
Commun. Comput. Phys.
doi: 10.4208/cicp.160212.210513a

Vol. 15, No. 1, pp. 265-284
January 2014

Simulation of Power-Law Fluid Flows in Two-Dimensional

Square Cavity Using Multi-Relaxation-Time Lattice

Boltzmann Method

Qiuxiang Li1, Ning Hong2, Baochang Shi3∗ and Zhenhua Chai3

1 State Key Laboratory of Coal Combustion, Huazhong University of Science and
Technology, Wuhan, 430074, P.R. China.
2 Department of Foundational Courses, Jiangcheng College, China University of
Geosciences, Wuhan, 430200, P.R. China.
3 School of Mathematics and Statistics, Huazhong University of Science and
Technology, Wuhan, 430074, P.R. China.

Received 16 February 2012; Accepted (in revised version) 21 May 2013

Communicated by Kazuo Aoki

Available online 16 August 2013

Abstract. In this paper, the power-law fluid flows in a two-dimensional square cavity
are investigated in detail with multi-relaxation-time lattice Boltzmann method (MRT-
LBM). The influence of the Reynolds number (Re) and the power-law index (n) on the
vortex strength, vortex position and velocity distribution are extensively studied. In
our numerical simulations, Re is varied from 100 to 10000, and n is ranged from 0.25 to
1.75, covering both cases of shear-thinning and shear-thickening. Compared with the
Newtonian fluid, numerical results show that the flow structure and number of vortex
of power-law fluid are not only dependent on the Reynolds number, but also related
to power-law index.
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1 Introduction

The non-Newtonian fluids are widely observed in many fields of science and technology,
such as food, petroleum, lubricants, geophysics, hydrogeology, chemistry, to name but a
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few. Moreover, many modern materials and manufacturing processes also require further
understanding on the behavior of non-Newtonian fluids since their wide applications in
practice [1,2]. Compared to the Newtonian fluids, the non-Newtonian fluids usually have
a complicated constitutive equation, which may bring more difficulties in investigating
non-Newtonian behavior with numerical methods. In the past years, some advanced
or efficient methods have been developed to simulate the non-Newtonian fluid flows,
such as finite element method [3], finite volume method [4], lattice Boltzmann method
(LBM) [5] and smoothed particle hydrodynamics method (SPH) [6]. With the aid of the
methods mentioned above, some complex flow features that differ from the Newtonian
fluids have been reported.

In this paper, we will use a lattice Boltzmann method to study the behaviors of power-
law non-Newtonian fluid flows in a two-dimensional square cavity. During the last
two decades, the LBM, as a new mesoscopic method, has been proved to be a pow-
erful numerical technique in simulating complex Newtonian and non-Newtonian fluid
flows [7–9] and particularly successful in dealing with complex boundaries for its kinetic
background [9–14]. Compared to some traditional numerical methods, another advan-
tage of the LBM is that the stress tensor can be obtained locally from the non-equilibrium
parts of the distribution functions [12,13]. Hence, the LBM is considered to offer excellent
possibilities for simulating non-Newtonian flows [13].

A popular lattice Boltzmann model is the so-called lattice Bhatnagar-Gross-Kook
model (LBGK) [14, 15], which has been widely applied to study complex flows. How-
ever, LBGK model is usually unstable when the relaxation time is close to 0.5. One way
to overcome this shortcoming of the LBGK model is to use a multiple-relaxation-time
(MRT) model, or generalized lattice Boltzmann model, which was originally proposed
by d’Humières [16] and further developed by Lallemand and Luo [17]. Compared with
the LBGK model, MRT model can improve the numerical stability and reduce the un-
physical oscillations for some flows.

