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Abstract. The conventional Poisson-Nernst-Planck equations do not account for the
finite size of ions explicitly. This leads to solutions featuring unrealistically high ionic
concentrations in the regions subject to external potentials, in particular, near highly
charged surfaces. A modified form of the Poisson-Nernst-Planck equations accounts
for steric effects and results in solutions with finite ion concentrations. Here, we eval-
uate numerical methods for solving the modified Poisson-Nernst-Planck equations by
modeling electric field-driven transport of ions through a nanopore. We describe a
novel, robust finite element solver that combines the applications of the Newton’s
method to the nonlinear Galerkin form of the equations, augmented with stabilization
terms to appropriately handle the drift-diffusion processes.
To make direct comparison with particle-based simulations possible, our method is
specifically designed to produce solutions under periodic boundary conditions and
to conserve the number of ions in the solution domain. We test our finite element
solver on a set of challenging numerical experiments that include calculations of the
ion distribution in a volume confined between two charged plates, calculations of the
ionic current though a nanopore subject to an external electric field, and modeling the
effect of a DNA molecule on the ion concentration and nanopore current.

PACS: 82.20.Wt, 87.15.A-, 83.10.Rs, 87.10.Kn, 87.10.Ed

Key words: Steric effects, nucleic acids, ionic current, continuum transport theory, ion channels,
PNP, SUPG, finite element method.

∗Corresponding author. Email addresses: jehanzeb@colostate.edu (J. H. Chaudhry), jeffcomer@gmail.com
(J. Comer), aksiment@illinois.edu (A. Aksimentiev), lukeo@illinois.edu (L. N. Olson)

http://www.global-sci.com/ 93 c©2014 Global-Science Press



94 J. H. Chaudhry et al. / Commun. Comput. Phys., 15 (2014), pp. 93-125

1 Introduction

Beginning with the experiments that revealed the microscopic mechanisms of nerve cell
excitation [1], measurements of ion currents through nanoscale channels and pores have
become the basis of many experimental techniques in biology and biotechnology. In
addition to permitting the study of the behavior of individual proteins that allow the
passage of ions into and out of cells [2], ion current measurements through nanopores
have been used to study the rupture of molecular bonds [3–5], to distinguish between
similar molecules [6], and to determine the properties and sequences of nucleic acid
molecules [7–11]. However, since direct experimental imaging of molecules within nano-
pores is extremely difficult, computation plays an important role in associating current
with nanoscale phenomenon [12–19] (see [20, 21] for recent reviews of the field).

Equilibrium and transport properties of ionic solutions can be simulated using ex-
plicit ion methods such as all-atom molecular dynamics [16, 20] or Brownian dynam-
ics [22–24], or by using continuum models such as the Poisson-Boltzmann and Poisson-
Nernst-Planck equations [25, 26]. While the explicit ion methods provide the most accu-
rate description of the system’s behavior, both in spatial and temporal domains, they are
stochastic in nature and thus require long, computationally expensive simulations to ob-
tain average properties. Furthermore, the application of an explicit ion method usually
requires the system to be described with the same resolution over the entire simulation
domain. Often, this leads to a situation where a majority of the computational effort is ap-
plied to simulate a nearly uniform solution where quantities of interest exhibit little vari-
ation. In contrast, continuum methods allow different regions of the same system to be
described at varying levels of detail, and thus focus the computational effort on regions
that require a more precise description. In addition to being more computationally effi-
cient, continuum models more easily incorporate certain types of boundary conditions
that arise in physical systems, such as boundaries of fixed concentration or electrostatic
potential.

The traditional continuum approach to modeling ionic transport is based on the
Poisson-Nernst-Planck equations (PNPE). Although the PNPE have been applied suc-
cessfully to model the electro-diffusion phenomena [27, 28], the equations are not with-
out drawbacks. Within the PNPE approach, ions are modeled as mathematical points
of negligible physical dimension, thereby allowing for accumulation of ions at unrealis-
tically high concentrations in certain regions of the system. A modified formulation of
the PNPE, called the modified Poisson-Nernst-Planck equations (MPNPE) [29], explic-
itly takes the physical dimensions of ions into consideration, which limits the maximum
concentration that attained in the system. The advantage of using MPNPE over PNPE be-
comes apparent in the systems that contain regions subject to strong attractive potentials,
for example, near charged surfaces.

In this work, we explore the MPNPE approach for modeling equilibrium and trans-
port properties of ionic solutions in realistic three-dimensional geometries subject to re-
alistic applied potentials. The finite difference method has been widely used to solve the
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Nernst-Planck equations in one or three dimensions [27, 30–32]. Although the finite dif-
ference method is straightforward to implement, applying this method to systems that
have curved boundaries and complicated geometries is challenging. In this respect, using
a finite element method is more appropriate as it naturally handles complex geometries,
such as the molecular surfaces of DNA molecules and ion channels. Finite element meth-
ods for solving the three-dimensional PNPE have already been described [33, 34]. How-
ever, numerical studies of the MPNPE have been limited to one-dimensional systems [29]
or the three dimensional spherical case [35] and have not been applied to simulate ion
flow through a solid-state nanopore, which is the main process considered in this work.

Here, we introduce a three-dimensional MPNPE solver for the simulation of ionic
current through nanopores, which can handle the complex geometry of the system and
the realistic microscopic potentials the ions are subject to. The nanopore system is illus-
trated in Fig. 2 and described in detail in Section 2. In contrast to the previous efforts, our
finite element method conserves ion concentration, takes into account the sharp repul-
sive potentials present near the walls of an ion channel [13, 27], and is able to reproduce
the results of explicit ions simulations. The presence of a sharp, repulsive potential at
the interface of fluid and solid-state domains necessitates formulation of a new stable
numerical method for finding the solution of the PNPE and the MPNPE. Specifically, we
found that, when applied to our nanopore systems, standard finite element methods be-
come unstable and produce spurious results such as negative concentrations. Fig. 1 gives
an example of such behavior. The sharp repulsive potential near the walls of a nanopore
causes instability of the Galerkin method, producing spurious negative concentration
values (see Section 4, Experiment 3 for more details). Below, we describe a numerical
procedure that stabilizes the finite element method in the presence of sharp repulsive
potentials, which is one of the main results of this works.

The remainder of the paper is organized as follows. Section 2 introduces the systems
and the governing equations. Our nonlinear finite element method for solving the MP-
NPE is described in Section 3. Also in this section, we provide the Galerkin formulation
for the equations that do not have large drift terms, and a streamline-upwind-Petrov-
Galerkin (SUPG) method for the equations in which such terms are present. In Section 4
we describe the results of several computational experiments that highlight the utility of
the MPNPE and the necessity of having a stabilized algorithm. The paper concludes with
final remarks.

2 Problem description

In this section we give a brief overview of the problem and review the relevant equations.

