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Abstract. In this paper, a new numerical method for solving the decoupled forward-
backward stochastic differential equations (FBSDEs) is proposed based on some spe-
cially derived reference equations. We rigorously analyze errors of the proposed method
under general situations. Then we present error estimates for each of the specific cases
when some classical numerical schemes for solving the forward SDE are taken in the
method; in particular, we prove that the proposed method is second-order accurate
if used together with the order-2.0 weak Taylor scheme for the SDE. Some examples
are also given to numerically demonstrate the accuracy of the proposed method and
verify the theoretical results.
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1 Introduction

Let (Ω,F ,P,{Ft}0≤t≤T) be a complete, filtered probability space on which a standard d-
dimensional Brownian motion Wt =(W1

t ,W2
t ,··· ,Wd

t )
∗ is defined, such that {Ft}0≤t≤T is

the natural filtration of the Brownian motion Wt and all the P-null sets are augmented
to each σ-field Ft. Here the operator (·)∗ denotes the transpose operator for a matrix or
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vector. We consider the decoupled forward-backward stochastic differential equations
(FBSDEs) on (Ω,F ,P,{Ft}0≤t≤T)















Xt=X0+
∫ t

0
b(s,Xs)ds+

∫ t

0
σ(s,Xs)dWs , t∈ [0,T],

Yt= ϕ(XT)+
∫ T

t
f (s,Xs,Ys,Zs)ds−

∫ T

t
ZsdWs, t∈ [0,T],

(1.1)

with the functions b(t,X): [0,T]×R
q→R

q, σ(t,X): [0,T]×R
q→R

q×d, f (t,X,Y,Z): [0,T]×
R

q×R
m×R

m×d →R
m, and ϕ(·): R

q →R
m. Note that the integrals in (1.1) with respect

to the d-dimensional Brownian motion Ws are the Itô type stochastic integrals. The first
equation in (1.1) is the standard (forward) stochastic differential equation (SDE), and the
second equation is the so-called backward stochastic differential equation (BSDE). A pro-
cess (Xt,Yt,Zt) is called an L2 solution of the decoupled FBSDEs (1.1) if it is {Ft}-adapted
and square integrable and satisfy (1.1). In the sequel, a solution means a L2 solution.
Under standard conditions on f and ϕ, Pardoux and Peng [25] originally proved the ex-
istence and uniqueness of solution of nonlinear BSDEs. Since then a lot of efforts have
been devoted to study of FBSDEs [2–6, 8–11, 13, 14, 19–24, 30, 32] due to their natural ap-
plications in many fields including mathematical finance, partial differential equations
(PDEs), stochastic PDEs, stochastic control, risk measure, game theory, and so on.

It is well-known that it is often difficult to obtain analytic solutions in the close form
for the FBSDEs, even for the linear case, so that computing approximate solutions of FB-
SDEs becomes highly desired. There are lots of works on numerical methods for numeri-
cally solving BSDEs. Based on the relation between the FBSDEs and their corresponding
parabolic partial differential equations (PDEs) [7,10,12,17,26], some algorithms were pro-
posed to solve FBSDEs in [5, 10, 11, 21–24]. There are also some other numerical methods
for solving BSDEs or FBSDEs, which were proposed based on directly discretizing BSDEs
or FBSDEs [2,4,6,8,13,28,29,33–35]. Many existing numerical methods for the decoupled
FBSDEs (1.1) are half order and one order in time such as those in [3,4,8,10,13,14,20,29].
In these methods, forward or backward trapezoidal rules were often used to approximate
the integrals in (1.1), and the martingale representation was used in their error analysis.
In this paper, based on properties of the Itô’s integral and the nature of solution of the
FBSDEs, we will propose a numerical method for solving the decoupled FBSDEs (1.1)
that utilizes the trapezoidal rule and approximations of some reference equations with a
newly defined standard Brownian motion. We rigorously derive error estimates for this
method for general cases. Under certain regularity assumptions on the functions b, σ,
f and ϕ, we also show that the proposed scheme can be up to second-order accurate in
time.

Now let us introduce some notations which will be used in this paper:

• |·|: the standard Euclidean norm in the Euclidean space R, R
q and R

q×d.

• L2 = L2
F (0,T;Rd): the set of all Ft-adapted and mean-square-integrable processes

valued in R
d.
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• F t,x
s (t≤ s≤T) be a σ-field generated by the diffusion process {x+Xr−Xt,t≤ r≤ s}

starting from the time-space point (t,x). When s=T, we use F t,x to denote F t,x
T .

• E
t,x
s [X]: the conditional mathematical expectation of the random variable X un-

der the σ-field F t,x
s , i.e., E

t,x
s [X] =E[X|F t,x

s ]. When s = t, we use E
x
t [X] to denote

E[X|F t,x
t ].