The lid-driven flow in a two-dimensional (2D) square cavity, as a classic benchmark
problem in fluid mechanics, has been widely studied by many researchers [18–26] in the
past decades. Driven cavity flow is of great importance because it can offer an ideal
framework in which meaningful and detailed comparisons can be made between re-
sults obtained from theory and computation [20]. Besides, this problem has a simple
geometry, but covers a wide range of complex hydrodynamics encompassing eddies,
secondary flows, instability and transition, which are of great importance to the basic
study of fluid mechanics. However, to the best of the knowledge of the authors, most
available works are limited to the Newtonian fluids and only few works associated with
the non-Newtonian (power-law) fluid flows in a square cavity have been reported. To
fill the gap, in the present work, the LBM coupling with MRT model is used to simulate
power-law non-Newtonian fluid flows in a two-dimensional square cavity (see Fig. 1).
We intend to explore the complex phenomena of non-Newtonian fluid flows and inves-
tigate non-Newtonian effects in the lid-driven cavity flows, a detailed comparison of the
non-Newtonian results with Newtonian results have been done.
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The rest of the paper is organized as follows. In Section 2, we briefly review the model
of power-law fluid flows. In Section 3, the LBM with MRT model is introduced. In Section
4, numerical results on the power-law fluid flows in a lid-driven cavity are presented and
discussed. Finally, some conclusions are given in Section 5.

2 The model of the power-law fluid flows

The macroscopic continuous and momentum equations for two-dimensional flow of a
generalized Newtonian fluid are given by

∂ρ

∂t
+

∂ρuα

∂xα
=0, (2.1a)

∂ρuα

∂t
+

∂ρuαuβ

∂xβ
=−

∂P

∂xα
+

∂ταβ

∂xβ
, (2.1b)

where P is the pressure, ταβ is the shear-stress tensor. The general relation between ταβ

and the shear-rate tensor γ̇αβ can be expressed as

ταβ =µγ̇αβ, (2.2)

where µ is the dynamic viscosity, which can be related to the kinematic viscosity ν by

µ=ρν. (2.3)

The viscosity coefficient µ in Eq. (2.2) is constant for the Newtonian flows, while it is
a function of the local shear-rate tensor γ̇αβ for the generalized Newtonian fluids. The
shear-stress tensor ταβ for the generalized Newtonian fluids can be expressed as

ταβ=µ(|γ̇|)γ̇αβ, (2.4)

where µ(|γ̇|) is usually defined as the ’effective viscosity’.
The power-law model [4], as one of the most commonly used generalized Newtonian

model, is mainly used for modeling the shear-thinning or shear-thickening behavior of
non-Newtonian fluids [27–30]. The shear stress in the power-law model is defined by [4]

ταβ =m|γ̇|n−1γ̇αβ, n>0, (2.5)

where m and n are constants for a particular fluid, m is an indicator of the degree of
the fluid viscosity, known as the consistent factor, n is the power-law index, and related
to the degree of non-Newtonian behavior. Note that the case n < 1 corresponds to the
shear-thinning (pseudo-plastic) fluid, whereas n>1 corresponds to the shear-thickening
(dilatant) fluid, and n=1 is the Newtonian fluid.

We denote a second invariant of the strain rate tensor as

DΠ=∑
α,β

SαβSαβ, (2.6)
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where Sαβ is the strain-rate tensor with γ̇=2Sαβ =2(▽αuβ+▽βuα), and

|γ̇|=
√

2DΠ. (2.7)

For a power-law fluid in the two-dimensional square cavity, the Reynolds number can be
defined as [13]

Re=
u2−n

0 Ln

m
, (2.8)

where u0 is the driven velocity on the top wall, L is the length of the cavity (see Fig. 1).
Substituting Eqs. (2.7) and (2.8) into Eq. (2.5), we can obtain the effective viscosity for the
power-law fluid

µαβ(|γ̇αβ|)=m|γ̇αβ|
n−1=

u2−n
0 Ln

Re
(2DΠ)

n−1
2 . (2.9)

3 Numerical method and boundary conditions

3.1 Lattice Boltzmann method with MRT model

The LBM can be viewed as a finite-difference version of the continuous Boltzmann equa-
tion on a discrete lattice with a discrete set of velocity distribution functions. In the LBM,
the particle distribution function fi(x,t) denotes the particle moving with velocity ci at
time t and position x. Without loss of generalization, a two-dimensional model with nine
velocities (D2Q9 model) is used in this paper. The discrete velocities in D2Q9 model are

ci= cei =





(0,0)c, i=0,

(cos[(i−1)π/2], sin[(i−1)π/2])c, i=1,2,3,4,

2(cos[(i−5)π/2+π/4], sin[(i−5)π/2+π/4])c, i=5,6,7,8,

(3.1)

where c=δx/δt is the particle velocity, δx and δt are the lattice spacing and time step,
respectively.