2.1 Governing equations

We consider the Poisson-Nernst-Planck Equations (PNPE) for a 1:1 electrolyte solution
(referred to as solvent) described over a computational domain, denoted by Ω=Ωs∪Ωm,
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Figure 1: Concentration of negatively-charged ions in a nanopore system obtained as a solution of the PNP
equations using the standard Galerkin method. The concentration attains unphysical negative values near the
surface of the nanopore because of the sharp repulsive potential. A detailed description of this calculation is
provided in Section 4 (Experiment 3). The average ion concentration in the solvent domain of the system is
1.623 M.

which includes both the solvent region, represented as Ωs, as well as a molecular or
membrane region, Ωm, which is void of solvent. The time dependent PNPE are given
as [27]

∂c±
∂t

=D±∇·

[

∇c±+
1

kBT
[±e(c±∇φ)+(c±∇U)]

]

in Ωs, (2.1)

−∇·ǫ∇φ= e(c+−c−) in Ω, (2.2)

where φ is the electrostatic potential and U is the potential due to other interactions (such
as van der Waals and solvation forces), which is assumed to be the same for both ionic
species. Hereafter, we will refer to potential U as a non-electrostatic potential, to dif-
ferentiate it from the explicit electrostatic potential φ. In the Nernst-Planck equation,
(2.1), the concentration of positive and negative ions are c+ and c−, respectively, kB is
the Boltzmann’s constant, T is temperature, e is the charge on an electron and D± are
the diffusivities of the positive and negative ions, respectively. In the Poisson equation,
(2.2), we assume a piecewise constant dielectric coefficient ǫ that is defined in the two
sub-domains, Ωs and Ωm. For simplicity, we write the total potential energy experienced
by an ion as V±=±eφ+U.

The modified form of the PNPE (MPNPE) adds a nonlinear term to each of the two
Nernst-Planck equations in (2.1) to model the steric repulsion. The Poisson equation
remains unchanged, however the modified Nernst Planck equations are [29],

∂c±
∂t

=D±∇·

[

∇c±+
1

kBT
c±∇V±+a3

(
c±∇(c++c−)

1−c+a3−c−a3

)]

in Ωs,. (2.3)

Here a is the size of the ion (assumed to be the same for both species). As a result, in
this model the maximum permitted concentration is bounded by 1/a3, which we refer to
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as the steric limit. To simplify the presentation of the material that follows, we write the
PNPE and the MPNPE as

∂c±
∂t

=D±∇·

[

∇c±+
1

kBT
c±∇V±+Nα(c±)

]

in Ωs, (2.4)

where

Nα(c±)=α

(

a3 c±∇(c++c−)

1−c+a3−c−a3

)

, α=

{

0, for PNPE,

1, for MPNPE.
(2.5)

2.2 Description of the model system

A primary focus of this paper is the application of MPNPE solver to nanopores, wherein
we compute the ionic current through a pore in a solid-state membrane. The domain we
consider is depicted in Fig. 2(a). Here, solution reservoirs above and below the membrane
are connected through a nanopore, allowing positive and negative ions to pass from one
side of the membrane to the other. We also consider a system where a DNA molecule
is present inside the pore. Thus, the membrane (and the DNA, if present) comprise the
domain Ωm, whereas the ionic solution, which consists of the solution reservoirs above
and below the membranes and the nanopore, comprise the domain Ωs.

With the concentration profiles of (2.4), one important quantity is the ionic current J
through a surface Γ with normal n (see Fig. 2(b)), which is defined as

J=∑
±

±
∫

Γ
eD±n·

[

∇c±+
1

kBT
[±e(c±∇φ)+c±∇V]

]

ds. (2.6)

For example, in the 2D cross-section of the problem domain shown in Fig. 2(b), we mea-
sure the ionic current through the plane in the middle of the pore, denoted by a dotted
line.

The Poisson portion of the PNPE in (2.2) is solved with Dirichlet boundary conditions
specified by φt and φb at the top and the bottom of the domain, and periodic boundary
conditions along the other four sides. Further, the (unmodified and modified) Nernst-
Planck equations in (2.1) and (2.3) use blocking boundary conditions on the interface
of the membrane and the ionic solution, which is denoted ∂Ωs,n and is displayed with
a dotted line in Fig. 2(b), while periodic boundary conditions are set at the remaining
boundaries. Specifically, we consider blocking boundary conditions of the form

[

∇c±+
1

kBT
c±∇V±+Nα(c±)

]

·n=0 on ∂Ωs,n, (2.7)

where n is the unit normal on the surface ∂Ωs,n. One consequence of the blocking bound-
ary conditions is that the integral of the concentration remains constant. That is, the total
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(a) All-atom model of a nanopore system.
The nanopore is shown as a smooth semi-
transparent surface, the explicit ions are shown
as spheres and the entire solvent domain is
shown as a cut-away semi-transparent molecu-
lar surface.

n

Ωs

ΩmΩm

∂Ωs,n

φt

φb

Γ

z (nm)

−2

0

2

x (nm)
−1.25 0 1.25

(b) Schematic of the cross-section of the 3D do-
main considered in the continuum description of the
nanopore system.

Figure 2: Description of the problem domain. The 3D domain is approximately 7.2 nm in length and 4 nm in
width. The pore has a radius of 0.9 nm and a height of 4 nm. Dashed lines in the figure on the right represent
a blocking boundary, while solid lines represent a periodic boundary for Nernst-Planck equations, and Dirichlet
boundary at the top and bottom for the Poisson equation.

number of ions of each ion species is conserved:

∂

∂t

∫

Ωs

c±dx=
∫

Ωs

D±∇·

[

∇c±+
1

kBT
c±∇V±+Nα(c±)

]

dx

=
∫

∂Ωs,n

[

∇c±+
1

kBT
c±∇V±+Nα(c±)

]

·nds=0. (2.8)

Additionally, the number of ions in the domain is also conserved in the case of a par-
tially periodic boundary. Moreover, we note that the numerical methods we develop are
equally applicable for other boundary conditions, like Dirichlet boundary conditions for
the concentrations.
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3 Numerical methods

In this section we describe a numerical approach to solving the MPNPE. For the modified
Nernst-Planck equations, we use the finite element method for spatial discretization, and
backward Euler for time discretization due to the stiff nature of the solutions. Similarly,
we also use a finite element discretization for solving the Poisson’s equation. Our ap-
proach is used to solve for both the transient and steady state solutions. If the goal of the
simulation is the steady state, then we evolve the solution until the measured temporal
change reaches a desired tolerance.

We have slightly different schemes for the transient and steady state solutions. For
the transient solution, where accuracy at each time step is important, we solve the (2.3)
and the (2.2) in a self-consistent manner, employing a Gummel iteration. That is, at each
time step, given some initial concentrations c± and electrostatic potential φ, we solve (2.3)
using the finite element method. The updated values of the concentrations are then used
to solve (2.2), and this process is repeated until convergence. Then we move on to the
next time step. This is illustrated in Fig. 3.

Time

MNPE

PE

MNPE

PE

MNPE

PE

. . .

Figure 3: Overview of the numerical scheme. At each time step, we iterate between the solves for the modified
Nernst-Planck equations and the Poisson equation.

