow model concept (Fig. 1)
[17, 21]. It is noted that these two concepts are referred respectively to as Group 1 and
Group 2 frequently throughout the paper.

1) Group 1 — AUSM-family standalone: In [16] AUSM+-up [11] flux function, one
of the AUSM-family schemes [11,12,15,22–24], was successfully extended from the
single-phase version without relying upon an expensive, exact Riemann solver [25].
By allowing difference of volume fractions α at a cell interface, we only need the flux
of the same phase (i.e., gas-gas or liquid-liquid) (Figs. 2a, b).

2) Group 2 — AUSM-family coupling with exact Riemann (Godunov) solver: In [17]
AUSM+-up was used only to account for the subcell interface of same phases, and
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(a) (b) (c) (d)

Figure 2: (a) Cell interface in stratified flow concept, (b) Schematic of a standalone AUSM-family scheme (Group
1, or Group 2 in case of small void fraction jump) [16], (c) Schematic of AUSM-family scheme combined with
Godunov (Group 2 in case of large void fraction jump) [17], (d) Schematic of Group 2.

the Godunov solver was used for the portion of different phases. This approach
utilizes iterations, as is well known, and can accurately predict which of the phases
will penetrate into the other at the next time step (i.e., whether the gas flows into
the liquid region, or the reverse, at the gas-liquid interface) (Figs. 2a-d).

A natural question to ask is how these two solution strategies differ in solution accuracy,
robustness, and so forth. In addition, AUSM-family fluxes, including recently-added SLAU
[12], AUSMPW+ [24], have been extensively studied and are known to give robust and
accurate solutions efficiently in single-phase gas flows from low speed to hypersonic, but
for multiphase flows extensions and comparisons of the AUSM-family schemes have yet to be
conducted.

Let us briefly review some recent representative multiphase-flow computations for a
wide range of applications [26–41], such as for cavitation over underwater airfoils and
propellers, rocket engine turbopumps (aerospace or naval engineering), kidney stone re-
moval by shock (medical), detonation (mechanical), and cooling system in the nuclear
reactor at high pressure (nuclear). Two approaches can be delineated in terms of treating
phase interfaces: first, the interface-sharpening method (level set, front tracking, or vol-
ume of fluid) and second, the interface-capturing methods (one-fluid or two-fluid model-
ing) (see Fig. 3). The former method employs an additional step to recognize the location
of interface and imposes a numerically smoothed representation of jumps across the in-
terface. Thus, it is accurate in dealing with, for instance, a single bubble, but will be
too expensive when applied to multiple bubbles. What is more, it cannot track creation
or collapse of such phase interfaces. The latter method however, captures interface dis-
continuities as part of numerical solution, but the jumps are smeared over a number of
mesh points, largely depending on the numerical flux functions and order of accuracy in
discretization. Because of not using “tracking” devices, the interface-capturing approach
is “the most practical approach” for dealing with complex geometries like turbopumps,
as stated in [42], and also it is able to deal with dynamic creation of cavitation [38]. As
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Interface-Capturing Method:

One-Fluid (Homogeneous Equilibrium) [33-35]

Two-Fluid (Effective Fluid) [16-20, 36-38]

Interface-Sharpening Method:

Level Set [26-28]

Front Tracking [29, 30]

Volume of Fluid [31, 32]

Figure 3: Various methods for multiphase flow computations.

the one-fluid modeling is shown to be inadequate for accurate reproduction of cavitation
dynamics, we chose to use the so-called two-fluid modeling, which allows each fluid to
possess its own physical variables except for pressure, whereas its one-fluid counterpart
deals with averaged (mixture) density and other common variables, causing difficulties
in its own justification under some circumstances [36].

Thus, in pursuit of a better option of numerical methods, we will extend the recently
developed flux functions of AUSM-family [11, 12, 15, 22–24] to solve multiphase flows in both
Groups 1 and 2 via two-fluid modeling. We will compare their performances in various
benchmark tests, and demonstrate how one method is superior to another (including compar-
isons of Group 1 and Group 2). The results and discoveries herein will provide users
with guidelines on choosing methods, and also give algorithm researchers direction and
motivation for further developments of numerical modeling towards more realistic flow
simulations.

2 Numerical methods

2.1 Two-Fluid Modeling (or Effective-Fluid Modeling, EFM)

The 2D compressible Euler equations in two-fluid modeling (or effective-fluid modeling,
EFM) are written as:

∂Qk

∂t
+

∂Ek

∂x
+

∂Fk

∂y
=Pint

k +Sk, k=1, 2, (2.1a)
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k

, (2.1b)

and

αg+αl =1, (2.2)

pg = pl ≡ p, (2.3)

pint
g = pint

l ≡ pint, (2.4)

pint = p−δp∗, (2.5)

where α is the volume fraction of a fluid, ρ the density, u and v are the velocity compo-
nents in Cartesian coordinates, E is the total energy per unit mass [E= e+(p/ρ), e being
the internal energy], p is the pressure, H is the total enthalpy [H=E+(p/ρ)], and gx and
gy are the x- and y-components of the gravity vector (of magnitude 9.8 m/s2). Since we
treat only gas-liquid systems in this study, k=1,2 is interchangeable with k=g,l, where g
represents gas and l represents liquid. As in single-fluid equations, Q is the conservative-
variable vector; E and F are the inviscid flux vectors in the x- and y-directions, respec-
tively, but with α included; pint

k is the so-called interface pressure, and Sk is the source
term containing the gravity force considered in the “Faucet” problem in this study. The
Eq. (2.2) expresses the compatibility relation for volume fractions, Eq. (2.3) and Eq. (2.4)
assume pressure equilibrium, and Eq. (2.5) gives interface pressure, pint, as a departure
from p by δp∗, which will be explained further in Section 2.3. Now we have 14 unknowns
[α,ρ,u,v,e,p,pint ]k closed by 12 equations [Eqs. (2.1)-(2.5)] with two EOSs described later
in Section 2.4.

2.2 Stratified flow model and discretization

Within the framework of a finite-volume, shock-capturing method, we follow the concept
of stratified flow model, which was proposed first by Stewart and Wendroff [21] (Fig. 1a)
and later refined by Chang and Liou [17] and Liou et al. [16], for constructing a discrete
model consistent with the continuous equations, Eq. (2.1). Hence, it is clear to interpret
that the interfacial pressure pint must work only within each computation cell, and the
volume fractions are assumed to be continuous within the cell but are allowed a jump
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at the cell boundaries (Fig. 1b). The discretized form of Eq. (1), by retaining only the 1D
form for illustration, is expressed as:

Vj

∆t
∆Qj+Ej+1/2Sj+1/2−Ej−1/2Sj−1/2= pint

j




0
αj+1/2,L−αj−1/2,R

Vj

(
αn+1

j −αn
j

)

∆t


+Sj, (2.6)

where the phase-subscript k is omitted, and j is the cell index, Vj is the volume of cell j,
and Sj+1/2 is the area of the interface between cells j and j+1. All cell-interface variables
(such as αj+1/2,L) are calculated by the spatially second-order accurate MUSCL interpo-

lation [43] with Van Albada’s limiter [44] (limiter coefficient is set as 10−20; limiter ef-
fects will be surveyed later in Section 3.1). Note that the present method is valid only
for the second-order or higher accuracy, because the first-order reconstruction yields
αj+1/2,L = αj−1/2,R = αj (i.e., no interface pressure acting within a cell). A three-stage,
third-order total-variation-diminishing (TVD) Runge-Kutta method [45] is used for time
integration, and its details will be explained later in Section 2.6. The numerical code is
extended from a single-fluid version previously used by Kitamura et al. [4].

2.3 Interface pressure

The interface pressure, pint, introduced by Stuhmiller [46], working at a phase interface
within a cell according to Liou et al. (Fig. 1b) [16], is expressed as:

pint= p−δp∗,

and for a gas-liquid system, δp∗ is usually given by

δp∗=δ
αgαlρgρl

αgρl+αlρg

∣∣ul−ug

∣∣2 , (2.7)

or after assuming ρl ≫ρg and (αl, αg) are finite, it is simply

δp∗=C∗
pαlρg

∣∣ul−ug

∣∣2 . (2.8)

The interface pressure coefficient, C∗
p or δ , should be large enough (at least larger

than or equal to unity) to keep the system hyperbolic [16, 39]. We will make use of the
simplified form Eq. (2.8) with C∗

p = 2.0 (a discussion about the effect of this and other
values is given in [16]).