The MRT model can be viewed as an extension to the LBGK model. The main idea of
the MRT model is that the collision is mapped onto the momentum space by multiplying
a transformation matrix M, whereas the streaming is still conducted in the velocity space,
the evolution equation of MRT model [29] reads

fi(x+ciδt, t+δt)− fi(x,t)=−
8

∑
j=0

(M−1ŜM)ij[ f j(x,t)− f
(eq)
j (x,t)], (3.2)

where f
eq
j is the equilibrium distribution function, and given by

f
(eq)
j =ρωj

[
1+3

ej ·u

c
+4.5

(ej ·u)
2

c2
−1.5

u·u

c2

]
, (3.3)
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with ω0=4/9, ω1−4=1/9, ω5−8=1/36.
If we introduce a 9-dimensional column vector f,

f(x,t)= [ f0(x,t), f1(x,t),··· , f8(x,t)]T ,

Eq. (3.2) can be rewritten as

f(x+cδt, t+δt)−f(x,t)=−M−1Ŝ[m(x,t)−m(eq)(x,t)], (3.4)

where m=Mf, f=M−1m̂, Ŝ=MSM−1. m is a new column vector of macroscopic vari-
ables [17]

m=Mf=(ρ, e, ε, jx, jy, qx, qy, pxx, pxy), (3.5)

where ρ and e refer to the fluid density and energy, jx and jy are the mass flux in two
directions, qx and qy correspond to the energy flux in two directions, pxx and pxy are the
diagonal and off the diagonal components of the viscous stress tensor. The transforma-
tion matrix M used in the present study is given by

M=




1 1 1 1 1 1 1 1 1
−4 −1 −1 −1 −1 2 2 2 2
4 −2 −2 −2 −2 1 1 1 1
0 1 0 −1 0 1 −1 −1 1
0 −2 0 2 0 1 −1 −1 1
0 0 1 0 −1 1 1 −1 −1
0 0 −2 0 2 1 1 −1 −1
0 1 −1 1 −1 0 0 0 0
0 0 0 0 0 1 −1 1 −1




,

the collision matrix Ŝ=MSM−1 in moment space is a diagonal matrix, and is given by

Ŝ=diag[s0 , s1, s2, s3, s4, s5, s6, s7, s8],

whose element represents the reciprocal of the relaxation time for the different moment
term relaxing its equilibrium state. In this work, the relaxation parameters in the collision
matrix Ŝ are chosen as

s0= s3= s5=0.0, s1=1.1, s2=1.0, s4= s6=1.2, s7= s8=1/τ̄. (3.6)

One thing should be pointed out that the different choices of the relaxation factors can
make the MRT model be superior over the BGK model in stability and accuracy [26].
The relaxation rates chosen in our paper are only a special choice based on the work of
Lallemand and Luo [17], and has been used in our previous work [22, 29]. In Eq. (3.6), τ̄
is the relaxation time in the LBGK model and related to the dynamic viscosity µ by

µ=ρ
1

3
(τ̄−0.5)

δx2

δt
. (3.7)
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The local density ρ and velocity u in Eq. (3.3) at each site are calculated from the distri-
bution function

ρ=
8

∑
j=0

fj, u=
1

ρ

8

∑
j=0

cjfj. (3.8)

We also would like to point out that the evolutionary progress of MRT model also in-
cludes two steps:

(i) Collision step in the momentum space:

m
∗=m−Ŝ[m−m

(eq)], (3.9a)

where ∗ denotes the post-collision state, and m(eq) is the equilibrium distribution function in moment
space.