• Cl,k,k
b : the set of continuously differential functions φ : [0,T]×Rq×R→ R with uni-

formly bounded partial derivatives ∂l1
t φ and ∂k1

x ∂k2
y φ for l1≤ l and k1+k2 ≤ k.

• Ck3,k4

b : the set of functions φ : (t,x)∈ [0,T]×Rq →R with uniformly bounded partial

derivatives ∂l3
t ∂l4

x φ for l3≤ k3 and l4≤ k4.

The rest of the paper is organized as follows. In Section 2, we first derive some ref-
erence equations that will be used for numerical discretization. Based on these reference
equations, we propose a numerical method for solving the decoupled FBSDEs in Section
3. In Section 4 we rigorously analyze errors of the proposed method for general cases.
And in following, we present specific error estimates for each of the cases when some
classical numerical schemes are taken in the method for solving the forward equation;
in particular, we show that the proposed method is first order accurate when the Euler
scheme or the Milstein scheme is used, and is second order accurate when the order-2.0
weak Taylor scheme is used. Then in Section 5 we demonstrate through numerical ex-
periments the accuracy of the proposed method and verify the theoretical results. Finally
some conclusions are summarized in Section 6.

2 Reference equations

Let (Xt,x
s ,Yt,x

s ,Zt,x
s ) be the solution of (1.1) starting from time t with Xt = x, that is,

(Xt,x
s ,Yt,x

s ,Zt,x
s ) satisfies














Xt,x
s = x+

∫ s

t
b(r,Xt,x

r )dr+
∫ s

t
σ(r,Xt,x

r )dWr , s∈ [t,T],

Yt,x
s = ϕ(Xt,x

T )+
∫ T

s
f (r,Xt,x

r ,Yt,x
r ,Zt,x

r )dr−
∫ T

s
Zt,x

r dWr , s∈ [t,T].

(2.1)

For the time interval [0,T], we introduce the following partition:

0= t0 < ···< tN =T.

Let ∆tn = tn+1−tn and ∆t=max0≤n≤N−1∆tn. We also assume that the time partition have
the following regularity:

max
0≤n≤N−1

∆tn

min
0≤n≤N−1

∆tn
≤ c0, (2.2)
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where c0≥1 is a constant.

Let Ytn,Xn

tN
= ϕ(Xtn,Xn

T ) and (Xtn,Xn

t ,Ytn,Xn

t ,Ztn,Xn

t ) be the solution of (2.1) with Xn=x for

t∈ [tn ,T]. Denote f (s,Xtn ,Xn

s ,Ytn,Xn

s ,Ztn,Xn

s ) by f tn ,Xn

s . Then it is easy to get that

Xtn,Xn

tn+1
=Xn+

∫ tn+1

tn

b(s,Xtn,Xn

s )ds+
∫ tn+1

tn

σ(s,Xtn ,Xn

s )dWs, (2.3a)

Ytn,Xn

tn
=Ytn,Xn

tn+1
+
∫ tn+1

tn

f tn ,Xn

s ds−
∫ tn+1

tn

Ztn,Xn

s dWs, (2.3b)

for n=0,1,··· ,N−1.

Take the conditional mathematical expectation E
Xn

tn
[·] on both sides of (2.3b), we ob-

tain

Ytn,Xn

tn
=E

Xn

tn
[Ytn,Xn

tn+1
]+

∫ tn+1

tn

E
Xn

tn
[ f tn ,Xn

s ]ds. (2.4)

Under the filtration Ftn , the integrand E
Xn

tn
[ f tn ,Xn

s ] on the right-hand side of (2.4) is a de-
terministic function of time s. Thus some numerical integration methods may be used
to accurately approximate the integral in (2.4). In particular, in this paper, we use the
trapezoidal rule to approximate this integral as

∫ tn+1

tn

E
Xn

tn
[ f tn ,Xn

s ]ds=
1

2
∆tn f tn ,Xn

tn
+

1

2
∆tnE

Xn

tn
[ f tn ,Xn

tn+1
]+Rn

y , (2.5)

where

Rn
y =

∫ tn+1

tn

(

E
Xn

tn
[ f tn ,Xn

s ]− 1

2
f tn ,Xn

tn
− 1

2
E

Xn

tn
[ f tn ,Xn

tn+1
]
)

ds. (2.6)

Inserting (2.5) into (2.4), we obtain the following reference equation for solving Ytn,Xn

tn
:

Ytn,Xn

tn
=E

Xn

tn
[Ytn,Xn

tn+1
]+

1

2
∆tn f tn,Xn

tn
+

1

2
∆tnE

Xn

tn
[ f tn ,Xn

tn+1
]+Rn

y . (2.7)