Furthermore, in order to prevent pint from deviating too much from the static pressure
p, a limit should be imposed so that δp∗ does not exceed a fraction of p:

δp∗=min
(
δp∗,εp p

)
, (2.9)

where the value of εp = 0.01 suggested in [17] is also adopted for all the numerical tests
here.
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2.4 Equation of State (EOS)

For closure of the system we adopted the stiffened-gas model proposed by Harlow and
Amsden [47] to represent the EOS:

pk =ρk
γk−1

γk
CpkTk−pk∞, (2.10a)

ek=
Cpk

γk
Tk+

pk∞

ρk
, (2.10b)

ak =

(
γk (pk+pk∞)

ρk

)1/2

, (2.10c)

where ek is the internal energy per unit mass of fluid k and ak is the speed of sound. It is
noted that the standard ideal gas becomes a subset of the stiffened gas, hence it is used
to describe both gas and liquid states only with different parameter values [16]:

γg=1.4, Cpg=1004.5 [J/(kg K)], pg∞ =0 [Pa] for gas, (2.11a)

γl =2.8, Cpl =4186 [J/(kg K)], pl∞ =8.5×108 [Pa] for liquid. (2.11b)

It is reported by Jolgam et al. in [48] that although the stiffened-gas EOS is relatively
simple, it has almost the same accuracy as more sophisticated EOSs (e.g., Tait’s EOS for
water and van der Waals’s EOS for air) in several benchmark tests.

2.5 Numerical fluxes

AUSM-family flux functions of AUSM+-up [11], SLAU [12], SLAU2 [15], AUSM+-up2
[23], or AUSMPW+ [24] are used to calculate inviscid numerical fluxes at cell interfaces
for each phase, denoted as Fk,1/2,L/R, where L and R indicate left and right cells, respec-
tively. The numerical flux (except for AUSMPW+) is commonly expressed as:

Fk,1/2,L/R=
ṁk,1/2+|ṁk,1/2|

2
Ψk,L+

ṁk,1/2−|ṁk,1/2|
2

Ψk,R+αk,1/2,L/R p̃k,1/2N, (2.12a)

Ψk =(α, αu, αv, αH)k
T, N=

(
0, nx, ny, 0

)T
. (2.12b)

It is noted again that different void fractions exist to the left and right of an interface,
and the last term in Eq. (2.12a) will contribute differently; that is, different numerical
fluxes Fk,1/2,L and Fk,1/2,R, to the left and right cells, respectively. In the case of single-
phase flux, it becomes common to both sides and is a special case of the above formula,
because void fraction is constant.

As stated in Introduction, only AUSM-family fluxes are used in its entirety in Group
1 [16], whereas the exact Riemann (Godunov) solver is also combined in Group 2 [17].
In Group 2, the Godunov solver is used only when the difference of volume fraction at a
cell interface (or “effective length,” ∆e f f = |αg,1/2,L−αg,1/2,R|) is above a threshold, say, ε:
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- if ∆e f f = |αg,1/2,L−αg,1/2,R|< ε: an AUSM-family flux is used everywhere;

- otherwise: AUSM-family is used for gas-gas and liquid-liquid interfaces, and Go-
dunov is used elsewhere.

One slight difference of the present Group 2 from [17] is that the former uses AUSM-
family fluxes even at a small jump of the volume fraction, whereas the latter used a simple
upwind scheme when 0< |αg,1/2,L−αg,1/2,R|< ε.

These two Groups are illustrated in Fig. 2: In either case, at least one AUSM-family
flux is used. These schemes [12–15, 23, 24] have showed satisfactory performance in
single-phase gas flows from low speed to hypersonic but have not been fully surveyed
in multiphase flows yet. Thus, we include in the following the multiphase-flow versions
of those fluxes.

2.5.1 AUSM+-up

First, AUSM+-up by Liou [11] for multiphase flows [16] is briefly reviewed as follows.
The mass flux is given by

(ṁk,1/2)AUSM+−up=Mk,1/2a1/2

{
ρk,L if Mk,1/2>0,
ρk,R otherwise,

(2.13a)

Mk,1/2= M+
(4)k(Mk,L)

∣∣∣
β=1/8

+M−
(4)k(Mk,R)

∣∣∣
β=1/8

+Mpk, (2.13b)

M±
(4)(M)

∣∣∣
β
=

{
1
2 (M±|M|), if |M|≥1,

± 1
4 (M±1)2±β

(
M2−1

)2
, otherwise,

(2.13c)

Mpk=−Kp

fa
max

(
1−M̄2

k , 0
) pR−pL

ρ̄ka2
1/2

, ρ̄k =
ρk,L+ρk,R

2
, (2.13d)

Mk=
Vk,n

a1/2
=

uknx+vkny

a1/2
, (2.13e)

M̄2
k =

V+2
k,n +V−2

k,n

2a2
1/2

, (2.13f)

where fa = 1 here (hence, no prescribed Mach number is used), and the speed of sound,
a1/2, common to gas and liquid [16], is

a1/2 =
1

2

(
al,1/2+ag,1/2

)
, (2.13g)

ak,1/2= āk =
ak,L+ak,R

2
, (2.13h)

where the arithmetic mean of the left and right states is used for the speed of sound
for each fluid, ak,1/2. We recognize that other forms for providing the interface speed
of sound ak,1/2 (e.g., a geometric mean of left and right states) are possible; the effect
of using different forms of a1/2 is beyond the focus of the present paper and hence not
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discussed here. Nevertheless, we confirmed in this study that the present choice gives
robust performances to all the fluxes used here.

Then, the pressure flux is

( p̃k,1/2)AUSM+−up= P+
(5)k (Mk,L)

∣∣∣
α=3/16

·pL+ P−
(5)k (Mk,R)

∣∣∣
α=3/16

·pR+puk, (2.13i)

P±
(5) (M)

∣∣∣
α
=

{
1
2 (1±sign(M)), if |M|≥1,
1
4(M±1)2(2∓M)±αM

(
M2−1

)2
, otherwise,

(2.13j)

puk =−Ku ·P+
(5)k(Mk,L)

∣∣∣
3/16

·P−
(5)k(Mk,R)

∣∣∣
3/16

·ρ̄k faa1/2

(
Vk,n

−−Vk,n
+
)

, (2.13k)

where a tunable parameter Ku, as well as Kp in Eq. (2.13d), is set as unity in the previous
works [16–18].

As seen above, the differences from the single-phase version in [11] are (1) separate
fluxes but common speed of sound for gas and liquid; (2) scaling function fa is elimi-
nated, and hence no cutoff or freestream Mach number is required, because we are deal-
ing with transient flows only (detailed discussions are found in [13]); and (3) averaged
density, rather than a summation of left and right densities, is used in Eq. (2.13k); thus,
there would be equivalently a factor of 2 difference in Ku (i.e., setting a value of Ku is
equivalent to setting a half of it in [11]). In this work, AUSM+-up with different Kp and
Ku values will be simply denoted as AUSM+-up (Kp,Ku). Note that AUSM+-up (1,1)
is the choice commonly used, and that AUSM+-up (0, 0) corresponds to AUSM+ [22],
the version prior to AUSM+-up, having no low-speed treatment. As already concluded
in [16–18,20], because AUSM+ lacks pressure-velocity coupling, producing oscillations in
pressure and velocity across shock and contact discontinuities, it is not suitable for com-
puting multiphase flows where the density difference is especially large. In this study,
AUSM+-up implies the original meaning [11,17] with nonvanishing values of Kp and Ku

— especially in this study with two sets of values, (Kp,Ku)=(1,1) and (0.5,0.5).