For the steady state method, at each time step, we solve the (2.3), with the updated
values of the concentration used in the solution of (2.2). However, further iteration is
not needed and the updated value of the electric potential is immediately used as input
to (2.3) for the next time step. The steady state method corresponds to employing one
iteration in the Gummel iteration — i.e., we do not iterate to convergence at each time
step. This process works well in practice since the primary purpose of the steady state
solution are the final concentrations and is similar to previous strategies in the setting of
the PNPE and MPNPE [28, 35, 36]. However, our scheme has two distinct features: 1) it
uses a stabilized method, and 2) it accounts for the conservation of ions. We now proceed
to describe our method in more detail (the approach is implemented in the finite element
package Dolfin [37]). In the following we devise two finite element methods: one for the
case in which there is only an electric field, and one in which a non-electric potential is
also applied. We seek to highlight the benefits of incorporating the steric effects into the
modified Nernst-Planck equations. Hence we derive our finite element method for both
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PNPE and MPNPE, highlighting several important differences. The methods we propose
are used further when we devise a method for solving the MPNPE in the presence of an
applied non-electrostatic potential.

3.1 Non-linear finite element method for modified Nernst-Planck equations

For the (modified) Nernst-Planck equations, we seek a solution in H1(Ωs)×H1(Ωs) for
c±, where H1 is a Sobolev space with standard notation [38]. The weak form of (2.4)
(which represents both (2.1) and (2.3)) is found by integrating against a test function

v±=(v+,v−)∈
[
H1(Ωs)

]2
: find c±∈

[
H1(Ωs)

]2
such that

∫

Ωs

(
∂c±
∂t

−D±∇·

[

∇c±+
1

kBT
c±∇V±+Nα(c±)

])

·v±dx=0, (3.1a)

⇒
∫

Ωs

(
∂c±
∂t

·v±+D±

[

∇c±+
1

kBT
c±∇V±+Nα(c±)

]

·∇v±

)

dx=0 (3.1b)

for all v±in
[
H1(Ωs)

]2
. Note that we used integration by parts along with the blocking

and periodic boundary conditions to derive (3.1b) from (3.1a). From this, we apply the
backward Euler method in time to (3.1b) and multiply by ∆t to arrive at

∫

Ωs

(

(cn+1
± −cn

±)·v±+∆tD±

[

∇cn+1
± +

1

kBT
cn+1
± ∇V±+Nα(c

n+1
± )

]

·∇v±

)

dx=0 (3.2)

for all v± ∈
[
H1(Ωs)

]2
. Here, ck

± are the concentrations at time step k, while ∆t is the
length of the time step.

For the PNPE, (3.2) is a pair of uncoupled equations, linear in the unknown variables
c±. For the MPNPE, (3.2) is a pair of coupled non-linear equations, and hence result
in a more complicated form than PNPE. To address the nonlinearity, we use a straight-
forward application of Newton’s method to find the concentrations c± for the MPNPE.
Specifically, we define the form in (3.2) as 〈Fα(c

n+1
± ),v±〉:

〈Fα(c
n+1
± ),v±〉

=
∫

Ωs

(

(cn+1
± −cn

±)·v±+∆tD±

[

∇cn+1
± +

1

kBT
cn+1
± ∇V±+Nα(c

n+1
± )

]

·∇v±

)

dx. (3.3)

Here we again use the α notation to write the weak form for both the NP and MNP
equations.

The MNPE in (3.3) are nonlinear in c± and linear in v±. The first step in a Newton’s
method is to linearize this form with respect to c±, to arrive at a bilinear form in w± and
v±. This is accomplished by taking a variational derivative of 〈Fα(c

n+1
± ),v±〉 with respect
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to cn+1
± ,

〈DFα(c
n+1
± )w±,v±〉=

d

dτ
〈Fα(c

n+1
± +τw±),v±〉|τ=0,

=
∫

Ωs

(

w± ·v±+∆tD±

[

∇w±+
1

kBT
w±∇V±

]

·∇v±+DNα(c
n+1
± )

)

dx,

(3.4)

where

DNα(c
n+1
± )=α

a3

(1−cn+1
+ a3−cn+1

− a3)2

[

a3(w++w−)c
n+1
± ∇(cn+1

+ +cn+1
− )

−(a3(cn+1
+ +cn+1

− )−1)(∇(cn+1
+ +cn+1

− )w± +∇(w++w−)c
n+1
± )

]

·∇v±. (3.5)

As a consequence, with α=0 for PNPE, the derivative DN0 is absent from (3.4).

With the derivative defined, we arrive at Newton’s method, which first computes w±

by solving

〈DFα(c
n+1
± )w±,v±〉=−〈Fα(c

n+1
± ),v±〉 (3.6)

followed by the estimate of cn+1
± with

cn+1
± = cn+1

± +w±. (3.7)

Solving the weak problem in (3.6) reduces to a linear system of the form Aw= f , where
stiffness matrix A is formed by 〈DFα(c

n+1
± )w±,v±〉, the force vector f by 〈Fα(c

n+1
± ),v±〉,

and where w represents the unknown coefficients for the function w±.

In the case of the NP equations, with α = 0, the form DFα in (3.6) does not depend
on cn+1

± , and the Newton’s method converges in one iteration (as we expect for linear
problems). For simplicity, we drop the arguments to the forms DFα and Fα. Then DF0

and DF1 represent the forms in (3.4). Similarly F0 and F1 are the forms for NP and MMP
in (3.3). The relationship between these forms is expressed as,

DF1=DF0+DN1, (3.8)

F1=F0+N1 ·∇v±, (3.9)

which allows us to view the Newton step for MNP as,

DF0+DN1=−(F0+N1 ·∇v±). (3.10)

From this equation, we notice that the Newton step for the MPNPE is exactly the Newton
step for the PNPE with the addition of stabilizing terms DN1(c±) and N1(c±)·∇v±.
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3.2 A stabilized finite element method for the modified Nernst Planck
equations

The discretization scheme we have developed so far works well if there is no strong elec-
trostatic potential (represented as φ) or applied non-electrostatic potential (i.e. U = 0).
However, in the presence of a strong electorstatic potential or non-electrostatic applied
potential, the Nernst-Planck equations have a large drift term, which is a challenge to
standard Galerkin methods. Using the standard Galerkin approach results in a solution
with spurious values [39] — e.g. the concentration becomes negative in portions of the
domain, as illustrated earlier in Fig. 1 for the nanopore system. We see that the concen-
tration becomes negative in parts of the domain. One remedy is to augment the Galerkin
weak form by adding artificial dissipative terms to stabilize the method. To this end, we
use a variant of streamline upwind Petrov-Galerkin method (SUPG) for stabilizing our
scheme in presence of steep gradients in φ or U [40, 41].

We develop stabilized schemes for both the PNPE and the MPNPE. We develop two
such schemes for the MPNPE. One arises from a standard application of SUPG to the
MPNPE, whereas the other is developed by adding the nonlinear terms of the MPNPE to
the SUPG scheme for the PNPE. The latter scheme, which we call “Fast SUPG” improves
on the former, called the “Full SUPG” scheme, by increasing its computational efficiency,
as we explain later. We use the “Fast SUPG” method in this paper, unless noted. The
relationship between different SUPG schemes is shown in Fig. 4.