In order to solve Ztn,Xn

t , we still need obtain another reference equation from (2.3b). To
proceed, let us introduce a new Brownian motion ∆W̃s defined by

∆W̃s =2∆Ws−
3

∆tn

∫ s

tn

(r−tn)dWr , (2.8)

where ∆Ws =Ws−Wtn(tn ≤ s ≤ tn+1), which is a standard Brownian motion with mean
zero and variance s−tn. By the definition (2.8), ∆W̃s=(∆W̃1

s ,∆W̃2
s ,··· ,∆W̃d

s )
∗ is a Gaussian
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process with the properties E
Xn

tn
[∆W̃s]=0, E

Xn

tn
[∆W̃ i

s∆W̃
j
s ]=0 for i 6= j, and

E
Xn

tn
[(∆W̃ i

s)
2]=E

Xn

tn

[

(2∆W i
s−

3

∆tn

∫ s

tn

(r−tn)dW i
r)

2

]

=4(s−tn)−
12

∆tn

∫ s

tn

(r−tn)dr+
9

∆t2
n

∫ s

tn

(r−tn)
2dr

=4(s−tn)−
12

∆tn

1

2
(s−tn)

2+
9

∆t2
n

1

3
(s−tn)

3

=4(s−tn)−
6(s−tn)2

∆tn
+

3(s−tn)3

∆t2
n

.

Then when s= tn+1, we have E
Xn

tn
[∆W̃tn+1

]=0 and E
Xn

tn
[(∆W̃tn+1

)2]=∆tn .

Now let us multiply (2.3b) by ∆W̃∗
tn+1

and take the conditional mathematical expecta-

tion E
Xn

tn
[·] on both sides of the derived equation, then we obtain

0=E
Xn

tn
[Ytn ,Xn

tn+1
∆W̃∗

tn+1
]+

∫ tn+1

tn

E
Xn

tn
[ f tn ,Xn

s ∆W̃∗
tn+1

]ds−E
Xn

tn

[

∫ tn+1

tn

Ztn,Xn

s dWs ·∆W̃∗
tn+1

]

. (2.9)

For the first integral term on the right-hand side of (2.9), we easily get the identity
∫ tn+1

tn

E
Xn

tn
[ f tn ,Xn

s ∆W̃∗
tn+1

]ds=∆tnE
Xn

tn
[ f tn ,Xn

tn+1
∆W̃∗

tn+1
]+Rn

1 , (2.10)

where

Rn
1 =

∫ tn+1

tn

E
Xn

tn
[ f tn ,Xn

s ∆W̃∗
tn+1

]ds−∆tnE
Xn

tn
[ f tn ,Xn

tn+1
∆W̃∗

tn+1
]. (2.11)

For the second integral term on the right-hand side of (2.9), we have

−E
Xn

tn

[

∫ tn+1

tn

Ztn,Xn

s dWs ·∆W̃∗
tn+1

]

=−Ztn,Xn

tn
E

Xn

tn
[∆Wtn+1

∆W̃∗
tn+1

]+Rn
2

=−1

2
∆tnZtn,Xn

tn
+Rn

2 , (2.12)

where

Rn
2 =

1

2
∆tnZtn,Xn

tn
−E

Xn

tn

[

∫ tn+1

tn

Ztn,Xn

s dWs ·∆W̃∗
tn+1

]

. (2.13)

From Eqs. (2.9), (2.10) and (2.12), we obtain the following reference equation for solving

Ztn,Xn

tn
:

1

2
∆tnZtn,Xn

tn
=E

Xn

tn
[Ytn,Xn

tn+1
∆W̃∗

tn+1
]+∆tnE

Xn

tn
[ f tn ,Xn

tn+1
∆W̃∗

tn+1
]+Rn

z , (2.14)

where
Rn

z =Rn
1+Rn

2 . (2.15)

Based on the two reference equations (2.7) and (2.14), we will propose a new numerical
scheme for solving (Yt,Zt) of the decoupled FBSDEs (2.1) in the following section.
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3 A numerical scheme for solving the decoupled FBSDEs

Now we propose a new numerical scheme for solving the decoupled FBSDEs (2.1). Let
(Xn,Yn,Zn) denote an approximation to the analytic solution (Xt,Yt,Zt) of (2.1) at time
t = tn, n = N,N−1,··· ,0. To simplify the presentation, we let f n = f (tn,Xn,Yn,Zn) for
n=N,N−1,··· ,0. Based on (2.7) and (2.14), we propose a numerical scheme, for solving
the FBSDEs (2.1) as:

Scheme 3.1. (Numerical Method for the Decoupled FBSDEs) Given random variables X0, YN

and ZN . Let ∆W̃tn+1
(0≤n≤N−1) be defined by (2.8) with s=tn+1. For n=N−1,N−2,··· ,0,

solve random variables Yn and Zn by

Yn =E
Xn

tn
[Yn+1]+

1

2
∆tn f n+

1

2
∆tnE

Xn

tn
[ f n+1], (3.1a)

1

2
∆tnZn =E

Xn

tn
[Yn+1∆W̃∗

tn+1
]+∆tnE

Xn

tn
[ f n+1∆W̃∗

tn+1
], (3.1b)

with

Xn+1=Xn+φ(tn,Xn,∆tn,∆Wtn+1
,ξn+1). (3.2)

Note that (3.1a) and (3.1b) use the trapezoidal rule for approximating time integrals.
We also would like to point out that (3.2) represents any classical numerical schemes
(see [16]) for solving the forward SDE (2.3a) in which ξn+1 is a Gaussian random variable
related to ∆Wtn+1

, and Xn+1 is needed in calculations of (3.1a) and (3.1b).

Remark 3.1. Several facts on Scheme 3.1 are given below:

1. The accuracy of Scheme 3.1 depends not only on the accuracy of the discretizations
(3.1a) and (3.1b) for solving the BSDE in (2.1) but also on the accuracy of the dis-
cretization (3.2) for solving the SDE in (2.1).

2. The computation of ∆Wtn+1
and ∆W̃tn+1

can be simulated by







∆Wtn+1
=
√

∆tn N(0,1),

∆W̃tn+1
=

√
∆tn

2

(

N(0,1)±
√

3Ñ(0,1)
)

,
(3.3)

where N(0,1) and Ñ(0,1) are two independent random variables with normal dis-
tribution.

3. Scheme 3.1 is an implicit for solving Yn, but is always explicit for solving Zn. When
f = f (t,x,y,z) is Lipschitz continuous with respect to y, there exists unique solution
(Xn,Yn,Zn) of Scheme 3.1 for small time partition step ∆t.
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4 Error estimates

Let us denote by Ỹtn,Xn

tn+1
and Z̃tn,Xn

tn+1
the approximate values of Ytn,Xn

tn+1
and Ztn,Xn

tn+1
at the time-

space (tn+1,Xn+1), respectively, where Xn+1 is the approximate solution of Xtn,Xn

tn+1
calcu-

lated by (3.2), that is Ỹtn,Xn

tn+1
=Y

tn+1,Xn+1

tn+1
and Z̃tn,Xn

tn+1
=Z

tn+1,Xn+1

tn+1
. To simplify the presentation,

in the sequel, we let

f̃ tn ,Xn

tn+1
= f (tn+1,Xn+1,Ỹtn,Xn

tn+1
,Z̃tn,Xn

tn+1
),

and denote Ytn,Xn

tn
−Yn by en

y , Ztn,Xn

tn
−Zn by en

z , Ỹtn,Xn

tn+1
−Yn+1 by en+1

y , Z̃tn,Xn

tn+1
−Zn+1 by en+1

z ,

and f̃ tn ,Xn

tn+1
− f n+1 by en+1

f .

4.1 A useful theorem

We now present an important theorem that will be useful in our error estimates of Scheme
3.1.

Theorem 4.1. Let (Xt,Yt,Zt), t∈ [0,T] and (Xn,Yn,Zn), n=0,1,··· ,N, be the exact solution of
the decoupled FBSDEs (1.1) and the approximate solution obtained by Scheme 3.1, respectively.
Assume that the function f (t,X,Y,Z) is Lipschitz continuous with respect to X, Y and Z and the
Lipschitz constant is L. Let c0 be the time partition regularity parameter defined in (2.2). Then
for sufficiently small time step ∆tn, it holds that

E[|en
y |2]+∆t

N−1

∑
i=n

(1+C∆t

1−C∆t

)i−n
E[|ei

z|2]

≤C′
(

E[|eN
y |2]+∆tE[|eN

z |2]
)

+
N−1

∑
i=n

(1+C∆t

1−C∆t

)i−n CE[|Ri
y1
|2+(∆t)2|Ri

y2
|2+|Ri

y|2]
∆t(1−C∆t)

+
N−1

∑
i=n

(1+C∆t

1−C∆t

)i−n C∆tE[( 1
∆tn

)2|Ri
z1
|2+|Ri

z2
|2+( 1

∆tn
)2|Ri

z|2]
1−C∆t

(4.1)

for n=N−1,··· ,1,0, where C is a positive constant depending on c0 and L, C′ is also a positive
constants depending on c0, T and L, Ri

y and Ri
z are defined in (2.6) and (2.15), and

Rn
y1
=E

Xn

tn
[Ytn,Xn

tn+1
−Ỹtn,Xn

tn+1
], (4.2a)