2.5.2 SLAU

SLAU (Simple Low-dissipation AUSM) by Shima and Kitamura [12] is also extended for
the first time here for multiphase flows in the same manner as in AUSM+-up. The mass
flux for each fluid is given as:

(ṁk,1/2)SLAU =
1

2

{
ρk,L

(
Vk,nL+|V̄k,n|+

)
+ρk,R

(
Vk,nR−|V̄k,n|−

)
− χk

a1/2
(pR−pL)

}
, (2.14a)

|V̄k,n|+=(1−gk)|V̄k,n|+gk|Vk,nL|, |V̄k,n|−=(1−gk)|V̄k,n|+gk|Vk,nR|, (2.14b)

|V̄k,n|=
ρk,L |Vk,nL|+ρk,R |Vk,nR|

ρk,L+ρk,R
, (2.14c)

gk =−max[min(Mk,L,0),−1]·min[max(Mk,R,0),1]∈ [0,1], (2.14d)
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χk =
(

1−M̂k

)2
, (2.14e)

M̂k =min


1.0,

1

a1/2

√
u2

k,L+u2
k,R

2


, (2.14f)

Mk =
Vk,n

a1/2
=

uknx+vkny

a1/2
, (2.14g)

where the common speed of sound for gas and liquid a1/2 is given again by Eqs. (2.13g)-
(2.13h), and the pressure flux is

( p̃k,1/2)SLAU =
pL+pR

2
+

P+
(5)k (Mk,L)

∣∣∣
α=0

− P−
(5)k(Mk,R)

∣∣∣
α=0

2
(pL−pR)

+(1−χk)
(

P+
(5)k(Mk,L)

∣∣∣
α=0

+ P−
(5)k(Mk,R)

∣∣∣
α=0

−1
) pL+pR

2
, (2.14h)

where the function P±
(5)
(M) is given by Eq. (2.13j) but with α=0.

The dissipation term (last term) in pressure flux had been originally designed only
for the ideal gas, according to the relation p∝ ρa2. This term was then modified later in
SLAU2 so that real fluids are treated in a unified manner.

2.5.3 SLAU2 and AUSM+-up2

In SLAU2 [15], the dissipation term in the pressure flux of SLAU Eq. (2.14h) is modified
as:

( p̃k,1/2)SLAU =
pL+pR

2
+

P+
(5)k

(Mk,L)
∣∣∣
α=0

− P−
(5)k

(Mk,R)
∣∣∣
α=0

2
(pL−pR)

+

√
u2

k,L+u2
k,R

2

(
P+
(5)k(Mk,L)

∣∣∣
α=0

+ P−
(5)k(Mk,R)

∣∣∣
α=0

−1
)

ρ̄ka1/2 (2.15)

for (1) readily extending to real fluids and (2) γ times dissipation added at subsonic and
more with stronger shocks. If the pressure flux of AUSM+-up in Eqs. (2.13i)-(2.13k) is
replaced with Eq. (2.15), AUSM+-up2 [23] is realized (in this study, Kp =1 is chosen). In
both flux functions, the same common speed of sound Eq. (2.13g) as in AUSM+-up and
SLAU again stays here.

2.5.4 AUSMPW+

Kim et al. [24] proposed AUSMPW+, featuring pressure-based weighting functions with
multidimensional dissipation. Instead of Eq. (2.12a), it is expressed as:

Fk,1/2,L/R= M̄+
k,La1/2Ψk,L+M̄−

k,Ra1/2Ψk,R+αk,1/2,L/R p̃k,1/2N, (2.16a)
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where

for Mk,1/2≥0,

M̄+
k,L =

(
M+

k,L

)
AUSMPW+

+
(

M−
k,R

)
AUSMPW+

·[(1−ω)·(1+ fk,R)− fk,L],

M̄−
k,R =

(
M−

k,R

)
AUSMPW+

·ω ·(1+ fk,R) (2.16b)

and for Mk,1/2<0,

M̄+
k,L =

(
M+

k,L

)
AUSMPW+

·ω ·(1+ fk,L),

M̄−
k,R =

(
M−

k,R

)
AUSMPW+

+
(

M+
k,L

)
AUSMPW+

·[(1−ω)·(1+ fk,L)− fk,R]. (2.16c)

The pressure-based weighting functions are given by:

ω=1−Π3
1/2, Π1/2=min

(
pL

pR
,

pR

pL

)
, (2.16d)

fk,L,R =

{ (
p̄k,L,R

p̄k,s
−1
)
·min

(
1,

min( p̄k,L,1, p̄k,R,1, p̄k,L,2, p̄k,R,2)
min( p̄k,L, p̄k,R)

)2
if ps 6=0,

0 if ps =0,
(2.16e)

p̄k = pk+pk∞, p̄k,s = p̃k,1/2+pk∞, (2.16f)

where pL,1 and pL,2, and pR,1 and pR,2 are pressure at neighboring cells of “L” and “R,”
respectively, in the direction tangent to the cell interface between ”L” and “R” in 2D.
Note that one of the two weight functions, ω, is common to both gas and liquid, while
the other, fk,L,R, is defined differently according to the EOS of each phase, as suggested
very recently by Park and Kim [49]. We point out here that without this modification to
the liquid phase, this flux failed in most of the problems treated in the present paper, as
demonstrated in our earlier work [50].

The mass flux is then written as:

(Mk,1/2)AUSMPW+= M+
(4)k (Mk,L)

∣∣∣
β=0

+M−
(4)k (Mk,R)

∣∣∣
β=0

, (2.16g)

where the function M±
(4)

(M) is given by Eq. (2.13c) with β= 0, and the pressure flux is

given by Eq. (2.13i). The speed of sound for each phase is defined using the cell-interface-
normal component of the total enthalpy for this flux:

(ak,1/2)AUSMPW+=

{
a2

k,s/max(|Vk,nL|,ak,s), if Vk,nL+Vk,nR≥0,

a2
k,s/max(|Vk,nR|,ak,s), if Vk,nL+Vk,nR<0,

(2.16h)

ak,s =
√

2Hk,n (γk−1)/(γk+1), (2.16i)

Hk,n =
1

2

(
Hk,L−

V2
k,tL

2
+Hk,R−

V2
k,tR

2

)
, (2.16j)
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(a) (b)

Figure 4: Illustration of Riemann problem for liquid (l) and gas (g) interface, (a) Liquid flows into gas; (b) Gas
flows into liquid.

where the subscript n denotes the normal component, and t the tangential one. Then, the
gas and liquid speed of sound are averaged arithmetically as the final value:

a1/2=
1

2

(
al,1/2+ag,1/2

)
.

A variation of this flux was published by Ihm and Kim in [35] for one-fluid, two-phase
flow extension with some success. Since their modifications involve many mixture vari-
ables (e.g., mixture density) that are absent in two-fluid modeling, it is not applied in this
study.

2.5.5 G-AUSM+-up, G-SLAU2, and G-AUSMPW+: Combinations with the Exact Rie-

mann (Godunov) Solver

As stated in Introduction, making use of the exact Riemann (Godunov) solver is another
approach (Group 2). In practice, the Godunov solver is used only when the void fraction
jump (or the “effective length”, ∆e f f = |αg,1/2,L−αg,1/2,R|) is larger than the prescribed
threshold, or ε (Fig. 2c); otherwise, only an AUSM-family scheme is used (Group 1,
Fig. 2b). In other words, Group 2 includes Group 1 in cases of small effective length
(Fig. 2d).

The exact Riemann (Godunov) solver [25] for stiffened-gas EOS is written in a very
similar manner as in the ideal gas [17, 51]. For instance, if the liquid phase is at the left
side and the gas is at the right (i.e., αg,1/2,L+ε< αg,1/2,R) as in Fig. 2c, or in Fig. 4 of x-t
diagram (a more common way to illustrate a Riemann problem),

1) First, the middle zone pressure p∗ is estimated, such as p∗=0.5(pl+pg).