Galerkin

for PNPE

Steric term

N1

Galerkin

for MPNPE

SUPG

for PNPE

Fast SUPG

for MPNPE

Full SUPG

for MPNPE

PNPE

Residual

MPNPE

Residual

Figure 4: Relationship between SUPG methods.

To simplify the presentation of our SUPG scheme, we introduce some notation. The
differential operator is given as

Lα(c±)=D±∇·

[

∇c±+
1

kBT
c±∇V±+Nα(c±)

]

, (3.11)
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which consists of a flow field governed by the applied potential V± and denoted by

b±=−
D±

kBT
∇V±. (3.12)

We also isolate the Péclet number Pe with a stability parameter of the form

σ±=
hτ

2‖b±‖2
ψ(Peτ), (3.13)

where hτ denotes the diameter of the element τ, and with

Peτ =

(
0.33‖b±‖2 hτ

2D±

)

and ψ(q)=

{

1, if q>1,

q, otherwise.
(3.14)

The Péclet number of element τ, denoted as Peτ is an indication of the strength of advec-
tion. Specifically, a Péclet number greater than 1.0 indicates that advection is dominat-
ing the flow and that stabilization may be necessary, and we use the values developed
in [39, 42].

Using the above notation, we write (3.1a) as,

∫

Ωs

(
∂c±
∂t

−Lα(c±)

)

·v±dx=0. (3.15)

From this, we define the SUPG weak form using integration-by-parts similar to the
derivation in (3.1a), to arrive

〈Fα,supg(c±),v±〉

=
∫

Ωs

(
∂c±
∂t

−Lα(c±)

)

·v±
︸ ︷︷ ︸

weak form

dx+ ∑
τ∈T

∫

τ

(
∂c±
∂t

−Lα(c±)

)

·v±supg

︸ ︷︷ ︸

stabilization

dx=0, (3.16)

where the test functions in stabilized form are

v±supg=σ±b± ·∇v±. (3.17)

For the PNPE, (3.16) is solved as a pair of uncoupled equations. However, for the
MPNPE, we use a nonlinear solver, as discussed in the previous section. The nonlinear
SUPG scheme is similar to the approach taken in [43] for use with nonlinear Navier-
Stokes equations. The convergence rate of the L2 error for the SUPG scheme is typically
half an order less than the Galerkin method [44]. That is, the convergence rate of the L2

error is O(hk+1/2) for the SUPG scheme, and O(hk+1) for the Galerkin method, where
k refers to the polynomial degree of the approximating space. However, the benefit of
the SUPG method lies in its stability properties. The stability of the SUPG method yields
a physically meaningful solution as compared to the Galerkin method, even for coarse
meshes.
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A faster SUPG scheme for MPNPE

The SUPG method arising from (3.16) stabilizes the MPNPE, however it is costly to im-
plement. This cost arises because of the presence of the strong form of the operator L1

in the “stabilization” part of (3.16) — i.e., we do not use integration by parts. Thus,
one of the terms in the weak form 〈F1,supg(c±),v±〉 is ∇·N1(c±), which is lengthy, and
is costly to evaluate. Moreover, in Newton’s method, the variational derivative of this
term is needed, which makes the implementation even costlier. By considering a New-
ton’s method for the SUPG method for NPE we are able to derive a more efficient scheme
for the modified form of the equations. To further motivate this, consider the Newton
step for the Galerkin method for MPNPE, as given in (3.10). We observe that the Newton
step for MPNPE in (3.10) is the Newton step for PNPE along with additional stabilization
terms. Thus, we take a similar view in designing the faster SUPG method for MPNPE:
first we form the Newton step for the SUPG method for the PNPE followed by the addi-
tion of stabilization terms. As before, to form the Newton step for NPE, we take the varia-
tional derivative of the form F0,supg to arrive at the form 〈DF0,supg(c±),w±,v±〉. The New-

ton iteration for the SUPG method for the NPE is then to find functions w±∈
[
H1(Ωs)

]2

such that

〈DF0,supg(c±),w±,v±〉=−〈F0,supg(c±),v±〉. (3.18)

From w±, we then update using (3.7): cn+1
± = cn+1

± +w±.

As in the previous case, for the unmodified form of the NPE, Newton’s method re-
duces to one iteration. For the MNPE however, we add additional terms present in
Newton’s method for the Galerkin method in (3.10), namely DN1(c±) and N1(c±)·∇v±,
to (3.18). As a result, the SUPG method for the MNPE is defined by the following New-
ton’s step,

〈DF0,supg(c±),w±,v±〉+DN1(c±)=−〈F0,supg(c±),v±〉−〈N1(c±)·∇v±〉. (3.19)

We use the SUPG form in (3.19) in our numerical tests in Section 4.

3.3 Galerkin method for Poisson equation

A stabilized scheme is unnecessary for the Poisson portion of the PNPE in (2.2). Thus,
we use a standard Galerkin finite element method which is stated as the following: find
φ∈φd+H1

0(Ω) such that,

∫

Ω
∇φ·∇vdx=

∫

Ω
e(c+−c−)vdx, (3.20)

for all v∈H1
0 (Ω) and where φd is a function satisfying Dirichlet boundary conditions.

The situation is more complicated in the presence of a biomolecule, such as a DNA
molecule. In this case, we have an additional region, Ωmol which contains a biomolecule
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inside the pore, as illustrated in Fig. 17(b). The solvent-ions are excluded from the region
Ωmol. The biomolecule contains a distribution of singular charges,

ρ f =
N

∑
i=i

qiδ(x−xi). (3.21)

Here ρ f denotes the charge distribution, δ(x−xi) is the Dirac delta function based at the
location xi representing a charge qi. Consequently, we modify the Poisson’s equation (2.2)
as,

−∇·ǫ∇φ=χse(c+−c−)+ρ f in Ω, (3.22)

where χs is the characteristic function of the solvent domain, Ωs, that is, χs = 1 inside
Ωs and χs = 0 everywhere else. The presence of singular charge distribution ρ f makes
the design of a convergent finite element method for the Poisson’s equation a challenge,
as the source term is no longer in H−1(Ω), the dual space of H1

0(Ω). To rectify this,
two term and three term decompositions of the potential have been proposed [34,45–50].
We use the three term decomposition, which is numerically more accurate [49, 50]. In
this formulation, potential φ in (3.22) is written as sum of a singular component φs, a
harmonic component φh and a regular component φr as,

φ(x)=

{

φr(x)+φs(x)+φh(x), x∈Ωmol,

φr(x), x∈Ωs∪Ωm.
(3.23)

The singular component, φs, is the solution to,

−ǫmol∆φs(x)=ρ f , x∈R
3, (3.24)

where ǫmol is the dielectric coefficient for the molecular region. We observe that φs is the
Green’s function for the Laplace operator, and is computed analytically. The harmonic
component φh is defined by,

−∆φh(x)=0, x∈Ωmol, (3.25)