(ii) Propagation step in velocity space:

f j(x+cjδt, t+δt)= f j
∗(x,t), f

∗=M
−1

m
∗. (3.9b)

Finally, in the incompressible condition, the Navier-Stokes equations can be recovered
from the lattice Boltzmann equation through Chapman-Enskog expansion [14]:

∂ρ

∂t
+

∂ρuα

∂xα
=0, (3.10a)

∂ρuα

∂t
+

∂ρuαuβ

∂xβ
=−

∂P

∂xα
+

∂

∂xβ

[
ρυ

( ∂uα

∂xβ
+

∂uβ

∂xα

)]
. (3.10b)

In what follows, we will present a brief discussion on how to derive the effective viscosity
of power-law fluid µαβ with MRT model. According to Eq. (2.9), µαβ is determined by the
second invariant of the strain rate tensor DΠ, so we need to derive the strain-rate tensor
Sαβ. In LBM, the strain-rate tensor Sαβ can be obtained locally from the non-equilibrium
parts, expressed as follows [14]

Sαβ=−
3

2ρτδt

8

∑
j=0

cjαcjβ[ f j(x,t)− f
eq
j (x,t)], (3.11)

while the formula of Sαβ in MRT-LB is more complex with the following form [29]:

Sαβ=−
3

2ρδt

8

∑
i=0

ciαciβ

8

∑
j=0

(M−1ŜM)ij[ f j(x,t)− f
eq
j (x,t)]. (3.12)

Then, substituting Eqs. (2.6) and (2.7) into (2.9) with the term Sαβ given by Eq. (3.12),
and for a specific fluid with a given Re and n, one can obtain the effective viscosity µαβ

according to Eq. (2.9). And simultaneously, the relaxation parameter s8 is derived via
Eq. (3.7), which is used to perform the collision step. It is noted that in the simulation
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of the non-Newtonian fluid flows, the effective viscosity and relaxation parameters are
functions of space and time, which should be updated in each iterate step.

The numerical procedure of present non-Newtonian MRT model is summarized as
follows:

(i) Initialize all the values of the density and velocity based on the physical problem, then the equilibrium
distribution function f

eq
j can be determined from Eq. (3.3), which is used to initialed the distribution

function f j.

(ii) Calculate the effective viscosity µ based on Eqs. (2.6)-(2.9) and (3.12) (Details can be found in the
above analysis). Once the effective viscosity are known, we can derive the local τ̄ from Eq. (3.7).

(iii) Execute the collision and propagation steps based on Eqs. (3.9), and compute the macroscopic
quantities from Eq. (3.8).

(iv) Go to step (ii) and update τ̄ and f j.

The process runs until the following convergent criterion is satisfied:

|u(xc, yc, t+100)−u(xc, yc, t)|<1.0e−9. (3.13)

3.2 Boundary conditions

The implementation of the boundary conditions is also a crucial issue since it has an
important influence on the accuracy and stability of the LBM. The distribution function
fi(x,t) is usually not given directly at the boundaries. Therefore, we must determine
the distribution function at the boundaries from the given macroscopic variables. In the
present work, treatments for the boundary conditions on the solid walls using the non-
equilibrium extrapolations scheme proposed by Guo et al. [31] for its second-order in nu-
merical accuracy. According to the scheme, the distribution function fi(x,t) at the bound-
ary can be decomposed into its equilibrium and non-equilibrium parts. When compute
the distribution function of boundary node xb, taking velocity of boundary node and the
nearest fluid node x f to compute the equilibrium and the non-equilibrium parts, respec-
tively. Therefore we can derive all the unknown distribution functions at the boundary
from the followed equation:

fi(xb,t)= fi
eq(xb,t)+ fi(x f ,t)− fi

eq(x f ,t). (3.14)

