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Abstract. Assumed having axial symmetry, the streamer discharge is often described
by a fluid model in cylindrical coordinate system, which consists of convection dom-
inated (diffusion) equations with source terms, coupled with a Poisson’s equation.
Without additional care for a stricter CFL condition or special treatment to the nega-
tive source term, popular methods used in streamer discharge simulations, e.g., FEM-
FCT, FVM, cannot ensure the positivity of the particle densities for the cases in attach-
ing gases. By introducing the positivity-preserving limiter proposed by Zhang and
Shu [15] and Strang operator splitting, this paper proposes a finite difference scheme
with a provable positivity-preserving property in cylindrical coordinate system, for
the numerical simulation of streamer discharges in non-attaching and attaching gases.
Numerical examples in non-attaching gas (N2) and attaching gas (SF6) are given to
illustrate the effectiveness of the scheme.
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1 Introduction

As the initial stage of various electrical discharges such as sparks and lightnings, streamer
discharges happen in natural environment and many industrial applications everyday.
Great efforts have been taken for the experimental study of streamer discharges over
several decades [1]. However, due to the lack of rigorous measurement methods, the ex-
isting experiment data are still insufficient to build a clear picture of streamer discharges,
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which makes numerical simulations an important auxiliary tool to predict detailed physi-
cal quantities in the discharge channel. A better understanding on the physics of streamer
formation and propagation may be achieved by comparing these numerical predictions
with experimental observations.

The most frequently used model to describe streamer discharges is the fluid model,
which consists of the particle density continuity equations (which are convection-domin-
ated equations with source terms) coupled with a Poisson’s equation with axial symme-
tries:

∂ne

∂t
+

1

r

∂(rverne)

∂r
+

∂(vezne)

∂z
−

Dr

r

∂

∂r

(
r

∂ne

∂r

)
−Dz

∂2ne

∂z2
=(α−η)ne|~ve|, (1.1)

∂np

∂t
+

1

r

∂(rvprnp)

∂r
+

∂(vpznp)

∂z
=αne|~ve|, (1.2)

∂nn

∂t
+

1

r

∂(rvnrnp)

∂r
+

∂(vnznp)

∂z
=ηne|~ve|, (1.3)

1

r

∂

∂r

(
rε0

∂U

∂r

)
+

∂

∂z

(
ε0

∂U

∂z

)
= e0(ne+nn−np), (1.4)

~E=(Er,Ez)
T =−

(
∂U

∂r
,
∂U

∂z

)T

, |~E|=
√

E2
r +E2

z , (1.5)

~ve,p,n=
(

v(e,p,n)r,v(e,p,n)z

)T
=µe,p,n(|~E|)~E, |~ve|=

√
v2

er+v2
ez, (1.6)

where t denotes time, r∈ [0,a1], z∈ [b1,b2], a1 >0, and b1,b2 ∈R; ne,p,n are the densities of
charged particles, µe,p,n are the movability coefficient;~ve,p,n is the drift velocity; Dr and Dz

are the diffusion coefficients, the index e, p, n stand for electrons, positive ions, negative
ions, respectively. U and ~E are the electrical potential and electric field, respectively; ε0 is
the dielectric coefficient in air; e0 is the unit charge of an electron. α and η are measured
by experiments and α> 0, η > 0. They are functions of |~E|/N, i.e., electric field strength
|~E| divided by the neutral gas number density N, see Fig. 1 for an example; in addition,
there exists such a critical value E1 for each gas that

{
α≤η, if |~E|≤E1;

α>η, if |~E|>E1.
(1.7)

By Eq (1.7), strictly speaking, the source term in Eq. (1.1) may be either negative or
positive for both non-attaching and attaching gases. However, when the applied voltage
is near or a little more than the breakdown voltage, for non-attaching gas, α−η is positive
everywhere in the discharge domain; α−η≪0 still exists for attaching gases, which leads
to a negative source term in Eq. (1.1).

For several decades, researchers to the paradigm of streamer discharge simulations
have been focusing on the solution of the convection dominated particle density conti-
nuity equations, especially on the discretization of the convection term. Due to the ion-
ization and charge accumulation effect, the particle density profile at the streamer’s head
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Figure 1: α and η for different gases (1Td=10−17V·cm2, N≈2.446×1019cm−3).

is very sharp. Thus, high order linear schemes solving convection dominated Eqs. (1.1)-
(1.3) may fail due to numerical oscillations, while first order schemes may add too much
numerical diffusion and smooth the particle density gradient.

The above problems were overcome by nonlinear schemes. The flux-corrected trans-
port (FCT) algorithm [6–8], which uses the high order (≥ 2) solution as much as pos-
sible and uses anti-diffusion term to limit the solution in the physical range, were in-
troduced to the field of streamer simulations, e.g., FDM-FCT by Morrow [3], Dhali and
Williams [20, 21], and FEM-FCT used by Morrow and Georghiou [4], Min [5]. The fi-
nite volume (FV) schemes, e.g., the FV scheme based on Koren’s limiter by Ebert [2],
the MUSCL scheme used by Papageorghiou et al. [22], the ULTIMATE QUICKEST used
by Bessieres et al. [9] and Pancheshnyi et al. [10], gradually become popular since 2000.
The schemes mentioned above are generally free of numerical oscillations. However, a
question raised for the above mentioned algorithms: Can they always ensure the particle
densities to be positive especially for cases in attaching gases, or at what price do they
preserve the positivity?