Rn
y2
=E

Xn

tn
[ f tn ,Xn

tn+1
− f̃ tn,Xn

tn+1
], (4.2b)

Rn
z1
=E

Xn

tn
[(Ytn,Xn

tn+1
−Ỹtn,Xn

tn+1
)∆W̃∗

tn+1
], (4.2c)

Rn
z2
=E

Xn

tn
[( f tn ,Xn

tn+1
− f̃ tn,Xn

tn+1
)∆W̃∗

tn+1
]. (4.2d)
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Proof. For each integer n such that 0≤n≤N−1, subtracting (3.1a) from (2.7) gives us

en
y =E

Xn

tn
[Ytn,Xn

tn+1
−Yn+1]+

1

2
∆tn( f tn,Xn

tn
− f n)+

1

2
∆tnE

Xn

tn
[ f tn ,Xn

tn+1
− f n+1]+Rn

y

=E
Xn

tn
[Ytn,Xn

tn+1
−Ỹtn,Xn

tn+1
+Ỹtn,Xn

tn+1
−Yn+1]+

∆tn

2
( f tn ,Xn

tn
− f n)

+
∆tn

2
E

Xn

tn
[ f tn ,Xn

tn+1
− f̃ tn,Xn

tn+1
+ f̃ tn,Xn

tn+1
− f n+1]+Rn

y

=E
Xn

tn
[en+1

y ]+
∆tn

2
en

f +
∆tn

2
E

Xn

tn
[en+1

f ]+Rn
y1
+

∆tn

2
Rn

y2
+Rn

y . (4.3)

Then we have

|en
y |≤|EXn

tn
[en+1

y ]|+∆tn

2
|en

f |+
∆tn

2
|EXn

tn
[en+1

f ]|+|Rn
y1
|+∆tn

2
|Rn

y2
|+|Rn

y |

≤|EXn

tn
[en+1

y ]|+∆tn

2
L(|en

y |+|en
z |)+

∆tn

2
LE

Xn

tn
[|en+1

y |+|en+1
z |]

+|Rn
y1
|+∆tn

2
|Rn

y2
|+|Rn

y |. (4.4)

Using the inequalities

(a+b)2 ≤ (1+γ∆t)a2+

(

1+
1

γ∆t

)

b2,

( m

∑
n=1

an

)2

≤m
m

∑
n=1

a2
n

for any positive real number γ and positive integer m, we deduce

|en
y |2≤(1+γ∆t)|EXn

tn
[en+1

y ]|2+
(

1+
1

γ∆t

){∆tn

2
L(|en

y |+|en
z |)

+
∆tn

2
LE

Xn

tn
[|en+1

y |+|en+1
z |]+|Rn

y1
|+∆tn

2
|Rn

y2
|+|Rn

y |
}2

≤(1+γ∆t)|EXn

tn
[en+1

y ]|2+5
(

1+
1

γ∆t

){(∆tn L

2

)2
(|en

y |+|en
z |)2

+
(∆tn L

2

)2
(EXn

tn
[|en+1

y |+|en+1
z |])2+|Rn

y1
|2+(

∆tn

2
)2|Rn

y2
|2+|Rn

y |2
}

≤(1+γ∆t)|EXn

tn
[en+1

y ]|2+
{5∆t2L2

2
(|en

y |2+|en
z |2)

+
5∆t2L2

2
E

Xn

tn
[|en+1

y |2+|en+1
z |2]+5|Rn

y1
|2+ 5∆t2

4
|Rn

y2
|2+5|Rn

y |2
}

+
1

γ

{5∆tL2

2
(|en

y |2+|en
z |2)+

5∆tL2

2
E

Xn

tn
[|en+1

y |2+|en+1
z |2]

}

+
1

γ∆t

{

5|Rn
y1
|2+ 5∆t2

4
|Rn

y2
|2+5|Rn

y |2
}

. (4.5)
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By (2.14) and (3.1b) we have

∆tn

2
en

z =E
Xn

tn
[(Ytn,Xn

tn+1
−Yn+1)∆W̃∗

tn+1
]+∆tnE

Xn

tn
[( f tn ,Xn

tn+1
− f n+1)∆W̃∗

tn+1
]+Rn

z . (4.6)

Inserting

E
Xn

tn
[(Ytn,Xn

tn+1
−Yn+1)∆W̃∗

tn+1
]=E

Xn

tn
[(Ytn,Xn

tn+1
−Ỹtn,Xn

tn+1
)∆W̃∗

tn+1
]+E

Xn

tn
[en+1

y ∆W̃∗
tn+1

]

=Rn
z1
+E

Xn

tn
[en+1

y ∆W̃∗
tn+1

].