2) If p∗> pl , the left-running wave “u−a” is assumed to be a shock wave, and hence,
the velocity jump ∆uL across it is given by

∆uL =(p∗−pl)

[
2

ρl ((γl+1)[p∗+pl∞]+(γl−1)[pl+pl∞])

]1/2

. (2.17a)
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Otherwise, the expansion waves should be there, resulting in the velocity difference
∆uR by the isentropic relation:

∆uL =
2al

γl−1

[
(ξl)

γl−1

2γl −1

]
(2.17b)

with

ξl =
p∗+pl∞

pl+pl∞
. (2.17c)

3) Similarly, if p∗>pR, the right-running wave “u+a” is a shock, and the velocity jump
∆uR is:

∆uR =
(

p∗−pg

)
[

2

ρg

((
γg+1

)
p∗+

(
γg−1

)
pg

)
]1/2

. (2.17d)

Otherwise,

∆uR =
2ag

γg−1

[(
ξg

) γg−1

2γg −1

]
, (2.17e)

where

ξg =
p∗

pg
. (2.17f)

4) Since u∗=ul−∆uL and u∗=ug+∆uR, the following should be satisfied:

f ∗≡ug+∆uR−ul+∆uL =0. (2.17g)

If | f ∗| is above the specified tolerance (10−4, in this study), the middle zone pressure
p∗ is updated as:

(p∗)m+1=(p∗)m− f ∗

∂ f ∗/∂(p∗)m

=(p∗)m− f ∗

∂(∆uR)/∂(p∗)m+∂(∆uL)/∂(p∗)m , (2.17h)

where m is the Newton iteration stage, and the procedure 2) - 4) is repeated until
the tolerance is satisfied.

5) Once the f ∗ is obtained, the other middle zone variables are calculated as:

u∗≡0.5
(
ug+∆uR+ul−∆uL

)
, (2.17i)

ρ∗l =

{
ρl

(
θlξl+1
θl+ξl

)
if p∗> pl ,

ρl(ξl)
1/γl otherwise,

(2.17j)

ρ∗g =

{
ρg

(
θgξg+1

θg+ξg

)
if p∗> pg,

ρg

(
ξg

)1/γg otherwise,
(2.17k)
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with

θk =
γk+1

γk−1
. (2.17l)

6) If u∗
>0, the liquid (left) flows into the gas (right) at the interface (Fig. 4a), and thus,

the liquid flux is given as:

Fl−g,1/2−Godunov=∆e f f ·
[

ρ∗l u∗ ρ∗l u∗2 ρ∗l u∗vl ρ∗l u∗ h∗l
]
, (2.17m)

where

h∗l =
γl

γl−1

p∗+pl∞

ρ∗l
+

1

2

(
u∗2+v2

l

)
(2.17n)

and otherwise, the gas (right) phase comes into the liquid (left) (Fig. 4b) as

Fl−g,1/2−Godunov=∆e f f ·
[

ρ∗gu∗ ρ∗gu∗2 ρ∗gu∗vg ρ∗gu∗ h∗g
]T

, (2.17o)

where

h∗g =
γg

γg−1

p∗

ρ∗g
+

1

2

(
u∗2+v2

g

)
. (2.17p)

7) Furthermore, interface pressure flux is also applied as in Eq. (2.7),

pint = p∗−σ
αint

g αint
l ρgρl

αint
g ρl+αint

l ρg

∣∣ul−ug

∣∣2, (2.17q)

where σ = 2.0, the Eq. (2.9) is again applied to the second term at the right hand
side, and

αint
g =0.5

(
αg,1/2,L+αg,1/2,R

)
; αint

l =1−αint
g . (2.17r)

Again, the Godunov solver is used at gas (left)-liquid (right) or liquid (left)-gas
(right) interfaces only; gas-gas and liquid-liquid interfaces are treated by a selected
AUSM-family scheme. Thus, the flux of the AUSM-family portion is calculated ac-
cording to Eq. (2.12), but with the modification of αk,1/2,L/R to min(αk,1/2,L,αk,1/2,R)
so that the common and minimum void fraction of both sides is used and the room
for Godunov solver ∆e f f = |αg,1/2,L−αg,1/2,R| is left, in contrast to the Group 1.
Therefore, the resulting flux is expressed as summation of gas-gas part (AUSM-
family), liquid-liquid part (AUSM-family), and liquid-gas part (Godunov) (again,
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if αg,1/2,L+ε<αg,1/2,R), as illustrated in Fig. 2c.

Fl,1/2,L =Fl,1/2−AUSM− f amily+Fl−g,1/2−Godunov+∆e f f ·pint

Fg,1/2,L =Fg,1/2−AUSM− f amily

Fl,1/2,R=Fl,1/2−AUSM− f amily+Fl−g,1/2−Godunov

Fg,1/2,R =Fg,1/2−AUSM− f amily+∆e f f ·pint





if u∗
>0,

Fl,1/2,L =Fl,1/2−AUSM− f amily+∆e f f ·pint

Fg,1/2,L =Fg,1/2−AUSM− f amily+Fl−g,1/2−Godunov

Fl,1/2,R=Fl,1/2−AUSM− f amily

Fg,1/2,R =Fg,1/2−AUSM− f amily+Fl−g,1/2−Godunov+∆e f f ·pint





otherwise. (2.17s)

In the case of a gas (left)-liquid (right) interface, L and R are flipped over. In
addition, for the AUSM-family portion in Group 2, Eq. (2.13g) for the gas-liquid-
averaged acoustic speed is not used for AUSM-family schemes because each phase
is computed totally independently. The combination of Godunov and AUSM+-up
(1, 1) [17] is denoted as “G-AUSM+-up (1, 1)” here, for example. Likewise, the
newly-extended “G-SLAU”, “G-SLAU2”, “G-AUSM+-up2”, and “G-AUSMPW+”
are possible. In this work, only G-AUSM+-up (1, 1), G-SLAU2, and G-AUSMPW+
are compared.

2.6 Time integration, decoding, and update of variables

Equation (2.6) is rewritten in the three-stage TVD Runge-Kutta [45] form as:

Q̂
(1)
j = Q̂n

j +
∆t

Vj
Rn

j , (2.18a)

Q̂
(2)
j =

3

4
Q̂n

j +
1

4
Q̂

(1)
j +

1

4

∆t

Vj
R
(1)
j , (2.18b)

Q̂n+1
j =

1

3
Q̂n

j +
2

3
Q̂

(2)
j +

2

3

∆t

Vj
R
(2)
j , (2.18c)

Q̂j ≡Qj+




0
0

pint
j αj


=




Q̂1

Q̂2

Q̂3


, (2.18d)

Rj ≡−
[
Ej+1/2Sj+1/2−Ej−1/2Sj−1/2

]
+




0
pint

j

(
αj+1/2,L−αj−1/2,R

)

0


+Sj, (2.18e)

where k is omitted, and the term (pintα) is included in Q̂ as in Eq. (2.18d) [16, 19], but pint

is frozen at the nth time step value throughout the Runge-Kutta stages [19].
Once Q̂n+1 is obtained, the following decoding process is required to update pn+1 and

αn+1
k by solving pn+1 from

F(p)= p2−Bp−C=0. (2.19)
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Since p is positive, a unique root is determined:

p=
1

2

(
B+

√
B2+4C

)
(2.20a)

and the volume fraction follows:

αk =
Âk

p+ âk
, (2.20b)

where

Âk =(γk−1)

(
Q̂3,k−

Q̂2
2,k

2Q̂1,k

)
, (2.20c)

B=
2

∑
k=1

(
Âk− âk

)
, (2.20d)

C= â1 Â2+ â2 Â1− â1 â2, (2.20e)

âk =γk pk,∞+(γk−1)pint. (2.20f)

Since a huge value of pl∞ is involved in Eqs. (2.18) and (2.20), the resultant numerical
errors can be large. Thus, a Newton iteration method is introduced to improve accuracy
by solving Eq. (2.20b) simultaneously for both the liquid and gas phases [17]:

{
Fg =

(
p+ âg

)
αg− Âg=0,

Fl =(p+ âl)αl− Âl =0.
(2.21)

Usually, a few iterations are enough to drive pressure error below 10−5.
Then, following Paillère et al. [20] and Chang and Liou [17], variables of the “van-

ishing” phase (i.e., εmin ≤ α1 ≤ εmax) are blended with those of the remaining phase (i.e.,
α2≈1) to enhance stability:

(q1)adjust=G(ξ1)q1+(1−G(ξ1))q2, q=u, T, (2.22a)

G(ξ1)=−ξ2
1 (2ξ1−3), (2.22b)

ξ1=
α1−εmin

εmax−εmin
, (2.22c)

where G is a smooth function satisfying G(0)= 0, G(1)= 1, and G′(0)=G′(1)= 0. The
small values of εmin and εmax are chosen as 0.1ε(= 10−8) and 103ε(= 10−4) in this paper,
if not mentioned otherwise. If α1 is below εmin, α1 = εmin is enforced. Here k = 1,2 is
interchangeable with k = g,l and k = l,g both. We must update (u,T), not (u,ρ). If the
density is replaced by that of the other phase, which differs by a factor of O(103), possibly
resulting in a huge error in water temperature, say, O(105) [K] at the standard sea-level
conditions.
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2.7 Boundary conditions

Since a cell-centered, 2D structured grid solver is used here, the following typical bound-
ary conditions using the typical “ghost cell” approach are applied as in [20]:

• Inlet: all the variables are imposed except for pressure, which is extrapolated from
the interior cell.