FCT and the about mentioned FVM are in principle monotone thus positivity preserv-
ing, thanks to the limiters or similar strategies they used. However, it is also due to the
limiters that these schemes reduce to first order accuracy at local extremes. In addition,
FVM schemes like MUSCL may be diffusive for long term simulations of streamer dis-
charges, which makes the streamer charge propagates more rapidly [12]. Further more,
the extra stricter time step restriction to ensure the positivity in the existence of negative
source terms has not been carefully considered in previous literatures. Some previous
researchers using FVM for streamer discharge simulations used the limiters in cylindri-
cal coordinate system, and used the physical variable instead of the conservative vari-
able when constructing the numerical flux, which may make the schemes not positivity-
preserving near the origin r= 0 under the mild CFL condition αλ≤ 1 for a single Euler
forward step, see an example in the appendix.
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In streamer discharge simulations, a non-oscillatory, positivity preserving solution to
the particle densities is a basic requirement. Though negative numerical solutions do not
blow up the simulations, however, the convection-diffusion equations which describe
the charges’ motion are coupled with the Poisson’s equation, i.e., the charge densities
are the input of the Poisson’s equation, which determines the electric field distribution
in space. When the solution of charge densities are negative, considering their physi-
cal effect to the electric field distribution, the polarity of the charges are changed, e.g,
positive charges with negative densities, is equivalent to negative charges. In addition,
when the charges with negative densities accumulate, their distortion to the electric field
may become larger, which may even drive the charges to drift in a wrong direction.
Some researchers added same amount of electrons and positive ions to keep the den-
sity of electrons always above zero. However, this would alter the reaction terms. Thus
a positivity-preserving scheme for streamer discharge simulations is highly desired, es-
pecially for the streamer discharge simulations in attaching gases. By introducing the
positivity-preserving limiter proposed by Zhang and Shu [15] and Strange operator split-
ting [13], this paper proposes a high order WENO finite difference scheme with a prov-
able positivity-preserving property in cylindrical coordinate system, for the numerical
simulation of streamer discharges in non-attaching and attaching gases.

This paper is organized as follows. We first consider a 1-dimensional positivity-
preserving WENO finite difference scheme for the convection equations in cylindrical
coordinate system without source terms and illustrate the main idea to preserve the pos-
itivity. A sufficient condition for convection problems to preserve the positivity and the
related limiter to enforce this condition is given. After that, we consider the cases with
diffusion and source terms, and give the additional CFL condition required to guarantee
the positivity. Then the scheme is extended to 2-dimension. Numerical simulations of
streamer discharges in non-attaching gas (N2) and attaching gas (SF6) are given to show
the effectiveness of the scheme. Finally, we draw some conclusions.

2 1-dimensional positivity-preserving WENO finite difference

scheme for convection equations with axial symmetry

Taking the governing equation of electrons for example, multiplying Eq. (1.1) by r, we
get
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To illustrate the main idea of the positivity-preserving WENO finite difference scheme
for Eq. (2.1), we start from 1-dimensional cases.
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2.1 WENO finite difference scheme for convection equations: monotone cases

We first consider the following 1D case:
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+
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∂r
=0, r∈ [0,a1], a1>0, t≥0. (2.2)

In addition, we assume f ′(u)≥0 and f (0)=0. In our case of Eq. (2.1), f (0)=0 is satisfied.

For simplicity, we choose the spatial cell size △r=a1/K for K being a positive integer,
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So what we need to do to achieve Eq. (2.4) is to let
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From Eq. (2.5), the point value ri f (ui) is the average of h(r) over the domain [ri− 1
2
,ri+ 1

2
],

i.e., hi=ri f (ui). In order to achieve Eq. (2.7), we use the average value of h(r), i.e., hi and
the average of cell i’s neighbors, to reconstruct the point value hi+ 1

2
at the cell interface

i+ 1
2 . WENO reconstruction is a good choice for such a reconstruction [14].

The explicit forms of high order WENO schemes can be found in, e.g., [14]. For the



158 C. Zhuang and R. Zeng / Commun. Comput. Phys., 15 (2014), pp. 153-178

third order WENO scheme, h−
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Summarize the WENO scheme for Eq. (2.2):

1. At the time level n, obtain the cell average of h on cell i by h
n
i = ri f (ui);

2. Use WENO reconstruction based on h
n
i and h
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j , where cells j are in the neighborhood of cell i,

to construct the point value at ri+ 1
2
, and denote it by h−
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;
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;

4. Solve Eq. (2.3) to obtain the point value un+1
i at time level n+1.

Set λ=△t/(△r). Discretizing Eq. (2.3) in time by forward Euler method, the scheme
reads
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Remark 2.1. In scheme (2.9), the point value ri f (ui) rather than f (ui) is regarded as the
cell average. If f (ui) is regarded as the cell average of an implicit polynomial h, i.e.,
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the resulted scheme is 2nd order accurate at most even if higher order (≥ 3) WENO is
used.

2.2 A sufficient condition for the positivity-preserving property: monotone
cases

Provided u>0, for a monotone f (u) which satisfies 0≤ f ′(u)≤α and f (0)=0, it’s directly
forward to get by Taylor’s expansion that 0≤ f (u)≤ αu, and r(u− f (u)/α)≥ 0 for any
r>0. Eq. (2.9) reads
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2

.