4 Numerical simulations and discussions

4.1 Lid-driven cavity flow

The schematic of a lid-driven cavity is shown in Fig. 1, where the upper lid is moving
from left to right with a constant velocity u0=0.1, whereas the other three walls are fixed,
the length L=1.0. In our simulations, the nodes on the top corners belong to the moving
lid with the constant velocity u0, and the bottom corners belong to wall with zero velocity,
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Figure 1: Geometry and boundary conditions of the lid-driven cavity.

and then non-equilibrium extrapolations scheme introduced above is implemented in
the boundary treatment. In the following parts, we first validate MRT model through a
comparison with some available results, followed by studies of grid-independence and
Mach number (Ma) effects. Then we will further investigate the complex characteristics
of the power-law fluid flows in the lid-driven cavity for different Reynolds number (Re)
and power-law index (n).

4.2 Validation of the MRT model

We first performed some simulations for Newtonian and non-Newtonian fluid flows (n=
1.0, 0.5 and 1.5), and show numerical results in Figs. 2 and 3. As shown in these figures,
the present results are in good agreement with some previous results [3, 4, 18]. Then, we
also compare the central location (xc,yc) and stream function value (φc) of the primary
vortex with some published results [3,4] in Tables 1 and 2. From these tables, we find the

Table 1: Comparison of present simulations for Newtonian fluid and non-Newtonian fluid flows (Re=100,500).

Location of vortex n=0.50 n=0.75 n=1.00 n=1.50

xc (Re=100) Neofytou [4] 0.7166 0.6577 0.6123 0.5647
Present results 0.7168 0.6576 0.6166 0.5628

yc (Re=100) Neofytou [4] 0.7804 0.7478 0.7359 0.7240

Present results 0.7826 0.7498 0.7379 0.7282

xc (Re=500) Neofytou [4] 0.5731 —– 0.5494 0.5495

Present results 0.5793 —– 0.5467 0.5495

yc (Re=500) Neofytou [4] 0.5490 —– 0.5935 0.6380

Present results 0.5497 —– 0.5947 0.6378

Table 2: Comparison of present simulations for Newtonian fluid and non-Newtonian fluid flows (Re=100).

The value of the stream function n=0.25 n=1.00 n=1.50

φc (Re=100) Bell & Surana [3] −0.298 −0.103 −0.117

Present results −0.2953 −0.1023 −0.1152
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Figure 2: Comparison between present results and previous result [4, 18] for Newtonian flows: (a) u-velocity
profiles along the vertical centerline of the cavity. (b) v-velocity profiles along the horizontal centerline of the
cavity.
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Figure 3: Comparison between present results and previous results [3,4] for non-Newtonian flows: (a) u-velocity
profiles along the vertical centerline of the cavity; (b) v-velocity profiles along the horizontal centerline of the
cavity.

results obtained with MRT model agree well with some previous works. Besides, we also
made a comparison between results from BGK model and MRT model for simulating
non-Newtonian flows in a driven cavity. For BGK model, the maximum of Re that can
be tested in our study is only about 22000 for case n= 1.75 and 20000 for case n= 0.25.
However, for MRT model, the maximum of Re can reach to 100000 and beyond.

Before we proceed any further, it is essential to guarantee that the results are grid-
independent and the compressible effects are negligible. For the former purpose, we
carried out some simulations on two different uniform grids namely 256×256, 512×512
for the non-Newtonian fluid flows with Re=10000. The results are shown in Fig. 4 (a) for



274 Q. Li, N. Hong, B. Shi and Z. Chai / Commun. Comput. Phys., 15 (2014), pp. 265-284

−0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

u

y

 

 

512×512

256×256

(a)

−0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

u

y

 

 

 Ma=0.1732
Ma=0.0866
Ghia et al.[18]

(b)

Figure 4: (a) u-velocity profiles along the vertical centreline of the cavity for two grids (non-Newtonian flow,
Re = 10000). (b) u-velocity profiles along the vertical centreline of the cavity for two Ma (Newtonian flow
Re=1000) as well as comparison with previous results [18].

the u-velocity profiles along the vertical centerline of the cavity. It can be seen that the
grid number 256×256 is fine enough to derive grid-independent results, and therefore
this grid is also used for all subsequent computations. For the latter purpose, we carried
out a comparison study of two sets of Ma number: Ma1=0.1732 (corresponding to u=0.1
which is involved in our later study) and Ma2 =0.0866 (corresponding to u=0.05) with
a fixed Re= 1000. We present u-velocities along the vertical centerline in Fig. 4 (b), and
find that the Mach number has a negligible effect.