φh(x)=−φs(x), x∈∂Ωmol, (3.26)

where ∂Ωmol is the boundary of the region Ωmol. Substituting (3.23) in (3.22) leads to the
following equation for the regularized potential,

−∇ǫ∇φr =χse(c+−c−), x∈Ω, (3.27)
s

ǫ
∂φr

∂n

{
=ǫmol

∂(φs+φh)

∂n
, on ∂Ωmol. (3.28)

Here n is the unit normal at the molecular surface ∂Ωmol and J·K denotes the jump across
the molecular surface,

J f (x)K= lim
α→0

f (x+αn)− f (x−αn). (3.29)
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In our numerical simulations, we precompute (3.25), and then use (3.27) at each time
step for computing the potential φ. Similar to (3.20), our new weak form of the Poisson
equation is,

∫

Ω
∇φr ·∇vdx=

∫

Ω
e(c+−c−)vdx−〈g(φh),v〉, (3.30)

where

〈g(φh),v〉=
∫

∂Ωmol

ǫmol
∂(φs+φh)

∂n
vdx. (3.31)

4 Numerical experiments

In this section we illustrate the use of our finite element method through five numer-
ical experiments. The first experiment examines the steric effects in an electrolyte so-
lution confined between two charged plates. Then, we apply our method to compute
the ionic current through a nanopore in a solid-state membrane in the absence of a non-
electrostatic potential and a DNA molecule. We follow with a third experiment in which
we introduce a non-electrostatic potential into the ionic current calculations, mimicking
the effect of a realistic nanopore surface or a biomolecule. This system highlights the
significant difference between MPNPE and PNPE calculations. Finally, in Experiments
4 and 5, we examine the steric effects in the nanopore system when a DNA molecule is
present in the nanopore. As the process of DNA translocation occurs much slower then
ion transport, one can assume DNA to remain at the same location in the pore during the
calculation of the ionic current [20].

We employ continuous piecewise linear functions to represent the concentrations, c+
and c−, and the potential, φ, in all our numerical experiments. The piecewise linear
functions are available in all common finite element packages (e.g. [37]) and are compu-
tationally less expensive than higher degree polynomial spaces.

For the steady state experiments, we evolve an initial uniform concentration until the
temporal change in the concentration is less than a fixed tolerance. More specifically, the
temporal change is measured as

1

N

N

∑
i=1

∣
∣
∣(cn+1

± −cn
±)/∆t

∣
∣
∣≤ θ, (4.1)

where N is the number of nodes in the mesh, and n refers to the temporal time step. For
example, in the case of the nanopore in Experiments 2, 3, 4 and 5, a tolerance of θ=10−2

is used. With a tolerance of 10−2, the computations remain generally static and are rep-
resentative of the final steady state. Higher concentrations demand increased resolution
and thus require more time steps, as shown in Table 1.

One of the goals of our numerical experiments is to highlight the utility of using the
modified form of the equations. To this end, we present the sum of concentrations — i.e.
c= c++c− — to illustrate the behavior of the solutions with respect to the steric limit of
the problem.
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Table 1: Number of temporal iterations to reach steady state. Experiments 2 and 3 examine the flow of ions
through a nanopore.

Experiment: #2 #3
Concentration (c+): 0.1082M 1.623M 2.705M 1.623M 2.705M

PNPE 17 50 125 74 149
MPNPE 17 50 116 120 155

Choice of the effective ion size parameter a

Finding an optimal value for the effective ion size parameter a is not the focus of this
work. Interested readers are directed to a detailed discussion of the subject [35, 51]. In
this work, we used several values of parameter a to demonstrate the robustness of our
finite element solver. Thus, in computational Experiment 1, we use a=0.66 nm for both
K+ and Cl− ions [51]. In computational Experiments 2, and 3, we use a=0.3 nm to achieve
the best quantitative agreement with the results of Brownian dynamics simulations [24]
(see also Section A.1). In computational Experiments 4 and 5, we set parameter a to 0.5
and 0.55 nm to describe nanopore systems containing a charged sphere (Experiment 4)
and a double helix of DNA (Experiment 5), respectively, matching the ion size to the
closest distance between the object and the wall of the nanopore. It is important to note
that our numerical methods for MPNPE are valid for a range of (realistic) ion sizes, and
the specific selection of effective ion size is not the focus of our method nor necessary for
its analysis.

Validation of the fast SUPG scheme

First, we verify that our fast SUPG scheme (3.19) results in solutions similar to that of the
full SUPG scheme (3.16). Toward this end, we perform computational experiments on a
box domain of dimensions 1 nm × 1 nm × 2 nm subject to a non-electrostatic potential U.
The cross-section of the box domain is shown in Fig. 5(a). The profile of this potential U
along the z-axis is shown in Fig. 5(b). Since no external electrostatic potential is applied,
the system converges rapidly to a steady state. Using a tolerance of 10−5 for the temporal
change of concentration, these numerical experiments generally required fewer than 10
iterations to converge to a steady state.

In Fig. 6, we plot the average concentration of positively-charged ions along the z-
axis of the box domain computed using the standard Galerkin, full SUPG, and our fast
SUPG schemes. The overall concentration of ions in the box domain was equivalent
to having 3 ions of each species. For these calculations, we use a mesh fine enough to
ensure that the standard Galerkin method results in accurate solution. For a more realistic
computational domain, this resolution presents a significant limitation as it considerably
decreases the computational efficiency of the continuum model. The close agreement
between the profiles indicates that our fast SUPG scheme computes the concentrations to
the same accuracy as the more computationally expensive methods. Hence, we use our
fast SUPG scheme for all calculations reported in the remainder of the paper.
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(a) Cross-section of the box domain.
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(b) Profile of the non-electrostatic potential
U (kT units) along the z-axis.

Figure 5: Cross-section of the box domain (left) and the profile of non-electrostatic potential (right).
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Figure 6: Profile of steady-state concentration c+ for different numerical schemes for MPNPE for the box
domain.

Next, we demonstrate that using our fast SUPG scheme results in significant savings
of the computational effort. Table 2 lists the speedup of the fast scheme in comparison
with the full scheme when applied to the box and nanopore domains (the nanopore do-
main is described in Experiment 2 later in the text). Using the fast scheme speeds up the
solution process more than twofold in the case of the nanopore domain, and by more
than a factor of 4 in the case of the box domain.

Table 2: Speedup of the fast SUPG scheme versus the full SUPG scheme.

System Box - 3 ions Box - 4 ions Nanopore - 60 ions
Speedup 4.47 4.40 2.26
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Experiment 1: Ionic solution between two charged plates

In this experiment, we consider a 1 nm×1 nm×4 nm parallelepiped domain placed be-
tween two charged plates, as shown in Fig. 7. At the beginning of the numerical exper-
iments, the concentration of ions is uniform in the solvent domain. We solve the PNPE
and the MPNPE for the concentration of ions in the presence of an electrostatic potential
difference between the plates. Specifically, the upper plate is set at a potential of −800 mV
and the lower plate at +800mv, leading to a total potential difference of −1600 mV (see
Fig. 7). In these calculations, we use blocking boundary conditions for the ionic concen-
trations throughout the domain.