To preserve the positivity of u, it suffices to ensure H2≥0 and H3≥0. Since ri f (ui) is
the cell average of h(r) over cell i, by Gauss-Lobbato quadrature, we have
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where ωj is the quadrature coefficients and ∑
N
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then m1 ≤ h−∗ ≤ M1. By the mean value theorem, there exists an r∗ in cell i such that
h(r∗)=h−∗. Eq. (2.14) reads
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Plugging Eq. (2.15) into Eq. (2.13), Eq. (2.13) reads
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α
+H3. (2.16)

A sufficient condition for scheme (2.16) to be positivity-preserving is given [17, 18]:

Theorem 2.1. Given positive un
i , consider a finite difference scheme (2.9) or equally scheme

(2.16), associated with the approximation polynomial h, then un+1
i >0 if

h−∗≥0, h−
i+ 1

2

≥0, h−
i− 1

2

≥0 and αλ≤ωN (2.17)

provided that the inequalities don’t achieve the equality signs at the same time.
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More theoretical backgrounds about Theorem 2.1 can be found, e.g, in [17, 18].
The above sufficient condition for WENO finite difference scheme to ensure the pos-

itivity, largely depends on the fact that the point value ri f (ui) itself is the cell average
of an implicitly existing polynomial h(r), which makes it possible for the point value to
be expressed by Gauss-Lobatto quadrature whose quadrature points include the two cell
ends, which finally constructs a connection between the point value ri f (ui) and the fluxes
h−

i± 1
2

at cell interfaces.

Remark 2.2. Without the assumption f (0)=0, H1, H2 and H3 would read
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Since h(r) approximates r f as a whole rather than f , thus r f (u)≥ ri f (0) is not guar-
anteed over the domain [ri− 1
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2
] although f (u)≥ f (0), therefore we are not able to get

a sufficient condition like Eq. (2.17) using the strategy (2.14). This may be cured by a
different definition of cell average, i.e.,
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By this way, h(r) approximates f (r) rather than r f (r). However, this leads to a new finite
volume scheme and we leave it as a future work.

Remark 2.3. For the cases −α≤ f ′(u)<0 and f (0)=0, we have αu+ f (u)≥0. Eq. (2.13)
reads
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Denote h+∗= 1
1−ω1

(hi−ω1h+
i− 1

2

). Similarly, a sufficient condition for Eq. (2.20) to pre-

serve the positivity of u is given:

Theorem 2.2. Given positive un
i , consider a finite difference scheme (2.20), associated with the

approximation polynomial h, then un+1
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≤0 and αλ≤ω1 (2.21)

provided that the inequalities don’t achieve the equality signs at the same time.
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2.3 A linear scaling limiter

The sufficient condition (2.17) can be enforced by a linear scaling limiter [16]. Assuming

hi ∈ [m,+∞) with m≥ 0, it suffices to apply the following limiter to make ĥ−
i+ 1

2

≥m and

ĥ−∗≥m:

ĥ(r)= θ(h(r)−h i)+hi, θ=min

{
hi−m

hi−qmin

,1

}
, (2.22)

where qmin =min(h−
i+ 1

2

,h−∗). Then use ĥ−
i+ 1

2

instead of h−
i+ 1

2

in Eq. (2.9). To enforce suffi-

cient condition (2.17), we set m=0.

Remark 2.4. Eq. (2.22) is for the cases where f ′(u)≥0. For the cases where f ′(u)<0 and

hi∈(−∞,M] with M≤0, the limiter reads ĥ(r)=θ(h(r)−hi)+hi, θ=min{ hi−M

hi−qmax
,1}, where

qmax =max(h+
i− 1

2

,h+∗). Then max(ĥ+
i− 1

2

,ĥ+∗)≤ M after limiting. To enforce the sufficient

condition (2.21), we set M=0.

Remark 2.5. As already stated by X. Zhang [15], h(r) would have a smaller minimum
than r f ∈ [m,+∞). If we enforce h(r)∈ [m,+∞), order degradation would occur. Fortu-
nately, the positivity-preserving limiter only needs to be turned on when the positivity
is violated, while in regions with strictly positive solutions, the limiter can be turned off
and does not cause order degradation even at positive local extremes.

2.4 WENO finite difference scheme for convection equations: general cases

On general occasions that f (u) is not locally monotone over the stencil,e.g., Ii+ 1
2
, which

is for a flux construction at the interface ri+ 1
2
, the following flux splitting is performed:

p
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where αi+ 1
2

is the local maximum of | f ′(u)| over the stencil. The superscript i+ 1
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to clarify that the splitting is related to the interface ri+ 1
2
. We have
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Under the assumption f (0)=0, we still have p
i+ 1

2
+ (0)= p

i+ 1
2

− (0)=0. In addition,
∂p
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±
∂u ≥0,

which implies p
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± (u)≥ p
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2

± (0)=0 for all u≥0.
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At time level tn, for each fixed interface ri+ 1
2
, the procedure to reconstruct the flux

r̂ f i+ 1
2

is given as follows:

1. Choose αi+ 1
2
=maxj | f ′(u)|, for all j in the stencil Ii+ 1

2
.
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2
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2
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2

j,− , respectively.
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2
, i.e., ql
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2 ,+

and qr
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2 ,−
, by WENO recon-

structions, based on the cell averages q
i+ 1

2
j,+ and q

i+ 1
2

j,− , respectively; the superscript l and r mean

they are the value at the left side or right side of the interface ri+ 1
2
respectively.