Through above numerical results, one can find that the MRT model indeed has a
strong capacity in studying problem of power-law fluids in the lid-driven cavity, and
especially in simulating high Reynolds number problems.

4.3 The effects of the Reynolds number on power-law fluid flows in the lid-
driven cavity

In this section, particularly but without loss of generality, we mainly consider the sim-
ulation for the power-law index n= 1.5 which shows the ’dilatant’ or ’shear-thickening’
behavior of the fluids and n = 0.5 which indicates the behavior of ’pseudo-plastic’ or
’shear-thinning’.

We first carried out a large number of simulations for shear-thickening flows (n=1.5),
and showed the streamlines in Fig. 5 and variations of primary vortex location in Fig. 6,
where Re is ranged from 100 to 10000. As seen from Fig. 5, the Reynolds number has great
effects on the flow structure. When Re is less than 3000, only three vortices appear in the
cavity, a primary one in the center and a pair of secondary ones in the lower corners of
the cavity. With the increase of Re, the primary vortex, generated by the motion of the
upper lid, gradually deviates the top right corner, and moves towards the center of the
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Figure 5: Streamlines of shear-thickening flow (n=1.5) for different Re.

cavity (Fig. 6). However, when Re is increased to 4000, a third secondary vortex is found
near the top left corner; when Re is further increased to 6000, a tertiary vortex appears in
the bottom right corner.
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Figure 6: Effects of Reynolds number on location of primary vortex centers for the case n=1.5.

Additionally, we present the x-, y-coordinates and stream function value of the pri-
mary and secondary vortices that successively appear in the lower right and left corners
of the cavity in Table 3. In Table 3, the letters x, y denote the x-, y-coordinates and stream

Table 3: Stream function values and positions of the primary and second vortices for different Re (n=1.5).