+ + + + +

- - - - - - -

+800mV

-800mV

Figure 7: Cross-section of the parallel plates domain considered in Experiment 1.

The parameters used for this numerical experiment are listed in Table 3. Specifically,
an ion size parameter a of 0.66 nm was used as an effective diameter of K+ or Cl+ ions,
which is larger than the actual ion size. Such an approximation was previously shown to
work specifically well in the case of high charge densities [51].

Table 3: Summary of parameters used in Experiment 1.

Name Symbol Value

Time step ∆t 10−13 s

Diffusivity for positive ions D+ 2.27×10−9 m2/s

Diffusivity for negative ions D− 2.27×10−9 m2/s

Relative permittivity ǫ 92

Ion diameter a 0.66 nm

Initial concentration cinit 1 M

Potential drop φtop−φbottom −1600 mV

Steric limit ν 5.776 M

From Figs. 8(a) and 8(b), which show 2-D cross-sections of the concentration after 149
times steps of the simulation, we see that the steric limit is violated in the case of PNPE
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(a) PNPE: 149 steps (b) MPNPE: 149 steps (c) MPNPE: 700 steps

Figure 8: The sum of concentrations c= c++c− for the PNPE and the MPNPE in Experiment 1.

(colored red in the figure), but that the concentration remains appropriately bounded in
the case of MPNPE (Fig. 8(c)), even after 700 iterations. Furthermore, Fig. 9 shows that
the local sum of the concentrations along the z-axis of the domain is unrealistically high
in the case of the PNPE, whereas the sum for the MPNPE remains bounded and within
steric limit. Computationally, we also observe that consecutive approximations to the
PNPE are increasingly difficult to compute as the simulation progresses due to the sharp
gradients, whereas approximations to solutions of the MPNPE maintain a more subtle
profile.

Figure 9: Comparison of the solutions of PNPE and MPNPE for the parallel plates domain system in Experiment
1. The local sum of positive and negative ion concentrations is plotted along the z-axis. A red hue indicates a
violation of the steric limit.

Experiment 2: Ionic current through a nanopore in the membrane

In this experiment, our aim is to accurately compute the current through a nanopore in
a membrane. The system setup is shown in Fig. 2(b). A three-dimensional view of the
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Figure 10: Three-dimensional solvent domain, Ωs, and an example of domain’s tessellation. This domain is
used in Experiments 2 and 3.

solvent domain Ωs is given in Fig. 10, where the dimensions of the full domain, Ωs∪Ωm

are 4 nm × 4 nm × 7.2 nm, whereas the length of the pore (modeled as a cylinder) is 4
nm with a radius of 0.9 nm. We summarize additional parameters for this experiment in
Table 4.

Table 4: Summary of parameters used in Experiment 2.

Name Symbol Value

Diffusivity for positive ions D+ 2.27×10−9 m2/s

Diffusivity for negative ions D− 2.41×10−9 m2/s

Relative permittivity of membrane ǫm 92

Relative permittivity of solvent ǫs 92

Ion diameter a 0.3 nm

Potential drop φtop−φbottom -180 mV

Temperature T 295 K

Periodic boundary conditions are applied in all directions for the concentrations, ex-
cept for the boundary of the pore, ∂Ωs,n (see Fig. 2(b)), where blocking conditions are
applied. For the potential, we enforce periodic conditions in the x and y directions, along
with the Dirichlet conditions at the top and bottom of the domain. That is, the top of the
domain is set at a potential of −90 mV and the bottom at +90 mV.

The ion size is taken to be the approximate size of the K+ or Cl− ions in the bulk [51].
In this setting, the PNPE do not exhibit steric effects. Consequently, we expect to see sim-
ilar results for PNPE and MPNPE, which we examine by computing steady state concen-
tration profiles and by computing the ionic currents. The difference between the steady
state concentrations for the positively charged ions for a uniform initial concentration
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Figure 11: Difference in approximating c+ for PNPE and MPNPE in Experiment 2.

of 1.623 M computed by PNPE and MPNPE is shown in Fig. 11. The figure shows that
both MPNPE and PNPE result in similar concentration profiles, with the majority of the
differences appearing near the channel edges where the gradient is the largest.

For the calculation of the electric current (2.6), we consider a circular slice through
the center of the channel which has a unit-normal vector pointing in the z-coordinate
direction. The resulting ionic current values are computed using both MPNPE and PNPE
and are listed in Table 5. As expected for ion concentrations below the steric limit, the
ionic currents calculated by MPNPE closely match those of PNPE.

Table 5: Nanopore ionic currents computed by solving PNPE and MPNPE.

Concentration (M) PNPE Current (pA) MPNPE Current (pA)

0.1082 198.10 198.00

1.623 2592.78 2590.12

2.705 4275.77 4272.34

Experiment 3: Ionic current through a nanopore in the presence of a non-
electrostatic potential

Next, we consider calculation of the ionic current through the nanopore domain de-
scribed in Figs. 2(b) and 10. In this experiment we apply a non-electrostatic potential at
the boundary of the membrane and the solvent domains denoted ∂Ωs,n. The dimensions
of the domain and parameters for the experiment are the same as specified in Table 4 for
Experiment 2, with the exception of the diffusivities D+ and D−, which are used for the
computation of the ionic currents. The diffusivities are obtained from the BD simulations
with the same setup [24], and are listed in Table 6.
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Table 6: Diffusivities used for the calculations of ionic current values reported in Table 7.

Atoms D+ (m2/s) D− (m2/s)

60 1.90584 1.96144

100 1.71593 1.72708

Fig. 12(a) illustrates the variation of the non-electrostatic potential U across the
nanopore wall, which is located around z= 2 nm in this plot. The non-electrostatic po-
tential applied here was designed as model of a silica surface and was designed to mimic
the free energy of the ions as function of distance from the surface observed in molecular
dynamics (MD) simulations [24]. It has the essential features of van der Waals interac-
tion: an attractive well and a repulsive wall. Such external potentials have been used in
MD simulations to represent such synthetic surfaces [24, 52]. The sharp gradient of the
potentials near the wall makes the traditional Galerkin method unstable, so we have to
apply our stabilized SUPG method to arrive at the solution. To illustrate the instability
in the Galerkin method, the variation of the element-wise Péclet number (defined in Sec-
tion 3.2) across the nanopore wall is shown in Fig. 12(b). Near the pore surface, the Péclet
number surpasses a value of 1.0, indicating likely instabilities in the Galerkin method
(see Section 3.2).
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(a) Profile of U (kT units) (b) Péclet number

Figure 12: Profiles of the non-electrostatic potential U (left) and the Péclet number (right) for the system
investigated in Experiment 3. The schematics of the system is shown in Fig. 2(b). Both profiles were computed
along a line parallel to the z-axis and passing through x = y = 1.5 nm. In these profiles, the surface of the
nanopore, which separates the solvent region from the membrane, is located at z=2 nm. The sharp repulsive
gradients in the potential U cause spurious modes in the Galerkin approximation.