4. Obtain r̂ f i+ 1
2
=αi+ 1

2
(ql

i+ 1
2 ,+

−qr
i+ 1

2 ,−
).

The finite difference scheme for Eq. (2.2) is

riu
n+1
i = riu

n
i −λ

(
(̂r f )i+ 1

2
− (̂r f )i− 1

2

)
. (2.25)

2.5 A sufficient condition for the positivity-preserving property: general cases

Given a general function f (u), in a WENO finite difference scheme listed above, neither
the point value ri f (ui) nor riui is a cell average of a single polynomial. However, they can
be regarded as linear combinations of the cell averages of two polynomials, which makes

us possible to construct a connection between the point values and the fluxes r̂ f i± 1
2

by

Gauss-Lobatto quadrature. Scheme (2.25) reads

riu
n+1
i =riu

n
i −λ

(
r̂ f i+ 1

2
− r̂ f i− 1

2

)
=

1

2
(riu

n
i +riu

n
i )−λ

(
r̂ f i+ 1

2
− r̂ f i− 1

2

)

=
1

2

(
q

i+ 1
2

i,+ +q
i+ 1

2
i,− +q

i− 1
2

i,+ +q
i− 1

2
i,−

)
−λ

(
αi+ 1

2
(ql

i+ 1
2 ,+

−qr
i+ 1

2 ,−
)−αi− 1

2
(ql

i− 1
2 ,+

−qr
i− 1

2 ,−
)

)

=Q1+Q2, (2.26)

where

Q1=
1

2
q

i+ 1
2

i,− +λαi− 1
2
ql

i− 1
2 ,+

+
1

2
q

i+ 1
2

i,+ −λαi+ 1
2
ql

i+ 1
2 ,+

, (2.27a)

Q2=
1

2
q

i− 1
2

i,+ +λαi+ 1
2
qr

i+ 1
2 ,−

+
1

2
q

i− 1
2

i,− −λαi− 1
2
qr

i− 1
2 ,−

. (2.27b)

Assume there exists a polynomial h1 of degree k whose cell average on cell i is q
i+ 1

2
i,+ ,

such that h1,i+ 1
2
=ql

i+ 1
2 ,+

, h1,i− 1
2
=qr

i− 1
2 ,+

, and h1 is a (k+1)-th order accurate approximation

to the function p
i+ 1

2
+ on the cell if u is smooth. The existence of such a polynomial can
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be established by interpolation for WENO schemes [14]. By Gauss-Lobatto quadrature,

q
i+ 1

2
i,+ =∑

N
j=1 ωjh1j =(∑N−1

j=1 ωjh1j)+ωNql
i+ 1

2 ,+
. Similar to the previous section, define h∗1 =

1
1−ωN

(q
i+ 1

2

i,+ −ωNql
i+ 1

2 ,+
), then

Q1=
1

2
q

i+ 1
2

i,− +λαi− 1
2
ql

i− 1
2 ,+

+
1

2

(
(1−ωN)h

∗
1+(ωN−2λαi+ 1

2
)ql

i+ 1
2 ,+

)
. (2.28)

To ensure Q1≥0, it suffices to provide ql
i− 1

2 ,+
≥0, h∗1 ≥0, ωN−2λαi+ 1

2
≥0 and ql

i+ 1
2 ,+

≥0.

Similarly, define h∗2=
1

1−ω1
(q

i− 1
2

i,− −ω1qr
i− 1

2 ,−
), a sufficient condition for the non-negativity

of Q2 is qr
i+ 1

2 ,−
≥0, h∗2 ≥0, ω1−2λαi− 1

2
≥0 and qr

i− 1
2 ,−

≥0.

Let’s summarize in the following theorem:

Theorem 2.3. For finite difference scheme (2.25), given a positive un
i , un+1

i is positive if

ql
i− 1

2 ,+
≥0, h∗1 ≥0, ql

i+ 1
2 ,+

≥0, (2.29a)

qr
i− 1

2 ,−
≥0, h∗2 ≥0, qr

i+ 1
2 ,−

≥0, (2.29b)

provided that λmax(αi+ 1
2
,αi− 1

2
)≤ω1/2 and the inequalities don’t achieve the equality signs at

the same time.

In real implementations, the above sufficient condition can be further simplified for
different occasions. Assume f ′(u)≥ 0 over stencil Ii+ 1

2
, and f (u) is not monotone over

stencil Ii− 1
2
, then due to the fact r̂ f i− 1

2
=αi− 1

2
(ql

i− 1
2 ,+

−qr
i− 1

2 ,−
) and riui=q

i− 1
2

i,+ +q
i− 1

2
i,− , Eq. (2.25)

reads

riu
n+1
i =riu

n
i −λ

(
r̂ f i+ 1

2
− r̂ f i− 1

2

)
=

(
1

2
riu

n
i −λr̂ f i+ 1

2

)
+

(
1

2
riu

n
i +λr̂ f i− 1

2

)

=
1

2

(
riui−2λr̂ f i+ 1

2

)
+

1

2

(
(q

i− 1
2

i,+ +q
i− 1

2

i,− )+2λαi− 1
2
(ql

i− 1
2 ,+

−qr
i− 1

2 ,−
)

)