• Outlet: only pressure is imposed, and all the other variables are extrapolated from
the interior cell.

• Side (for a 1D problem): all the variables are extrapolated from the interior cell (for
the direction irrelevant to the problem to be solved).

• Slip: also known as “mirror” condition, in which the opposite sign is put to the
velocity component normal to the boundary, and all the other variables are extrap-
olated from the interior cell.

3 Numerical examples

In what follows, we shall demonstrate that the recently developed AUSM-family fluxes
— AUSM+-up (1, 1), AUSM+-up (0.5, 0.5), SLAU, SLAU2, AUSM+-up2, and AUSMPW+
— are extended to multiphase flows in the same framework, and compare their perfor-
mances. For ease of reference, all the results will be summarized in Tables 1 and 2 later in
this section. The results of AUSM+-up (0, 0), known to fail to yield stable solutions [16],
are thus not included. The grid study is performed for AUSM+-up (0.5, 0.5), which will
display the middle diffusivity/smoothness in most tests (the other schemes behave in
similar manners), and selected results are shown in Subsections 3.2 Faucet Problem, 3.3.1
Air-to-Water Shock Tube, and 3.3.2 Water-to-Air Shock Tube.

In addition, the following “CFL-like number”, usually taken between 0.05 and 0.63,
is used to determine the time step:

CFL=∆t
/

min
j

(
∆x

max
(
ag, al

)
+max

(∣∣ug

∣∣, |ul|
)
)

j

. (3.1)

3.1 Moving phase contact discontinuity

As the first problem, a moving contact discontinuity between air and water separated at
x=5 m [17] is solved. It is desired to accurately capture this phase discontinuity, across
which pressure constancy should be maintained. A grid of 200 uniform cells is used for
the [0 m, 10 m] domain (hence, the grid spacing ∆x= 0.05 m), and the initial conditions
are given as:

• (p,αg,uk,Tk)L =(105 Pa, 1−ε, 100 m/s, 300 K) for x≤5 m;

• (p,αg,uk,Tk)R =(105 Pa, ε, 100 m/s, 300 K) for x>5 m,
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where k= g,l, and ε=1.0×10−7 ( εmin=1.0×10−8, εmax=1.0×10−4). Note that this setup
leads to ρl=1053 kg/m3 and ρg=1.16 kg/m3; that is, a large density ratio of O(103) across
the interface, which is known to be a tough condition for preserving a constant pressure,
say within an O(10−3) error [52]. The computations are conducted with ∆t=6.0×10−6 s
(CFL ≈0.2), up to 0.03 s (5,000 steps).

The results are shown in Figs. 5 and 6 for Groups 1 and 2, respectively. All the fluxes
tested showed excellent performance both in smooth transition of the two phases (Figs. 5a
and 6a) and in preserving a uniform pressure across the contact discontinuity (Figs. 5b
and 6b). When the pressure is expanded as in Figs. 5c and 6c, there are from O(10−6)
to O(10−5) Pa of disturbances downstream the interface with different profiles; still, they
are negligible (O(10−11)−O(10−10)) compared with the initial uniform pressure, 105 Pa.

We also surveyed effects of flux limiter functions. The moving phase-discontinuity
results of AUSM+-up (1, 1) with the following limiters are compared: Van Albada [44]
[denoted as “VA”, with the limiter coefficient 10−20 (default) or 10−6], minmod [53], or
Chakravarthy-Osher [54] (denoted as “C-O”, which was adopted in Chang and Liou
[17]), in combination with two MUSCL coefficients κ =−1 (default; fully upwind sec-
ond order) or 1/3 (upwind-biased third order). The results are shown in Fig. 7, in which
pressure disturbance is examined at the 10−6 Pa level. It is seen that the C-O limiter (with
either κ=−1 or 1/3) has the best performance in preserving pressure constancy, but more
importantly, any choice can suppress the pressure error within 10−5 Pa, which is 10 or-
ders smaller than the uniform pressure. From these results, we selected the Van Albada’s
limiter with κ=−1 as the default choice throughout the paper, because we found it the
most robust for the challenging shock/water-column test (shown later in Subsection 3.5).

3.2 Faucet problem

The second test is the well-known “Faucet” problem suggested by Ransom [55], in which
a water jet is injected at a speed of 10 m/s and accelerated by gravity downward (and
hence, narrowed, according to the mass conservation law) into a stationary air, in a 12-
m-long tube [0 m, 12 m]. This problem is usually modeled by the following initial condi-
tions:

• (p,αg,ug,ul,Tg,Tl)=(105 Pa, 0.2, 0 m/s, 10 m/s, 300 K, 300 K).

The same set is applied to the inlet boundary condition, except for the pressure, which is
extrapolated from the interior cell; whereas at the outlet a pressure of 105 Pa is specified,
and other variables are extrapolated from the immediate interior cell. Note that the gas
and liquid velocities here are set to be different, as in [20, 37, 38], instead of being equal
[17, 34]. It is a feature of the two-fluid model that different velocities are allowed within
a single cell, in contrast to one-fluid model having only one velocity according to the
velocity-equilibrium assumption [34]. Only in this test case, (gx,gx)= (9.8m/s2,0m/s2)
is activated in the source term of Eq. (2.1b) in order to reproduce the gravity effects accel-
erating the water downward (+x-direction). The computational setup is as follows:
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(a)

(air) (water)

(b)

(c)

Figure 5: Moving phase-contact discontinuity solu-
tions (Group 1) at t=0.03 s, (a) Void fraction, αg;
(b) Pressure; (c) Pressure (expanded scale).

(a)

s

(b)

(c)

Figure 6: Moving phase-contact discontinuity solu-
tions (Group 2) at t=0.03 s, (a) Void fraction, αg;
(b) Pressure; (c) Pressure (expanded scale).

• 500 cells: ∆x=0.024 m, ∆t=1.0×10−5s (CFL ≈0.63), computations up to 0.5 s (50,000
steps) [default grid].
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Figure 7: Effects of limiter functions on pressure disturbance from moving phase contact discontinuity.

The computed results are compared with the following analytical solution [20]:

αg (x,t)=





1− (1−αg(0,0))·ul(0,0)√
(ul(0,0))2+2gxx

if x<
gt2

2 +ul (0,0)·t,
αg (0,0) else.

(3.2)

The results are shown in Figs. 8 and 9 in terms of void fraction profiles at 0.5 s.
AUSM+-up (1, 1) and (0.5, 0.5) showed slight overshoots at the top of the wave front
(Fig. 8b), whereas the others exhibit slightly abrupt drop at the bottom (Fig. 8c); but in
general, all the Group 1 flux functions yielded almost the same, smooth profiles without
serious oscillations (Fig. 8a). In addition, when the Godunov solver is combined (Group
2), those weak oscillations are smoothed out (Fig. 9), although G-AUSM+-up (1, 1) still
showed a very slight overshoot (Fig. 9b).

In order to see the grid effects, this problem is solved with two more different grids:

• 1,000 cells: ∆x = 0.012 m, ∆t = 5.0×10−6 (CFL ≈ 0.63), computations up to 0.5 s
(100,000 steps) [fine grid];

• 2,000 cells: ∆x = 0.006 m, ∆t = 2.5×10−6 (CFL ≈ 0.63), computations up to 0.5 s
(200,000 steps) [very fine grid].

As shown in Fig. 10, grid convergence is achieved with smooth profile: as the grid points
increase, the numerical solution approaches the analytical one.

We can say that all the methods have successfully computed the above two multi-
phase flows with satisfactory results. In the next examples, steep pressure gradients will
appear and affect the solutions noticeably.
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(a)

(air) (water)

b

c

(b)

(c)

Figure 8: Faucet problem solutions (Group 1) at
t=0.5 s, (a) Overview; (b) Expanded view of top of
wave front; (c) Expanded view of bottom of wave
front.