Re xc yc φc xr yr φr xl yl φl

100 0.5628 0.7282 -0.11522 0.9300 0.0658 -1.3467e-5 0.0425 0.0423 1.577e-5

150 0.5769 0.7145 -0.11767 0.9179 0.0895 6.7255e-5 0.0426 0.0457 1.7e-5

200 0.5807 0.6982 -0.11985 0.9019 0.1077 0.0002261 0.0447 0.0484 2.061e-5

250 0.5768 0.6816 -0.12203 0.8923 0.1174 0.0004338 0.0496 0.0498 2.8e-5

300 0.5702 0.6677 -0.12377 0.8830 0.1238 0.0006575 0.0539 0.0527 3.741e-5

400 0.5579 0.6494 -0.1264 0.8696 0.1295 0.0010865 0.0631 0.0581 6.0e-5

500 0.5495 0.6377 -0.1284 0.8613 0.1314 0.0014551 0.0708 0.0646 0.00010

600 0.5445 0.6296 -0.1299 0.8552 0.1315 0.0017689 0.0770 0.0697 0.00015

700 0.5408 0.6230 -0.1310 0.8507 0.1308 0.002034 0.0810 0.0741 0.00020

800 0.5380 0.6173 -0.1320 0.8471 0.1297 0.002262 0.0839 0.0779 0.00025

900 0.5356 0.6125 -0.1329 0.8441 0.1287 0.002458 0.0858 0.0812 0.00030

1000 0.5345 0.6097 -0.1336 0.8404 0.1285 0.002593 0.0872 0.0844 0.00033

1500 0.5289 0.5964 -0.1364 0.8294 0.1227 0.003142 0.0902 0.0951 0.00051

2000 0.5245 0.5885 -0.13837 0.8216 0.1163 0.003503 0.0905 0.1009 0.00066

3000 0.5196 0.5756 -0.14077 0.8096 0.1080 0.003721 0.0875 0.1110 0.00081

3500 0.5151 0.5737 -0.14177 0.8106 0.1031 0.003973 0.0845 0.11205 0.00104

4000 0.5141 0.5630 -0.14029 0.8098 0.0997 0.004133 0.0821 0.1135 0.00119

5000 0.5133 0.5614 -0.13802 0.8040 0.0949 0.004252 0.0792 0.1183 0.00131

6000 0.5137 0.5597 -0.1382 0.7982 0.0909 0.004320 0.0765 0.1227 0.00140

8000 0.5108 0.5534 -0.13657 0.7873 0.0843 0.004294 0.0728 0.1284 0.00152

10000 0.5098 0.5502 -0.13511 0.7763 0.0787 0.004211 0.0698 0.1332 0.00159
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Figure 7: Effects of Reynolds number on the velocity profiles for the case n=1.5. (a) u-velocity profiles along
the vertical centerline of the cavity; (b) v-velocity profiles along the horizontal centerline of the cavity.

function value of the vortex; the subscript denotes the vortex location. (For example, c
refers to the primary vortex at the center of the cavity, r and l refer to the secondary vor-
tices in the lower right and left). The results show that, firstly, the stream function value of
the primary vortex keeps increasing when Re is less than 3500, but an opposite tendency
is observed for Re > 3500; Secondly, the variation of strength of the secondary vortex
near bottom right corner is similar to that of the primary vortex, whereas the strength of
another second vortex increases with the increase of the Reynolds number.

To see the effects of the Reynolds number clearly, the variation of velocity profiles at
centerlines with Re is also shown in Fig. 7. As seen from Fig. 7, the Reynolds number
also has great effects on the velocity profiles. The u-velocity profiles along the vertical
centerline and v-velocity profiles along the horizontal centerline of the cavity exhibit a
more dramatic change for higher Re. With the increase of Re, the velocity profiles in
the centerline of the cavity approach linearly, which means the uniform vortex region is
generated in the cavity core at higher values of Re. In short, the increase of Re not only
leads the number of vortex to increase, but also brings more complex flow structures.

On the other hand, we also performed a lot of numerical simulations for the shear-
thinning fluid flows (n=0.5), and presented the results in Fig. 8 and Table 4. As seen from
Fig. 8, the flow structure of the case n=0.5 is similar to that of the case n=1.5. However,
for the case n=0.5, the stream function value of the primary vortex keeps decreasing with
the increase of Re, which are different from the phenomena observed for the case n=1.5.

In conclusion, although the flow structure of power-law fluids (shear-thickening or
shear-thinning) is very similar to those of the Newtonian fluids, the strengths of them are
different with each other for a fixed Re.
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Figure 8: Streamlines of shear-thinning flow (n=0.5) for different Re.

Table 4: Stream function values and positions of the primary and second vortices for different Re (n=0.5).

Re xc yc φc xr yr φr xl yl φl

100 0.7168 0.7826 -0.0648 —— —— —— —— —— ——

200 0.6647 0.6699 -0.0638 —– —– —– —– —– —–
300 0.6224 0.6013 -0.0623 —– —– —– —– —– —–
500 0.5793 0.5497 -0.0611 —– —– —– —– —– —–

1000 0.5468 0.5280 -0.0597 —– —– —– —– —– —–
2000 0.5338 0.5245 -0.0583 0.8976 0.0939 0.00035 0.0947 0.0877 7.2e-005

3000 0.5365 0.5180 -0.0485 0.8945 0.0857 0.00041 0.0996 0.0957 0.00011

4000 0.5359 0.5235 -0.0440 0.8919 0.0802 0.00044 0.1011 0.1040 0.00017

5000 0.5255 0.5190 -0.0477 0.8683 0.0768 0.0006 0.0945 0.1206 0.00033

10000 0.5347 0.5183 -0.0330 0.8595 0.0588 0.00056 0.0820 0.1446 0.00039
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4.4 The effects of power-law index on power-law fluid flows in the lid-driven
cavity