=
1

2
(W1+W2+W3), (2.30)

where W1=riui−2λr̂ f i+ 1
2
, W2=q

i− 1
2

i,− −2λαi− 1
2
qr

i− 1
2 ,−

, W3=q
i− 1

2
i,+ +2λαi− 1

2
ql

i− 1
2 ,+

. It’s obvious

that ui is positive if W1≥0, W2≥0, W3≥0, provided at least one inequality does not achieve
the equality sign. On this occasion, a sufficient condition to ensure the positivity of un+1

i
is

h−
i+ 1

2

≥0, h−∗≥0
︸ ︷︷ ︸

W1≥0

, qr
i− 1

2 ,−
≥0, h∗2 ≥0

︸ ︷︷ ︸
W2≥0

, ql
i− 1

2 ,+
≥0

︸ ︷︷ ︸
W3≥0

, (2.31)
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provided at least one inequality does not achieve the equality sign, under the CFL condi-
tion λmax(αi− 1

2
,αi+ 1

2
)≤ω1/2.

Other three occasions can be treated similarly, which include: 1), f ′(u)<0 over stencil
Ii+ 1

2
, and f (u) is not monotone over stencil Ii− 1

2
; 2), f ′(u)≥0 over stencil Ii− 1

2
, and f (u) is

not monotone over stencil Ii+ 1
2
; 3), f ′(u)< 0 over stencil Ii− 1

2
, and f (u) is not monotone

over stencil Ii+ 1
2
. If f (u) is monotone over a stencil, the flux splitting is not necessary.

3 Generalizations

3.1 Generalization to cases with a source term

Let S be the source term. If S≥ 0, it’s obvious that un+1
i ≥ 0, if un

i ≥ 0 and the sufficient
condition (2.29) is satisfied. If S<0, the scheme reads, e.g. [15],

riu
n+1
i =riu

n
i −λ

(
(r̂ f )i+ 1

2
−(r̂ f )i− 1

2

)
+riS(ri,ui)△t

=
1

2

(
riu

n
i −2λ

(
(r̂ f )i+ 1

2
−(r̂ f )i− 1

2

))
+

ri

2
(un

i +2S(ri,ui)△t) .

For the positivity of un+1
i , it suffices to ensure

riu
n
i −2λ

(
(r̂ f )i+ 1

2
−(r̂ f )i− 1

2

)
≥0 =⇒ △t≤△t0, (3.1a)

un
i +2S(ri,ui)△t≥0 =⇒ △t≤△t∗. (3.1b)

How to ensure Eq. (3.1a) has already been discussed in the previous section. One can
choose a time step satisfying the requirements of Eq. (3.1a) and Eq. (3.1b), i.e., let △t≤
min(△t0,△t∗).

In addition, we propose an alternative strategy by Strang operator splitting [13].
Sometimes, the source term may be a bit stiff, resulting in a small △t. On these occasions,
the Strang operator splitting together with suitable implicit or exact time integration of
the source term can not only achieve a larger time step but also preserve the positivity.

Let R denote the source term, C denote other terms. The symmetric Strang splitting
is given:

1. Solve du/dt=R for △t/2 to get ûi
n+ 1

2 ;

2. Solve ∂(riui)/∂t+C=0 for △t to get ûi
n+1;

3. Solve du/dt=R for another △t/2 to get un+1
i .

Also, we have another similar alternative:

1. Solve ∂(riui)/∂t+C=0 for △t/2 to get ûi
n+ 1

2 ;

2. Solve du/dt=R for △t to get ûi
n+1;
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3. Solve ∂(riui)/∂t+C=0 for another △t/2 to get ui
n+1.

In our problems, the source terms for Eqs. (1.1), (1.2) and (1.3) are Re =(α−η)|~ve |ne,
Rp = α|~ve|ne and Rn = η|~ve |ne, respectively. Assuming |~ve| remains constant from tn to

tn+ 1
2 = tn+△t/2, the analytic solutions for the reaction terms are given

n̂e
n+ 1

2 =nn
e exp

[
(α−η)|~ve |

△t

2

]
, (3.2a)

n̂p
n+ 1

2 =

{
αnn

e
α−η

{
exp

[
(α−η)|~ve |

△t
2

]
−1
}
+nn

p if α 6=η;

αnn
e |~ve|

△t
2 +nn

p if α=η,
(3.2b)

n̂n
n+ 1

2 =

{
ηnn

e
α−η

{
exp

[
(α−η)|~ve |

△t
2

]
−1
}
+nn

n if α 6=η;

ηnn
e |~ve|

△t
2 +nn

n if α=η.
(3.2c)

Provided the initial values at tn are positive, it’s directly forward to show n̂e
n+ 1

2 > 0,

n̂p
n+ 1

2 ≥nn
p>0, n̂n

n+ 1
2 ≥nn

n >0.

3.2 Generalization to cases with a diffusion term

We discretize the diffusion term by 2nd order central finite difference:

riu
n+1
i =riu

n
i −λ

(
(r̂ f )i+ 1

2
−(r̂ f )i− 1

2

)
+riS(ri,ui)+λDr

(
ri+ 1

2

ui+1−ui

△r
−ri− 1

2

ui−ui−1

△r

)

=
1

4

(
riu

n
i −4λ

(
(r̂ f )i+ 1

2
−(r̂ f )i− 1

2

))
+

ri

2
(un

i +2S(ri,ui)△t)

+
riu

n
i

4

(
1−8λ

Dr

△r

)
+λDr

( ri+ 1
2

△r
un

i+1+
ri− 1

2

△r
un

i−1

)
.