(a)

(air) (water)

b

c

(b)

(c)

Figure 9: Faucet problem solutions (Group 2) at
t=0.5 s (a) Overview; (b) Expanded view of top of
wave front; (c) Expanded view of bottom of wave
front.

3.3 Shock tube problems

3.3.1 Air-to-Water shock tube

As in the moving contact discontinuity problem, a 1D domain [0 m, 10 m] is separated
by left and right states at x=5 m, but with the following different conditions:
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Figure 10: Faucet problem solutions of different grids at t=0.5 s, AUSM+-up (0.5, 0.5).

• (p,αg,uk,Tk)L =(109 Pa, 1−ε, 0 m/s, 308.15 K) for x≤5 m;

• (p,αg,uk,Tk)R =(105 Pa, ε, 0 m/s, 308.15 K) for x>5 m,

where k= g,l, and ε=1.0×10−7 ( εmin=1.0×10−8, εmax=1.0×10−4). A grid composed of
the following uniform cells with time step is used:

• 500 cells: ∆x = 0.02 m, ∆t = 2.0×10−6 s (CFL ≈ 0.2), computed up to 2.0×10−3 s
(1,000 steps) [default grid].

The results represented by AUSM+-up (1, 1) and G-AUSM+-up (1, 1) are shown in Fig. 11.
All the cases displayed smoothly captured a rarefaction wave in air (x≈4.5 m), a phase
interface between air and water (x ≈ 5.5 m), and a shock in water (x ≈ 8.5 m). This is
clearly seen in the magnified view of the top of the shock front in Fig. 12a, in which all
the Group 1 results are compared: AUSM+-up (1, 1), AUSM+-up (0.5, 0.5), SLAU2, and
AUSM+-up2 are smooth (with this order of smoothness), of which the last two sharing
the common pressure flux give indistinguishable results. SLAU and AUSMPW+ showed
a slight kink due to a smaller dissipation than in others. In Group 2 (Fig. 12b), only G-
AUSMPW+ showed slight pressure oscillations that are absent in G-AUSM+-up (1, 1)
or G-SLAU2. This is not surprising, because at this place nearly pure water is treated
(i.e., no phase interface), and hence, the exact Riemann solver is not called; the slight
difference from AUSMPW+ result comes at the beginning of the computation when even
this small water shock wave was recognized to include a phase discontinuity, ∆e f f =
|αg,1/2,L−αg,1/2,R|> ε.

The second grid study solved this air-to-water shock tube test, with the following
grid:

• 5,000 cells: ∆x=0.002 m, ∆t=2.0×10−7 s (CFL ≈0.2), computed up to 2.0×10−3 s
(10,000 steps) [fine grid].

The results are summarized in Fig. 13, again showing grid convergence for each variable.
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(a)

(air)

(water)

Fig.12a

(b)

(air)

(water)

Fig.12b

Figure 11: Air-to-water shock tube problem solutions at t= 2 ms, (a) AUSM+-up (1, 1) (representing Group
1); (b) G-AUSM+-up (1, 1) (representing Group 2).

(a) (b)

Figure 12: Magnified view of pressure profiles near shock front in water at t= 2 ms of the air-to-water shock
tube problem, (a) Group 1; (b) Group 2.

3.3.2 Water-to-Air shock tube

Now the same grid system is used as in the air-to-water shock tube with the following
setup:

• (p,αg,uk,Tk)L =(1×107 Pa, ε, 0 m/s, 308.15 K) for x≤5 m;

• (p,αg,uk,Tk)R =(5×106 Pa, 1−ε, 0 m/s, 308.15 K) for x>5 m,

with the following grid and time step:

• 500 cells: ∆x = 0.02 m, ∆t = 2.0×10−6 s (CFL ≈ 0.2), computed up to 2.0×10−3 s
(1,000 steps) [Default Grid].
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(a) (b)

(c) (d)

Figure 13: Solutions showing grid convergence at t=2 ms of the air-to-water shock tube problem of AUSM+-up
(0.5, 0.5), (a) Void fraction; (b) Pressure; (c) Average temperature; (d) Average velocity.

The results for AUSM+-up (1, 1) representing Group 1 are shown in Fig. 14a. All the
Group 1 methods, as well as Group 2 (shown in Fig. 14b), seemed free of oscillations,
showing a reasonable capturing of the rarefaction wave in water (which is very steep
compared with the one in air) (x ≈ 2 m), smooth transition at the phase interface (x ≈
5 m), and robust capturing of the shock in air (which looks very weak) (x ≈ 6 m). In
Fig. 15a the foot of the strong rarefaction in a close-up view is shown for comparison of
different flux functions. As in the previous problem, AUSM+-up (1, 1) is the smoothest,
followed by AUSMPW+ and also by AUSM+-up (0.5, 0.5). The other methods show
slight undershoots. It is seen from Fig. 15b that the Godunov solver helped to increase
the smoothness of these profiles, and in the G-SLAU2 result, the undershoot in SLAU2
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(a)

(air)(water)

Fig.15a

(b)

(air)(water)

Fig.15b

Figure 14: Water-to-air shock tube problem (with low pressure ratio, PR=2) solutions at t=2 ms, (a) AUSM+-
up (1, 1) (representing Group 1); (b) G-AUSM+-up (1, 1) (representing Group 2).

(a) (b)

Figure 15: Magnified view of pressure profiles around foot of expansion wave in water at t = 2 ms of the
water-to-air shock tube problem (with low pressure ratio, PR=2), (a) Group 1; (b) Group 2.

has been corrected.
As the final grid study case, this problem was solved with:

• 5,000 cells: ∆x=0.002 m, ∆t=2.0×10−7 s (CFL ≈0.2), computed up to 2.0×10−3 s
(10,000 steps) [fine grid].

The grid convergence is confirmed from the results shown in Fig. 16.

3.3.3 Water-to-Air shock tube with high pressure ratio (PR=1,000)

Now the same grid system is used but with higher pressure ratio, say, PR=1,000, as the
following setup:

• (p,αg,uk,Tk)L =(108 Pa, ε, 0 m/s, 308.15 K) for x≤5 m;
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(a) (b)

(c) (d)

Figure 16: Solutions showing grid convergence at t=2 ms of the water-to-air shock tube problem of AUSM+-up
(0.5, 0.5), (a) Void fraction; (b) Pressure; (c) Average temperature; (d) Average velocity.

• (p,αg,uk,Tk)R =(105 Pa, 1−ε, 0 m/s, 308.15 K) for x>5 m,

where k= g,l, and ε=1.0×10−5 ( εmin =1.0×10−7, εmax=1.0×10−3).

With this high PR, all the AUSM-family schemes by itself (Group 1) failed because the
severe pressure drop in the (left) water phase produced a negative pressure at the begin-
ning of computation, as already implied in [17]. Group 2 (combination of Godunov and
AUSM-family) except for G-SLAU2, on the other hand, can smooth out such a pressure
decrease (Figs. 17 and 18), obviously with the help of Godunov solver as mentioned in
the previous test. Thus, for such a high PR, it has been demonstrated that the Godunov
solver must be used along with an AUSM-family scheme.
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(a)

(air)(water)

Fig.18

(b)

Figure 17: Water-to-air shock tube problem (with high pressure ratio, PR= 1,000) solutions, at t= 2 ms, (a)
G-AUSM+-up (1, 1); (b) G-AUSMPW+.

Figure 18: Magnified view of pressure profiles around foot of expansion wave in water, at t = 2 ms of the
water-to-air shock tube problem (with high pressure ratio, PR=1,000).

In addition, we conducted similar 1D problems but with more severe conditions, such
as the Cases 3 and 4 in Liu et al. [56], and Case 4 in Liu et al. [57]. The results are largely
similar to the ones in the current and precedent subsections: Group 1 results are accept-
able only in the Case 3 in [56], whereas Group 2 results are satisfactory or near satisfac-
tory with slight oscillations, typically resembling the ones in the original papers by Liu et
al. [56,57]. Furthermore, such oscillations can be partly suppressed by employing THINC
sharpening technique [32], which is ongoing in [58].