For the computation of the ionic current through the nanopore, we use systems con-
taining 60 and 100 ions, which correspond to the uniform initial concentrations of 1623.26
and 2705.43 mM for each ion species. Fig. 13 shows representative concentration profiles
of positively-charged ions, c+, for the steady-state solutions of PNPE and MPNPE. Be-
cause the MPNPE formulation takes into account steric interactions between the ions,
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Figure 13: Concentration of positively charged ions (c+) along the x-axis (at y, z= 0 nm) in the nanopore
system (Fig. 2(b)) computed in the presence of the non-electric potential (Experiment 3). The overall ion
concentration is equivalent to the presence of 100 ions in the solvent domain.

the MPNPE solution generally shows lower ion concentration in the regions of large po-
tential gradients when compared to the PNPE solution.

Furthermore, Table 7 show that the ionic currents computed using PNPE and MPNPE
are lower in the case of MPNPE. It is important to note that the current calculations are
insensitive to small variations in the concentration since the form of the current calcula-
tion is an integral. Thus, while the difference in the PNPE and MPNPE current calcu-
lations are only around 2%, this represents a significant deviation in the concentration
(see Fig. 13). The ionic currents predicted by both PNPE and MPNPE are in reasonable
agreement with the results of the BD simulations.

Table 7: Nanopore ionic currents computed using BD, PNPE and MPNPE.

Atoms Concentration (M) BD Current (pA) PNPE Current (pA) MPNPE Current (pA)
60 1.623 2170±9 2421.54 2396.30

100 2.705 2960±18 3575.12 3514.29

Experiment 4: A nanopore containing a charged, spherical biomolecule

In this computational experiment, we model the presence of a biomolecule in a nanopore
using a uniformly charged sphere (see Fig. 14). A charge of 8 electron units is assigned to
reside in the center of the sphere. The volume occupied by the sphere is excluded from
the solvent domain and the non-electrostatic potential U is set to zero throughout the
system. Periodic boundary conditions are applied in all directions for the concentrations,
except for the boundary of the pore (∂Ωs,n) and the molecular surface (∂Ωmol), where
blocking conditions are applied. For the potential, we enforce periodic conditions in the
x and y directions, along with Dirichlet conditions at the top and bottom of the domain.
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Figure 14: Setup of Experiment 4. A spherical, charged biomolecule is placed inside a nanopore. The radius of
the sphere is 0.5 nm. The figure shows a 2D cross-section of the 3D domain.

That is, the top of the domain was set at a potential of -90 mV and the bottom at +90 mV.

In our experiments, we compare the concentration profiles obtained from the
Galerkin and SUPG method for the PNPE and the SUPG solution for the MPNPE. The
charge inside the biomolecule is handled numerically as described in Section 3.3.

In these experiments, we consider a system containing 10 positively-charged ions,
and 18 negatively-charged ions, which correspond to uniform initial concentrations of
0.102 and 0.184 M respectively, leading to an electrically neutral system. The relative
permittivity of the spherical molecule, the solvent, and the membrane are ǫmol=2, ǫs=78
and ǫm =4. The diffusivities of the ions are set to be D+=D−=2.27×10−9 m2/s, which
are typical values associated with a nanopore system. Finally, a potential drop of 180 mV
is applied across the system in the z direction, and the ion size parameter, a, is chosen to
be 0.5 nm, which is the nearest distance between the surface of the biomolecule and the
surface of the nanopore.

Figs. 15 and 16 show the resulting steady-state concentration profiles obtained by us-
ing the standard Galerkin method for the PNPE, the SUPG method for the PNPE and
the SUPG method for MPNPE. Fig. 15 illustrates the local concentration of negatively-
charged ions near the charged sphere. The PNPE solution exhibits very high local con-
centrations of ions near the surface of the sphere (a maximum of 27.9 M), whereas the
maximum concentration within the MPNPE solution is considerably less (a maximum of
9.3 M). Fig. 16 illustrates the local concentration of positively-charged ions. The Galerkin
solution of the PNPE features negative concentration values (a minimum of −0.0003 M),
whereas the SUPG solutions for both PNPE and MPNPE do not have this artifact.
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(a) Galerkin for PNPE (b) SUPG for PNPE (c) SUPG for MPNPE

Conc. (M)

Figure 15: Comparison of numerical solutions for a charged sphere/nanopore system (Experiment 4). The 2D
density plots show the local concentration of negatively-charged ions near a spherical biomolecule (within the
yz plane, see Fig. 14).

(a) Galerkin for PNPE (b) SUPG for PNPE (c) SUPG for MPNPE

Conc. (M)

Figure 16: Comparison of numerical solutions for a charged sphere/nanopore system (Experiment 4). The 2D
density plots show the local concentration of positively-charged ions within the yz plane of the system.

Experiment 5: Ionic current through a nanopore containing a 12-basepair DNA
duplex

In our final experiment, we demonstrate the capability of our solver by considering a
nanopore system that contains a 12-basepair DNA molecule. The atomic-resolution struc-
ture of a double-helical dodecamer in the canonical B-DNA form [53] is obtained from the
Protein Data Bank [54] (PDBID: 1BNA), see Fig. 17(a). The partial charges on the DNA
atoms are obtained by converting the PDB file to the PQR format using PDB2PQR [55,56].
This PQR file is also used to generate the surface mesh using GAMer [57] followed by the
full volumetric mesh through Gmsh [58]. The point charges inside the biomolecule are
handled numerically as described in Section 3.3.
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(a) The atomic-resolution structure of
the DNA molecule (PDBID: 1BNA)
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(b) Schematics of the computa-
tional domain in Experiment 5

(c) Tessellation of the
computational domain

Figure 17: Structure (a), setup (b) and mesh (c) of the DNA dodecamer system used in Experiment 5. The
ionic current is measured across the circular cross-section of the nanopore denoted as Γ in panel (b). Note the
fine mesh representing the atomic features of the DNA molecule in panel (c).

First, we discuss our results for a system containing 343 negatively-charged ions,
which corresponds to a uniform initial concentration of 0.813 M. In our experiments with
the DNA dodecamer, we always add 22 additional positively-charged ions to maintain
electroneutrality (which corresponds an increase in the uniform initial concentration of
0.052 M). As in Experiment 4, we use the following parameters: ǫmol=2, ǫs=78 and ǫm=4,
and D+=D−=2.27×10−9 m2/s. A potential drop of 180 mV is applied across the system
along the z axis. The ion size parameter, a, is chosen to be 0.55 nm, which the smallest
distance between the surface of the DNA and the surface of the nanopore. The volume
occupied by the DNA was excluded from the solvent domain and the non-electrostatic
potential U was set to zero throughout the system. Periodic boundary conditions were
applied in all directions for all concentrations, except at the boundary of the pore (∂Ωs,n)
and the molecular surface (∂Ωmol), where blocking conditions were applied. For the po-
tential, we enforced periodic conditions in the x and y directions, along with the Dirichlet
conditions at the top and bottom of the domain. That is, the top of the domain was set at
a potential of −90 mV and the bottom at +90 mV.