Since (
r

i+ 1
2

△r un
i+1+

r
i− 1

2
△r un

i−1)≥0, for the positivity of un+1
i , it suffices to ensure

riu
n
i −4λ

(
(r̂ f )i+ 1

2
−(r̂ f )i− 1

2

)
>0, (3.3a)

un
i +2S(ri,ui)△t≥0, (3.3b)

8Drλ≤△r. (3.3c)

Condition (3.3) is sufficient, but not necessary. Also, one can assign the term riui for
convection, diffusion and source term in different ways for a specific problem to make
the allowed △t as large as possible.
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3.3 Generalization to two dimensions

For simplicity, we only give the case for convection terms. The two dimensional equation
is given by

∂(ru)

∂t
+

∂(r f (u))

∂r
+

∂(rg(u))

∂z
=0. (3.4)

A finite difference scheme is given by, e.g.,

riu
n+1
i,j =riu

n
i,j−

△t

△r

(
(̂r f )i+ 1

2 ,j− (̂r f )i− 1
2 ,j

)
−

△t

△z

(
(̂rg)i,j+ 1

2
− (̂rg)i,j− 1

2

)

=
1

2

(
riu

n
i,j−

2△t

△r

(
(̂r f )i+ 1

2 ,j− (̂r f )i− 1
2 ,j

))

+
1

2

(
riu

n
i,j−

2△t

△z

(
(̂rg)i,j+ 1

2
− (̂rg)i,j− 1

2

))
. (3.5)

By a proper assignment of the term riui, the two dimensional case is split to two
one-dimensional cases and the positivity-preserving limiter can be applied dimension by
dimension.

4 Time integration

After the space discretization, we get an ODE,

du

dt
=L(u). (4.1)

The Total-Variation-Diminishing Runge-Kutta (TVDRK) proposed by Shu is used for
time discretization [19]. For 2nd order accuracy in time,

u(0)=un, (4.2a)

u(1)=u(0)+L(u(0))△t, (4.2b)

un+1=
1

2
un+

1

2

(
u(1)+L(u(1))△t

)
. (4.2c)

In our simulations, if Strang splitting is not applied, TVDRK is used for all the parts
including convection/diffusion and source terms; or the TVDRK is only used to solve
the convection/diffusion parts and the reaction parts are solved exactly. Since TVDRK is
a convex combination of Euler forward, and the exact integration of the source terms is
positivity-preserving, the full scheme is still positivity-preserving.
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5 Whole algorithm for streamer simulations

The Poisson’s equation is discretized by 2nd order central finite difference scheme.

ui+1,j−2ui,j+ui−1,j

△r2
+

ui+1,j−ui−1,j

2ri△r
+

ui,j+1−2ui,j+ui,j−1

△z2

=
e0

ε0

(
ne;(i,j)+nn;(i,j)−np;(i,j)

)
, (5.1a)

Ei,j=(Er;i,j,Ez;i,j)
T =

(
ui−1,j−ui+1,j

2△r
,
ui,j−1−ui,j+1

2△z

)T

. (5.1b)

Eq. (5.1a) can be solved by FISHPACK, which is based on cyclic reduction and Fast
Fourier transform [11].

At time level tn, given nn
e , nn

p, nn
n, the whole simulation flowchart is as follows:

1. Solve the Poisson’s equation to get the electric field, by Eqs. (5.1a) and (5.1b);

2. Calculate all the necessary coefficients in Eqs. (1.1)-(1.3), i.e., α, η, ve, vp, vn;

3. Use the positivity-preserving scheme described in Section 2 and Section 3 to solve Eqs. (1.1)-
(1.3), either using Strang splitting or not, and get nn+1

e , nn+1
p , nn+1

n .

4. Move to the next time level tn+1 and go to step 1.

Below we will call the method using Strang splitting with exactly solved reactions the
Method I, and call the other one the Method II.

6 Numerical examples for the positivity-preserving scheme

We use pure advection problems to test the effectiveness of the positivity-preserving
scheme.

6.1 A case with smooth solutions

The following problem was solved by fifth order WENO finite difference scheme (WENO5)
together with third order TVDRK.

∂u

∂t
+

1

r

∂(ru)

∂t
=0, r∈ [a,b], a=0.0001, b= a+1, (6.1a)

n(r,t=0)=
1

r
(1.0001+sin(2π(r−a)), au(a,t)=bu(b,t). (6.1b)

Results listed in Table 1 shows, if the solution is strictly positive, optimal convergence
is achieved on sufficient fine grids.
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Table 1: Comparison of errors with and without the limiter when t=0.5, with △t=(△r)
5
3 .

1
△r

without the limier with the limiter

||riui−riu
h
i ||1 order ||ui−uh

i ||1 order ||riui−riu
h
i ||1 order ||ui−uh

i ||1 order

20 7.60e-4 2.56e-3 1.10e-3 4.43e-3

40 2.28e-5 5.06 7.54e-5 5.09 1.35e-4 3.03 6.50e-4 2.77

80 7.05e-7 5.02 2.40e-6 4.97 1.50e-5 3.17 6.36e-5 3.35

160 2.20e-8 5.00 7.64e-8 4.97 2.20e-8 9.41 7.64e-8 9.70

320 6.87e-10 5.00 2.42e-9 4.98 6.87e-10 5.00 2.42e-9 4.98

6.2 A case with discontinuity in Cartesian coordinate system

The following problem, whose exact solution is always no less than 0, was used to test
the positivity-preserving limiter.