3.4 1D Cavitation Problem

This test was proposed by Saurel and Abgrall in [38], in which receding liquid flow con-
taining 1% gas in a tube dynamically creates a cavitation zone at the center. 200 cells are
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uniformly distributed over the [0m, 10m] domain (i.e., the grid spacing is ∆x= 0.05 m)
and the initial conditions are given as:

• (p,αg,uk,Tk)L =(105 Pa, ε, -100 m/s, 300 K) for x≤5 m;

• (p,αg,uk,Tk)R =(105 Pa, ε, 100 m/s, 300 K) for x>5 m,

where k= g,l, and ε= 1.0×10−2 ( εmin = 1.0×10−3, εmax = 1.0×10−1). The computations
are conducted with ∆t=5.0×10−6 s (CFL ≈0.16), up to 25 ms (5,000 steps).

Figs. 19 and 20 show only the selected results (differences due to flux functions were
minor). Consistent with the finding by Saurel and Abgrall, who employed an elaborate
relaxation method, all the fluxes used here are “capable of dynamically creating interfaces,
even starting from a situation in which interfaces are not present”. [38]. This feature motivates
us to compute a more realistic cavitation problem in the near future. It is noted that the
feet of the void fraction profiles are not very smooth as those in the others’ work (e.g.,
[38]). However, as proved by Theofanous and Chang [59], the method in [38] has huge
dissipation due to their relaxation term. Obtaining smooth solutions without relying
upon too much dissipation is left as the future work.

3.5 Shock/Water-Column interaction

A shock in air impacting a water column (i.e., 2D droplet) is simulated. 400×200 isotropic
cells are used for a domain of [−5 mm, 5 mm]×[0 mm, 5 mm] to cover the 6.4-mm-
diameter water column with its center at the origin (i.e., the diameter being 256 times grid
spacing ∆xmin=∆ymin=0.025 mm in this region); then the cells are stretched toward outer
boundaries so that a domain of [−15 mm, 20 mm]×[0 mm, 15 mm] is filled with 900×300
cells in total. Note that this grid system was generated for the purpose of resolving only
early stages of evolution of large-scale structures.

The initial conditions are same as in [16]:

• (p,αg,uk,Tk)L =(2.35438×105 Pa, ε, 225.86 m/s, 0 m/s, 381.85 K) for x≤−4 mm;

• (p,αg,uk,Tk)R = (1×105 Pa, ε, 0 m/s, 0 m/s, 293.15 K) for x >−4 mm, except for
x2+y2

< (3.2mm)2 where αg =1−ε,

where k=g,l, and ε=1.0×10−5 ( εmin=1.0×10−5, εmax=1.0×10−4). Then the shock starts
to move with Msh=1.47 at t=0, and hits the water-column at t≈1.5µs. The computations
are carried out with ∆t=1.25×10−9 s (CFL ≈0.15) up to 6.25 s (5,000 steps).

To specify a smooth distribution of void fraction at the interface of the circular water
column on a rectangular (Cartesian) grid, it is necessary to create a transition region of
certain width, ±2∆xmin in this study, about the interface. The same formula used for the
”vanishing” phase treatment again is applied here.
(
αg

)
adjust

=G(ξ2)·ε+(1−G(ξ2))·(1−ε), (3.3a)

G(ξ2)=−ξ2
2 (2ξ2−3), (3.3b)

ξ2=

√
x2+y2−(r−2∆xmin)

4∆xmin
, r−2∆xmin ≤

√
x2+y2≤ r+2∆xmin, r=3.2mm. (3.3c)
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(a)

(b)

(c)

Figure 19: 1D cavitation problem αg (void fraction)
results (Group 1) at t= 5, 10, 15, 20, and 25 ms,
(a) AUSM+-up (1,1); (b) SLAU2; (c) AUSMPW+.

(a)

(b)

(c)

Figure 20: 1D cavitation problem αg (void frac-
tion) results (Group 2) at t = 5, 10, 15, 20, and
25 ms, (a) G-AUSM+-up (1,1); (b) G-SLAU2; (c)
G-AUSMPW+.

At the bottom boundary, the conventional slip condition is imposed; that is, only the
y-component velocity is reflected, and the other variables are simply extrapolated from
the interior cells. Treatments at the other boundaries are typical: the left boundary is the
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(a) (b)

Figure 21: Time evolution of solution of shock/water-droplet interaction problem of AUSM+-up (1, 1) (Group
1), (a) t=6.25µs (numerical Schlieren); (b) t=6.25µs (pressure).

(a) (b)

Figure 22: Time evolution of solution of shock/water-droplet interaction problem of AUSM+-up (0.5, 0.5)
(Group 1), (a) t=6.25µs (numerical Schlieren); (b) t=6.75µs (pressure).

inlet condition, the right is the outlet, and the top boundary is the side. Those far-field
boundaries are far enough away from the water column to influence the flow of interest,
and variables there are fixed in time.

The Group 1 results at t=6.25µs are shown in Figs. 21-26 (in which numerical Schlieren
function (1+α2

l )log(|∇ρ|+1) [17] is used with the range between 4 and 20 along with
pressure between 10,000 and 50,000 Pa) for AUSM+-up (1, 1), AUSM+-up (0.5, 0.5),
SLAU2, AUSM+-up2, SLAU, and AUSMPW+. AUSM+-up (0, 0) was unable to compute
this problem.

AUSM+-up (1, 1) and AUSM+-up (0.5, 0.5) both show slight noises at the front of the
water column in the numerical Schlieren plots (Figs. 21a and 22a), but pressure contours
(Figs. 21b and 22b) are similar to the results observed in [16]; SLAU2, AUSM+-up2, and
SLAU exhibit weak, high-frequency waves inside the water column (Figs.23a, 24a, 25a)
that are not observed in the pressure profiles (Figs. 23b, 24b, 25b). AUSMPW+ seems free
from those oscillations (Fig. 26). In spite of these, with the current grid resolution, those
fluxes at least captured large-scale structures, and the results appeared to be fair.

In order for the Group 1 fluxes to proceed further in time evolution, a finer mesh is
required to resolve small-scale structures, as done in [50] by halving the grid spacing in
each direction (the grid spacing there was mislabeled, but it was actually ∆xmin=∆ymin=
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(a) (b)

Figure 23: Time evolution of solution of shock/water-droplet interaction problem of SLAU2 (Group 1), (a)
t=6.25µs (numerical Schlieren); (b) t=6.25µs s (pressure).

(a) (b)

Figure 24: Time evolution of solution of shock/water-droplet interaction problem of AUSM+-up2 (Group 1),
(a) t=6.25µs (numerical Schlieren); (b) t=6.25µs (pressure).

(a) (b)

Figure 25: Time evolution of solution of shock/water-droplet interaction problem of SLAU (Group 1), (a)
t=6.25µs (numerical Schlieren); (b) t=6.25µs (pressure).

0.0125 mm) and stopping at 10µs (8,000 steps). The Group 2 methods, on the contrary,
were able to compute this problem longer with the initial grid. The Group 2 results up to
t=18.75µs (15,000 steps) are shown in Figs. 27-29.

In G-AUSM+-up (1,1), after impacting the water column, the shock transmits into
the water region; in the air region, on the other hand, it diffracts as if it began to glance
around a solid object. Then, the shock travels faster inside the water column than outside
of it because of the greater speed of sound. At t = 6.75µs, the shock inside the water



664 K. Kitamura, M.-S. Liou and C.-H. Chang / Commun. Comput. Phys., 16 (2014), pp. 632-674

(a) (b)

Figure 26: Time evolution of solution of shock/water-droplet interaction problem of AUSMPW+ (Group 1),
(a) t=6.25µs (numerical Schlieren); (b) t=6.25µs (pressure).

(a) (b)

(c) (d)

Figure 27: Time evolution of solution of shock/water-droplet interaction problem of G-AUSM+-up (1,1) (Group
2), (a) t= 6.25µs (numerical Schlieren); (b) t= 6.25µs (pressure); (c) t= 18.75µs (numerical Schlieren); (d)
t=18.75µs (pressure).

column has reflected from the rear face (Figs. 27a-b). After that, the wave inside the
water reflects back and forth, while the initial shock and the diffracted shock outside
the water column grow almost independently (Figs. 27c-d), with little influence from
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(a) (b)

(c) (d)

Figure 28: Time evolution of solution of shock/water-droplet interaction problem of G-SLAU2 (Group 2), (a)
t=6.25µs (numerical Schlieren); (b) t=6.25µs (pressure); (c) t=18.75µs (numerical Schlieren); (d) t=18.75µs
(pressure).

the flow inside. Similar evolutions of solutions are found for G-SLAU2 (Fig. 28) and G-
AUSMPW+ (Fig. 29), although high-frequency waves (weaker than in Group 1 cases) can
still be seen in the early stages, t=6.25µs (Figs. 28a-b and 29a-b).