and

E
Xn

tn
[( f tn ,Xn

tn+1
− f n+1)∆W̃∗

tn+1
]=E

Xn

tn
[( f tn ,Xn

tn+1
− f̃ tn,Xn

tn+1
+ f̃ tn ,Xn

tn+1
− f n+1)∆W̃∗

tn+1
]

=Rn
z2
+E

Xn

tn
[en+1

f ∆W̃∗
tn+1

]

into (4.6), we obtain

en
z =

2

∆tn
E

Xn

tn
[en+1

y ∆W̃∗
tn+1

]+2E
Xn

tn
[en+1

f ∆W̃∗
tn+1

]+
2

∆tn
Rn

z1
+2Rn

z2
+

2

∆tn
Rn

z ,

and consequently we have the estimate

|en
z |≤

2

∆tn
|EXn

tn
[en+1

y ∆W̃∗
tn+1

]|+2|EXn

tn
[en+1

f ∆W̃∗
tn+1

]|+ 2

∆tn
|Rn

z1
|+2|Rn

z2
|+ 2

∆tn
|Rn

z |. (4.7)

By using Holder’s inequality and the inequality (a+b)2≤(1+ε)a2+(1+ 1
ε )b

2 for any pos-
itive real number ε, we obtain the following inequality from (4.7)

|en
z |2≤(1+ε)

( 2

∆tn

)2
|EXn

tn
[en+1

y ∆W̃∗
tn+1

]|2+
(

1+
1

ε

){

2|EXn

tn
[en+1

f ∆W̃∗
tn+1

]|

+
2

∆tn
|Rn

z1
|+2|Rn

z2
|+ 2

∆tn
|Rn

z |
}2

≤(1+ε)
( 2

∆tn

)2
|EXn

tn
[en+1

y ∆W̃∗
tn+1

]|2+16
(

1+
1

ε

){

E
Xn

tn
[|en+1

f |2]EXn

tn
[|∆W̃∗

tn+1
|2]

+
( 1

∆tn

)2
|Rn

z1
|2+|Rn

z2
|2+

( 1

∆tn

)2
|Rn

z |2
}

. (4.8)

Furthermore, applying

E
Xn

tn
[|∆W̃tn+1

|2]=∆tn,

E
Xn

tn
[|en+1

f |2]≤E
Xn

tn
[|L(|en+1

y |+|en+1
z |)|2]≤2L2

E
Xn

tn
[|en+1

y |2+|en+1
z |2],

and

|EXn

tn
[en+1

y ∆W̃∗
tn+1

]|2= |EXn

tn
[(en+1

y −E
Xn

tn
[en+1

y ])∆W̃∗
tn+1

]|2

≤E
Xn

tn
[|∆W̃∗

tn+1
|2]EXn

tn
[(en+1

y −E
Xn

tn
[en+1

y ])2]

=∆tn(E
Xn

tn
[|en+1

y |2]−|EXn

tn
[en+1

y ]|2)
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into (4.8), we obtain

|en
z |2≤(1+ε)

4

∆tn
(EXn

tn
[|en+1

y |2]−|EXn

tn
[en+1

y ]|2)

+32
(

1+
1

ε

)

L2∆tnE
Xn

tn
[|en+1

y |2+|en+1
z |2]

+16(1+
1

ε
)
{( 1

∆tn

)2
|R2

z1
|+|Rn

z2
|+

( 1

∆tn

)2
|Rn

z |2
}

. (4.9)

Dividing both sides of the inequality (4.9) by (1+ε) 4
∆t , we obtain

∆t

4(1+ε)
|en

z |2≤
∆t

∆tn
(EXn

tn
[|en+1

y |2]−|EXn

tn
[en+1

y ]|2)+ 8L2

ε
∆tn∆tEXn

tn
[|en+1

y |2

+|en+1
z |2]+ 4∆t

ε

{ 1

(∆tn)2
|Rn

z1
|2+|Rn

z2
|2+ 1

(∆tn)2
|Rn

z |2
}

≤ c0(E
Xn

tn
[|en+1

y |2]−|EXn

tn
[en+1

y ]|2)+ 8L2

ε
∆t2

E
Xn

tn
[|en+1

y |2

+|en+1
z |2]+ 4∆t

ε

{ 1

(∆tn)2
|Rn

z1
|2+|Rn

z2
|2+ 1

(∆tn)2
|Rn

z |2
}

. (4.10)

Then multiply the inequality (4.5) by c0 and add the derived inequality to the inequality
(4.10), we get

c0|en
y |2+

∆t

4(1+ε)
|en

z |2 ≤ c0(1+γ∆t)|EXn

tn
[en+1

y ]|2+5c0

{ L2∆t2

2
(|en

y |2+|en
z |2)