∂u

∂t
+

∂u

∂x
=0, x∈ [−1,1], (6.2a)

u(x,t=0)=





exp
{

−ln2
36×0.0052 (x+0.7)2

}
, −0.8≤ x≤−0.6,

1, −0.4≤ x≤−0.2,

1−10|x−0.1|, 0≤ x≤0.2,√
1−102(x−0.5)2, 0.4≤ x≤0.6,

0, otherwise,

(6.2b)

with periodic boundary condition.

Fig. 2(a) shows the numerical solution of WENO5 with the positivity-preserving lim-
iter. As a comparison, we present the result of MUSCL with minmod limiter in Fig. 2(b).
Though MUSCL preserves the positivity (c.f. Table 2), however, it is more diffusive,
for which we choose a high order WENO scheme as the basis to build our scheme for
streamer simulations.

Table 2: The minimum of the point values computed with WENO5 and MUSCL, △t=(△x)
5
3 .

2
△x exact

5th order WENO
MUSCL

without limiter with limiter

80 0 -1.94e-2 1.94e-07 3.15e-3

160 0 -7.21e-4 3.44e-34 1.86e-5

320 0 -2.41e-6 4.40e-40 1.37e-9

640 0 -3.86e-7 3.78e-80 3.77e-17

Table 2 shows that without the positivity-preserving limiter, the numerical solution
by WENO5 violates the positivity. We also remark that, for this example, when the limiter
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Figure 2: A comparison of WENO5 with positivity-preserving limiter and MUSCL, computed with 320 points.

turns on, one would better write the limiter in an equivalent form, ĥ−
i+ 1

2

=(1−
hi−h−

i+ 1
2

hi−qmin
)hi,

to reduce the round-off error.

7 Results

7.1 In non-attaching gas

We first test a double headed streamer discharge simulation in Nitrogen. The configura-
tion is shown in Fig. 3, U0 = 52 kV, P= 760 Torr, a= b= 1.0 cm and all other coefficients
can be found in [21]. For clarity, we omit the negative ions for non-attaching gases. The
initial condition is ne=np=1014 exp{−(r/0.021)2−(z−0.5/0.027)2}+108 cm−3. The time
step used is 10−13 s.
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Figure 3: The configuration of the discharge simulation.
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7.1.1 Comparisons of results by Method I and Method II

Under same simulation configuration, results computed by the Method I (Strang splitting
with exactly solved reaction) or the Method II should agree. In our comparison, the
relative difference between A and B is always defined as |A−B|/|B| provided B 6=0.

Fig. 4(a) shows the electric field along the z-axis obtained by the Method I at different
times (1 ns =10−9 s) and Fig. 4(b) shows the results obtained by the two methods agree
with each other. The electric field is largely enhanced and move towards the opposite
electrodes.
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(a) electric field along z-axis by Method I
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Figure 4: Calculated electric field along z-axis by the Method I and Method II.

Fig. 5 shows the electron and net charge distributions at different times by the two
methods.

7.1.2 Influence of heavy ions’ movements

The heavy ions drift much more slowly than electrons. If the electrons move 10 cm, the
ions move about 1 mm. Compared with the rapid streamer propagations, ions remain
almost static. Fig. 6 and Fig. 7 show, omitting the heavy ions’ movements, the electric
field along z-axis and the charge distribution almost remain unchanged.

We conclude that the movements of the heavy ions have little effect on the streamer
propagation, and can be omitted, which makes Eq. (1.2) and Eq. (1.3) reduce to ODEs and
largely simplifies the model.

7.2 In attaching gas

We give some simulation results of streamer discharges in SF6. The configuration is same
as Fig. 3. We choose N=2.446×1025 m−3, a=b=0.5 cm, U=50 kV and △t=10−13 s. The
movements of the heavy ions are neglected due to their little influence.
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Figure 5: Computed charge densities by the Method I and Method II at different times.
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Figure 6: The electric field distribution of streamer neglecting the ions’ movement.
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Figure 7: The charge distribution of streamer neglecting the ions’ movement at t=2.25 ns.

7.2.1 Comparisons between results with and without the limiter

First we compare the results obtained with and without the limiter. The initial condition
is ne = np = 1014exp{−(r/0.021)2−(z/0.027)2}+104 cm−3 and nn = 0. On this occasion,
the numerical solution of the electron density will keep positive even without the limiter
due to strong background photo-ionizations. However, the positivity-preserving limiter
did turn on if the above sufficient conditions were enforced, and cost a little more CPU
time than the case without the limiter.

Fig. 8 shows the net charge density distributions in the space at t = 1 ns. The ob-
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Figure 8: The particle density distributions obtained with and without the limiter at t=1 ns.
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tained net particle densities with and without the limiter agree with each other and the
relative difference is small, e.g., with the limiter, the obtained maximal positive and neg-
ative net charge densities are 0.69190 µC/cm−3 and 5.3390 µC/cm−3, respectively; while
without the limiter, these values are 0.69206 µC/cm−3 and 5.3390 µC/cm−3, respectively.
From Fig. 8, the charge distributions for attaching gas is more complex than those of non-
attaching gases. There are both negative net charge area and positive net charge area in
the streamer channel: the outer is mainly negative net charge area and inner is mainly
positive net charge area. In addition, the maximum of the negative net charge density is
about 10 times larger than that of positive net charge density.