Fig. 18 shows 2D cross-sections of the total ion concentration, c=c++c−, in the steady-
state solutions to the PNPE and MPNPE. In these calculations, we do not use the stabi-
lized method as neither PNPE nor MPNPE develop solutions that feature negative con-
centration values. If compared to the MPNPE solution, the PNPE solution exhibits higher
ion concentrations near the DNA surface. However, we do not observe a significant dif-
ference between the ionic currents: 3622.81 pA for PNPE and 3560.6 pA for MPNPE. This
not uncommon since the current is an integral over a nanopore cross-section, so the dif-
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(a) PNPE (b) MPNPE

Conc. (M)

Figure 18: The sum of ionic concentrations, c= c++c− near the DNA surface (Experiment 5). The 2D plot of
ion concentration (in molar) is computed along the xz plane at y=0.8 nm, see Fig. 17(b).

ference in the local ion concentration near the DNA surface does not considerably alter
the total current.

Finally, we compute the current through the nanopore in the presence and absence of
the DNA molecule for several values of the ion concentration. Specifically, we perform
four experiments using 10, 43, 140, 200, 260 and 343 negatively-charged ions, which corre-
spond to the uniform initial concentration of 0.024, 0.102, 0.339, 0.474, 0.616 and 0.813 M,
respectively. In the absence of the DNA molecule, the number of positively-charged ions
equals that of the negatively-charged ions.

We characterize the outcome of these experiments by computing the conductance
blockade ∆G = (JnoDNA− JDNA)/∆φ, where JnoDNA is the current measured in the ab-
sence of DNA, JDNA is the current measured in the presence of DNA, and ∆φ is the total
potential drop in the system, which is 180 mV. We measure the current across a circu-
lar cross-section of the nanopore within the xy plane at z =−2.8 nm (denoted as Γ in
Fig. 17(b)). The results for the MPNPE calculations are plotted in Fig. 19, where we plot
bulk concentration against the conductance blockade. We identify the bulk concentra-
tion with the value of the steady state concentration of the negative ions at the top of the
domain. The conductance blockade changes its sign (from positive to negative) as the
ion concentration increases, which is a hallmark of the DNA translocation experiments
(cf. Fig. 4(a) of [59]).

5 Conclusions

The modified Poisson-Nernst-Planck equations account for steric effects and lead to
physically realistic results. In this paper we develop a finite element method for the MP-
NPE, with a focus on computing steady state concentrations. We achieve this by evolving
the system forward in time, thus ensuring that the number of ions in the system remains
conserved. The presence of a high potential gradient near the wall of the membrane
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Figure 19: The conductance blockade amplitude ∆G (nS) versus the bulk concentration (M) in the nanopore
system (Experiment 5). The solid line is a linear least-squares fit of the data.

causes instabilities in the Galerkin finite element method, which is indicated by high
Péclet number. In response, we stabilize the solution by employing a SUPG-type finite
element method. Initially our SUPG method augments the Galerkin weak form with a
strong form residual. However, this strong form residual is expensive to evaluate for the
MPNPE. Thus, we design a new SUPG method for the MPNPE which is derived from the
relationship between the weak Galerkin forms of the PNPE and the MPNPE. We high-
light our finite element solver for a variety of experiments, first showing the utility of
MPNPE in the case of flow between two oppositely charged plates. We then consider the
flow of ions through a nanopore, where we determine the ion size using BD simulations.
Finally, we explore the flow of ions around a DNA molecule. Our results indicate that
the MPNPE account for steric effects, and yield more physically meaningful solutions.
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Appendix A: Brownian dynamics

As we use Brownian Dynamics (BD) [22] to provide reference particle-based simulations,
we briefly describe this method here. A detailed description of our BD simulation model
can be found in Refs. [23, 24].

The interaction between each pair of ions consists of a short-range portion, which
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is computed from all-atom molecular dynamics simulations, and a long-range Coulomb
portion. The Coulomb portion is calculated using a uniform dielectric constant of 92 for
the solvent, which is close the bulk value of the TIP3P water model used in the molecular
dynamics simulations [60].

The short-range portion of the interaction is calculated by the weighted histogram
analysis method [61] using the results of many umbrella sampling molecular dynamics
simulations. The umbrella sampling molecular dynamics simulations are performed us-
ing NAMD [62] and the protocols that have been described previously [24], including
a 1 fs timestep, particle-mesh Ewald electrostatics, and a Langevin thermostat with a
damping constant of 0.2 ps−1. Interactions between the atoms of the systems (TIP3P wa-
ter and ions) are calculated using the CHARMM force field [63], which includes the ions
parameters for K+ and Cl− described in [64]. The simulation systems consist of a periodic
box of water that measures 5.8×5.8×5.9 nm3 after equilibration at 1 atm of pressure.

From the position distributions of the ions in these simulations, the weighted his-
togram analysis method [61] yields radial potentials for K+–K+, K+–Cl−, and Cl+–Cl+

having 0.01 nm resolutions. These potentials include water-mediated effects and have a
form similar to those used in [13]. The potentials are shifted to match the Coulomb ener-
gies at an ion separation of 1.4 nm. Beyond 1.4 nm, the Coulomb energies are used. To
make comparison between the results of the BD simulations and continuum calculations
easier, we did not explicitly consider the effect of induced charge at the interface of the
membrane material and electrolyte [24, 65].

In the Brownian dynamics simulations, the stochastic equation of motion is integrated
using a 10 fs timestep [13]. The interaction between all pairs of ions is computed by cubic
interpolation of the potentials constructed above, and the diffusivities are the same as
those used in the continuum models. The potential energy due to the pore U is imparted
by cubic interpolation from a uniform grid having a 0.03 nm resolution [66]. The exact
shape of the potential used to model the pore wall is shown in Fig. 12(a).

A.1 The effect of ion size

Here, we compare the results of our continuum calculations for the box domain described
in Section 4 with the BD simulations of this system, which explicitly captures the effects
of ion-ion interactions. The steady state concentrations obtained from BD, PNPE, and
MPNPE are illustrated in Fig. 20, for the system containing 3 K+ and 3 Cl− ions. When
using the ion size parameter a = 0.3 nm, the MPNPE concentration profile accurately
matches the BD solution. As a comparison, we also plot the MPNPE profile obtained
using a= 0.36 nm and a PNPE profile. Using a larger ion parameter in MPNPE lowers
the concentration peak, whereas in PNPE, which ignores steric effects, the concentration
peak is higher than in BD.

We repeat the same experiment using 4 and 5 ions of each K+ and Cl−. Similarly, the
results shown in Fig. 21 demonstrate that an ion size of 0.3 nm captures the concentration
profile from the corresponding BD simulations.
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Figure 20: Profile of concentration c+ for BD, PNPE, and MPNPE for the box domain (Experiment 1).
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Figure 21: Profile of concentration c+ for BD and MPNPE with the ion size parameter a=0.3 nm for the box
domain (Experiment 1).
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