In this section, we will investigate the effects of power-law index on the flow structure. To
this end, the Reynolds number Re is first fixed, the power-law index n is changed from
0.25 to 1.75, which covers the shear-thinning, Newtonian and shear-thickening fluids.
The numerical results of Re=100 and 500 under different power-law index are presented
in Figs. 9-13. (For case Re=100 and n=1.75, the simulation results are divergent.)

The effects of the power-law index on fluid structure are shown in Figs. 9 and 10.
From these figures, it is found that the flow structure are very similar to each other for a
fixed Reynolds number, with the increase of the power-law index, the number of vortex
appeared in the cavity increases, and more complex flow phenomena are also observed.
The effects of the power-law index n on the u and v profiles along the vertical and hori-
zontal centerlines are shown in Fig. 11 (Re=100) and Fig. 12 (Re=500), respectively. As
seen from Figs. 11 (a), the increase of n leads the velocity to increase near the top and
bottom of the cavity. In Fig. 11 (b), the configuration of v-velocity appears a sinusoidal
profile, and becomes sharper with an increase of n, the peak value of the v-velocity along
the horizontal centerline also increases in n. These observations are attributed to the
gradual decrease (shear-thinning case) or increase (shear-thickening case) of the viscous
effects with the increase of n. Compared to the velocity profiles presented in Fig. 10, the
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Figure 9: Streamlines of flow (Re=100) for different n.
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Figure 10: Streamlines of flow (Re=500) for different n.

velocity distributions for case Re = 500 show in Fig. 12 seem to be similar to the case
Re=100, however, the amplitude of the velocity vibration is much larger than that of the
case Re=100, which is caused by the larger inertial effect of a higher Re. In addition, the
effects of power-law index on location and stream function value of primary vortex are
also studied, the corresponding results are shown in Fig. 13. For the case Re=100, we can
see from Fig. 13 (a), the primary vortex always moves from the top right corner towards
the central zone with the increase of n, whereas for the case Re=500, the primary vortex
first moves towards the center of the cavity, then moves upward with the increase of n.
The results in Fig. 13 (b) show that the stream function value of the primary vortex, for
both cases of Re=100 and Re=500, increase with the increase of the power-law index.
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Figure 11: Effects of power-law index on the velocity profiles for power-Law fluid flows for Re= 100. (a) u-
velocity profiles along the vertical centerline of the cavity; (b) v-velocity profiles along the horizontal centerline
of the cavity.
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Figure 12: Effects of power-law index on the velocity profiles for power-Law fluid flows for Re= 500. (a) u-
velocity profiles along the vertical centerline of the cavity; (b) v-velocity profiles along the horizontal centerline
of the cavity.
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Figure 13: Effects of power-law index on location of (a) primary vortex and (b) values of stream function.
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5 Conclusions

In this paper, the power-law fluid flow in the two-dimensional square cavity is stud-
ied by MRT-LBM. We present the complex phenomena of non-Newtonian fluid flows,
the Reynolds number and non-Newtonian effects on the lid-driven cavity flows, and a
detailed comparison between Newtonian and non-Newtonian fluids. Based on present
numerical results, some conclusions are derived:

(1) For a fixed power-law index near unit, the flow structures of power-law fluids are
similar to those of Newtonian fluid, but for other cases, there is a noticeable difference
between the flow structure of power-law fluid and that of Newtonian fluid.

(2) For a fixed Reynolds number, the power-law index gives a great influence on flow
structure of power-law fluids, the number and the strength of vortex appeared in the
cavity.

(3) Numerical results also show that MRT model is robust when it is used to sim-
ulate non-Newtonian flows at high Reynolds number, this study can provide a reliable
scientific basis in studying three dimensional non-Newtonian flows for later research.
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