In summary, all the schemes tested are used for this 2D challenging shock/water
column interaction problem, at least at the early stages with limited grid points (Group
1). When the Godunov solver is included (Group 2), longer simulations are possible on
the same grid with smooth solutions. The differences in solutions are minor among the
selected AUSM-family schemes, but with the smoothness/diffusiveness in the following
order: AUSMPW+, AUSM+-up (1,1), AUSM+-up (0.5,0.5), SLAU2 (or AUSM+-up2),
and SLAU in Group 1; G-AUSM+-up (1,1), and G-SLAU2 or G-AUSMPW+ in Group 2.

3.6 Shock/Air-Bubble interaction

This test is opposite to the previous test, with a water shock impacting a column of an
air bubble, but with a much higher pressure ratio (PR≈1.6×104). The grid system is the
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(a) (b)

(c) (d)

Figure 29: Time evolution of solution of shock/water-droplet interaction problem of G-AUSMPW+ (Group
2), (a) t= 6.25µs (numerical Schlieren); (b) t= 6.25µs (pressure); (c) t= 18.75µs (numerical Schlieren); (d)
t=18.75µs (pressure).

same as that in the shock/water column interaction problem. The initial conditions are
the same as in [17]:

• (p,αg,uk,vk,Tk)L =(1.6×109 Pa, 1−ε, 661.81 m/s, 0 m/s, 595.13 K) for x≤−4 mm;

• (p,αg,uk,vk,Tk)R =(1.01325×105 Pa, 1−ε, 0 m/s, 0 m/s, 292.98 K) for x>−4 mm,
except for x2+y2

<3.2 mm2 where αg = ε=1.0×10−3 (εmin =1.0×10−3, εmax=1.0×
10−1).

The shock moves at Msh=1.51 at t=0 and hits the air bubble at t≈0.3 µs. The compu-
tations are carried out with ∆t=3.125×10−10 s (CFL ≈0.05) up to 5.0µs (16,000 steps).The
results of G-AUSM+-up (1,1) (only in this case, a threshold for effective length is 5ε, and
the speed of sound is defined individually for each phase; otherwise, the problem was
not computed) and G-SLAU2 are shown in Figs. 30 and 31 (in which numerical Schlieren
function log(|∇ρ|+1) [17] is used with the range between 8 and 14 and with pressure
between 108 and 2×109 Pa), respectively; Group 1 and G-AUSMPW+ cases blew up im-
mediately after the shock hit the bubble. The presented two sets of results agree with
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(a) (b)

(c) (d)

(e) (f)

Figure 30: Time evolution of solution of shock/air-bubble interaction problem of G-AUSM+-up (1,1) (Group 2),
(a) t=2.5µs (numerical Schlieren); (b) t=2.5µs (pressure); (c) t=3.75µs (numerical Schlieren); (d) t=3.75µs
(pressure); (e) t=5.0µs (numerical Schlieren); (f) t=5.0µs (numerical Schlieren).
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(a) (b)

(c) (d)

(e) (f)

Figure 31: Time evolution of solution of shock/air-bubble interaction problem of G-SLAU2 (Group 2), (a)
t= 2.5µs (numerical Schlieren); (b) t= 2.5µs (pressure); (c) t= 3.75µs (numerical Schlieren); (d) t= 3.75µs
(pressure); (e) t=5.0µs (numerical Schlieren); (f) t=5.0µs (numerical Schlieren).
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each other, suggesting that the choice of an AUSM-family scheme in Group 2 affects the
robustness of the computation, but does not have a strong impact on the solutions. As
time progresses in both results, the left rim of the air bubble is pushed forward (to the
right), and it is deformed and compressed into a smaller volume (Figs. 30a-b and 31a-b).
After the left rim of the bubble reaches the right rim, the pressure there begins to exceed
the water ambient pressure (up to 2.9×109 Pa at 3.75µs, Figs. 30c-d and 31c-d), thereby
pushing the surrounding fluids away. Subsequently, the bubble is broken into two sepa-
rate bubbles, which are still resolved well by the current grid (5.0µs, Figs. 30e-f and 31e-f).
Further details are explained by Chang and Liou in [17].

All in all, it has been demonstrated from all the above problems that AUSM-family
fluxes have been successfully extended within the same two-fluid framework [16, 17]
and provide reliable results in most cases, including shock/water-column or shock/air-
bubble interaction. The results of all the tests with all the flux functions are summarized
in Tables 1 and 2 for Groups 1 and 2, respectively, with the order of smoothness of solu-
tions from top to bottom, in general.

4 Conclusions

In this work, recently developed AUSM-family numerical flux functions (SLAU, SLAU2,
AUSM+-up2, and AUSMPW+) have been successfully extended to compressible multi-
phase flow computations, based on the stratified flow model concept, following Liou et
al. [16] (in which AUSM+-up was used standalone) and Chang and Liou [17] (in which
the exact Riemann solver was combined). Then, we performed an extensive survey using
those flux functions. The key findings are as follows:

1. AUSM+-up with sufficient dissipations (Kp =1.0, Ku =1.0) and (Kp =0.5, Ku =0.5),
AUSMPW+, SLAU2 or AUSM+-up2 (Kp =1), and SLAU can be used (in this order
of smoothness/diffusivity of solutions), even for a challenging 2D shock/water-
droplet interaction.

2. SLAU showed oscillatory behaviors [though not as catastrophic as those of AUSM+

(equivalent to setting Kp=Ku=0 in AUSM+-up)] because of insufficient dissipation
arising from the ideal-gas-based dissipation term.

3. When combined with the exact Riemann solver as suggested in [17], the robust-
ness of each AUSM-family scheme has been greatly enhanced at a phase interface.
Specifically, capabilities for solving shock tube and shock/air-bubble interaction
problems involving a high pressure ratio (1,000 or more) have been confirmed. It
has also been found that the choice of the partner AUSM-family scheme affects
the robustness of the computation, but does not have significant impact on the so-
lutions. In combination with the exact Riemann solver, AUSM+-up (1,1) yielded
smoother results than SLAU2 and AUSMPW+ did, and appears to be the most ro-
bust.
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Table 1: List of solutions of test problems (Group 1) (S: Successful, A: Acceptable, F: Failure) (div. = diver-
gence).

Flux functions Moving Faucet Air-to- Water-to- Water-to- 1D Shock/ Shock/

phase problem water air air shock cavitation water- air-

disconti- shock shock tube with column bubble

nuity tube tube high PR inter- inter-

action action

AUSM+-up (1, 1) S S S S F (div.) S A F (div.)

AUSM+-up(0.5, 0.5) S S S S F (div.) S A F (div.)

AUSMPW+ S S A S F (div.) S A F (div.)

(slight

osci-

llation)

SLAU2 or S S S A F (div.) S A F (div.)

AUSM+-up2 (slight (weak

under- osci-)

-shoot) llation)

SLAU S S A A F (div.) S A F (div.)

(slight (slight (weak

osci- under- osci-

llation) shoot) llation)

Table 2: List of solutions of test problems (Group 2) (S: Successful, A: Acceptable, F: Failure) (div. = diver-
gence).

Flux functions Moving Faucet Air-to- Water-to- Water-to- 1D Shock/ Shock/

phase problem water air air shock cavitation water- air-

disconti- shock shock tube with column bubble

nuity tube tube high PR inter- inter-

action action

G-AUSM+-up(1, 1) S S S S S S S S

G-SLAU2 S S S S F (div.) S S S

G-AUSMPW+ S S A S S S S F (div.)

(slight

osci-

llation)

4. It has been demonstrated that a cavitation zone is automatically created by the
present two-fluid approach. This fact has encouraged us proceed to more realis-
tic cavitation applications, and the research in this direction is ongoing.

The results and discoveries herein will serve as a useful guideline for users when choos-
ing fluxes and as a reference for further developments of numerical modeling of multi-
phase flows.
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