+
L2∆t2

2
E

Xn

tn
[|en+1

y |2+|en+1
z |2]+|Rn

y1
|2+∆t2

4
|Rn

y2
|2+|Rn

y |2
}

+
c0

γ

{5L2∆t

2
(|en

y |2+|en
z |2)+

5L2∆t

2
E

Xn

tn
[|en+1

y |2+|en+1
z |2]

}

+
c0

γ∆t

{

5|Rn
y1
|2+ 5

4
∆t2|Rn

y2
|2+5|Rn

y |2
}

+c0(E
Xn

tn
[|en+1

y |2]−|EXn

tn
[en+1

y ]|2)+ 8L2

ε
∆t2

E
Xn

tn
[|en+1

y |2+|en+1
z |2]

+
4∆t

ε

{ 1

(∆tn)2
|Rn

z1
|2+|Rn

z2
|2+ 1

(∆tn)2
|Rn

z |2
}

≤ c0

(

1+
(

γ+
5L2

2γ
+

5L2∆t

2
+

8L2∆t

c0ε

)

∆t
)

E
Xn

tn
[|en+1

y |2]

+
(5c0

2γ
+
(5c0

2
+

8

ε

)

∆t
)

L2∆tEXn

tn
[|en+1

z |2]

+
(5c0

2γ
+

5c0∆t

2

)

L2∆t(|en
y |+|en

z |2)
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+5c0

(

1+
1

γ∆t

){

|Rn
y1
|2+ 1

4
∆t2|Rn

y2
|2+|Rn

y |2
}

+
4∆t

ε

{ 1

(∆tn)2
|Rn

z1
|2+|Rn

z2
|2+ 1

(∆tn)2
|Rn

z |2
}

,

which can be further simplified to

c0[1−C1∆t]E[|en
y |2]+C3∆tE[|en

z |2]

≤ c0[1+C2∆t]E[|en+1
y |2]+C4∆tE[|en+1

z |2]+C5

∆t
E[|Rn

y1
|2+ 1

4
∆t2|Rn

y2
|2+|Rn

y |2]

+
4∆t

ε
E

[( 1

∆tn

)2
|Rn

z1
|2+|Rn

z2
|2+

( 1

∆tn

)2
|Rn

z |2
]

, (4.11)

where

C1=
( 5

2γ
+

5∆t

2

)

L2, C2=
(

γ+
5L2

2γ
+

5L2∆t

2
+

8L2∆t

c0ε

)

,

C3=
1

4(1+ε)
−
(5c0

2γ
+

5c0∆t

2

)

L2,

C4=
[5c0

2γ
+
(5c0

2
+

8

ε

)

∆t
]

L2, C5=5c0
1+γ∆t

γ
.

Now we choose ε=1, γ large enough, and ∆t0 sufficiently small, such that if 0<∆t≤∆t0

then C1 ≤C, C2 ≤C, C5 ≤C, 1−C∆t> 0, and C3−C4 >C∗
> 0, where C and C∗ are two

positive constants depending on c0 and L. Then for 0<∆t≤∆t0, we obtain from (4.11)

c0(1−C∆t)E[|en
y |2]+C3∆tE[|en

z |2]
≤c0(1+C∆t)E[|en+1

y |2]+C4∆tE[|en+1
z |2]

+
CE[|Rn

y1
|2+ 1

4(∆t)2|Rn
y2
|2+|Rn

y |2]
∆t

+4∆tE
[( 1

∆tn

)2
|Rn

z1
|2+|Rn

z2
|2+

( 1

∆tn

)2
|Rn

z |2
]

. (4.12)

Dividing both sides of the inequality (4.12) by (1−C∆t), we deduce

c0E[|en
y |2]+C3∆tE[|en

z |2]≤
1+C∆t

1−C∆t

(

c0E[|en+1
y |2]+C4∆tE[|en+1

z |2]
)

+
CE[|Rn

y1
|2+ 1

4(∆t)2|Rn
y2
|2+|Rn

y |2]
∆t(1−C∆t)

+
4∆tE[( 1

∆tn
)2|Rn

z1
|2+|Rn

z2
|2+( 1

∆tn
)2|Rn

z |2]
1−C∆t

. (4.13)
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From the inequality (4.13), by recursively inserting ei
y, i=n+1,··· ,N−1, we deduce

c0E[|en
y |2]+C3∆t

N−1

∑
i=n

(1+C∆t

1−C∆t

)i−n
E[|ei

z|2]

≤
(1+C∆t

1−C∆t

)N−n
c0E[|eN

y |2]+C4∆t
N

∑
i=n+1

(1+C∆t

1−C∆t

)i−n
E[|ei

z|2]