Specifically, Fig. 9 shows the space distributions of charged particle densities along
the z-axis at t= 1 ns. The obtained particle densities with and without the limiter agree
with each other. From Fig. 9(a), due to the attachment, the electron density in the body
of the streamer is reduced by approximately one to two orders of magnitude. However,
the ion densities were much larger, approximately one order of magnitude, than those of
non-attaching gases, due to the stronger collision ionizations and attachments caused by
the higher breakdown electric field (BDEF).
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Figure 9: The particle densities along the z-axis obtained with and without the limiter at t=1 ns.

Fig. 10 shows the electric field along the z-axis. The results computed with or without
the limiter agree with each other and the relative difference is small. From Fig. 10(a), the
electric field behind the streamer front is close to the value which makes α = η (below
we name it as balance electric field (BEF)). For non-attaching gas, e.g., N2, BEF is much
smaller than BDEF and the electric field behind the streamer front may be much above it,
which is different from attaching gases.

From the comparisons, we conclude that the positivity-preserving limiter does not
change the exact results.
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Figure 10: Comparison of electric field along the z-axis with and without the limiter.

7.2.2 Results for cases without background photo-ionization

Secondly, we simulate a negative streamer that develops without any background photo-
ionization. The initial condition is ne = np = 1014exp{−(r/0.021)2−(z/0.027)2} cm−3

and nn = 0. On this occasion, without positivity-preserving limiter, the WENO finite
difference scheme fails to give non-negative charged particle densities. In our simulation,
the positivity-preserving limiter turned on at each time step.

Fig. 11 shows the electric field along the z-axis at different times. Compared with
Fig. 10(a), without the photo-ionization, the anode-directed streamer develops more slow-
ly. However, the maximal electric field is nearly 30 percent larger at t=1 ns.

Fig. 12 shows the particle densities along the z-axis at different times. Similarly to
the results shown in the last section, the electron density in the streamer channel is also
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Figure 11: The electric field along the z-axis computed with the limiter at different times (without photo-
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Figure 12: The particle densities along the z-axis computed with the limiter at different times (without photo-
ionization).

reduced by approximately one to two orders of magnitude due to the attachment and the
negative ion density is of the same order of positive ion density.

Fig. 13 shows the particle densities at different times. Besides that the streamer devel-
ops much more slowly, the shaped of net charge density distribution profiles are similar
to the case shown in Section 7.2.1. Both negative net charge area and positive net charge
area are in the streamer channel, where the positive net charge mainly concentrates in the
middle area of the channel and the negative net charge mainly surrounds the positive net
charge area.
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Figure 13: The particle density distribution computed with the limiter at different times (without photo-
ionization).

In the view of positivity-preserving property, the cases without photo-ionizations in
attaching gases are the worst situations for a simulation algorithm. The proposed scheme
does work and preserve the positivity of the densities.
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8 Conclusion

This paper proposes a finite difference scheme for the numerical simulation of streamer
discharges in non-attaching and attaching gases, which guarantees the positivity of par-
ticle densities. It uses the WENO finite difference scheme together with the positivity-
preserving limiter proposed by Zhang and Shu, and Strang splitting as well. The positivity-
preserving property is provable under a stricter CFL restriction. Different from the slope
limiters like minmod, Superbee, the positivity-preserving limiter can be turned off when
the positivity is not violated, hence it would not kill the accuracy at regions with positive
values. Numerical simulations of streamer discharges in a non-attaching gas (N2) and
attaching gas (SF6) are given to illustrate the effectiveness of the scheme.

Positivity-preserving streamer discharge simulation schemes on unstructured grids
and simulations with more accurate photo-ionization models are under working.
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Appendix

The finite volume scheme used in some papers on streamer discharge simulations is
given (for clarity, a uniform mesh is used and the diffusion and ∂F/∂z terms are omitted):

du

dt
=

1

ri△r

(
ri− 1

2
F̂i− 1

2 ,j−ri+ 1
2
F̂i+ 1

2 ,j

)
+Si,j, (A.1)

where the numerical flux F̂i± 1
2 ,j is constructed using a slope limiter, e.g, the minmod lim-

iter, and ri >0. Assume F(u)= vu, which is the cases in streamer discharge simulations,
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and F′(u)=v+≥0, then

F̂i+ 1
2 ,j=v+

i+ 1
2 ,j

[
ui,j+0.5Φ(θi,j)(ui+1,j−ui,j)

]
, (A.2)

in which θi,j =(ui,j−ui−1,j)/(ui+1,j−ui,j), Φ(θ)=max(0,min(1,θ)).
Assume Si,j =0, vi+ 1

2 ,j=1, u0
i,j= i+1, then at ri =0.5△r, i=0,

u1
i,j=u0

i,j+
△t

△r

( ri− 1
2

ri
F̂i− 1

2 ,j−
ri+ 1

2

ri
F̂i+ 1

2 ,j

)
=1−3

△t

△r
. (A.3)

In general, MUSCL scheme with minmod limiter is positivity-preserving, under the
CFL condition max|v|△t/△r ≤ 2/3 [23]. However, scheme Eq. (A.1) is not positivity-
preserving under this CFL condition near r= 0, even if the source term is non-negative.
Other limiters, e.g., Koren, Superbee, have similar problems if the reconstruction is based
on the physical variable u rather than the conservative variable ru.
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