+
N−1

∑
i=n

(1+C∆t

1−C∆t

)i−n CE[|Ri
y1
|2+ 1

4(∆t)2|Ri
y2
|2+|Ri

y|2]
∆t(1−C∆t)

+
N−1

∑
i=n

(1+C∆t

1−C∆t

)i−n 4∆tE[( 1
∆tn

)2|Ri
z1
|2+|Ri

z2
|2+( 1

∆tn
)2|Ri

z|2]
1−C∆t

,

that is,

c0E[|en
y |2]+C∗∆t

N−1

∑
i=n

(1+C∆t

1−C∆t

)i−n
E[|ei

z|2]

≤
(1+C∆t

1−C∆t

)N−n
c0E[|eN

y |2]+C4∆t
(1+C∆t

1−C∆t

)N−n
E[|eN

z |2]

+
N−1

∑
i=n

(1+C∆t

1−C∆t

)i−n CE[|Ri
y1
|2+(∆t)2|Ri

y2
|2+|Ri

y|2]
∆t(1−C∆t)

+
N−1

∑
i=n

(1+C∆t

1−C∆t

)i−n C∆tE[( 1
∆tn

)2|Ri
z1
|2+|Ri

z2
|2+( 1

∆tn
)2|Ri

z|2]
1−C∆t

,

which leads to the inequality (4.1). The proof is completed.

Remark 4.1. Theorem 4.1 implies that Scheme 3.1 is stable, and its solution continuously
depends on terminal condition, that is, for any given positive number ǫ, there exists a

positive integer δ, for different terminal conditions (Y
N

,Z
N
) and (YN ,ZN), if E[|YN−

YN |2]<δ and E[|ZN−ZN |2]<δ, then for 0≤n≤N−1, we have

E[|Yn−Yn|2]+∆t
N

∑
i=n

E[|Zi−Zi|2]<ǫ.

Remark 4.2. The terms Rn
y and Rn

z in (2.7) and (2.14) are the truncated error terms for
solving Yt and Zt in the BSDE in (2.1) by the discretizations (3.1a) and (3.1b) in Scheme
3.1. The four terms Ri

y1
, Ri

y2
, Ri

z1
and Ri

z2
are determined by the discretization (3.2) for

solving the SDE in (2.1). These four terms reflect the weak errors of the scheme for solving
SDE. Under certain regularity conditions on b, σ, f and ϕ, as long as the estimates of Rn

y ,

Rn
z , Ri

y1
, Ri

y2
, Ri

z1
and Ri

z2
are obtained, then it is easy to get error estimates by Theorem

4.1 for Scheme 3.1.
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4.2 Error estimates

In this subsection, under some regularity conditions on the functions b, σ, f and ϕ, we
will derive estimates for the error terms Rn

y , Rn
z , Ri

y1
, Ri

y2
, Ri

z1
and Ri

z2
, and then present

the main result on error estimates of Scheme 3.1. We first need the following assumption.

Assumption 4.1. Assume Xt0 is At0-measurable with E(|Xt0 |2)< ∞. We also assume
that b and σ are jointly L2-measurable in (t,x)∈ [t0,T]×R

d, and are uniformly Lipschitz
continuous and linear growth bounded, that is, there exists a constant L> 0 and K > 0
such that

|b(t,x)−b(t,y)|≤ L|x−y|, |σ(t,x)−σ(t,y)|≤ L|x−y|, (4.14a)

|b(t,x)|2 ≤K(1+|x|2), |σ(t,x)|2 ≤K(1+|x|2), (4.14b)

for all t,s∈ [0,T] and x,y∈R
q.

We also need regularity of the exact solution (Yt,Zt) of the decoupled FBSDEs (1.1).
Let us introduce the following lemma.

Lemma 4.1. ([10,13,15,22,26]) Let the functions b, σ, f and ϕ be uniformly Lipschitz continuous
w.r.t. (X,Y,Z) and Hölder continuous of parameter 1

2 w.r.t. t. We also assume ϕ is of class

C2+α
b for some α∈ (0,1) and the matrix-valued function a = σσ∗ is uniformly elliptic. Then it

is well-known that the solution (Yt,Zt) of (1.1) can be represented as: Yt = u(t,Xt) and Zt =
∇xu(t,Xt)σ(t,Xt), where u(t,x) is the smooth solution of the following PDEs

(∂t+Lt,x)u(t,x)+ f (t,x,u(t,x),∇xu(t,x)σ(t,x))=0,

with the terminal condition u(T,x) = ϕ(x), where L is the second order differential operator
defined by

Lt,x =
1

2 ∑
i,j

[σσ∗]ij(t,x)∂
2
xixj

+∑
i

bi(t,x)∂xi
.

Furthermore, for k = 0,1,2,··· , if b,σ ∈ C1+k,2+2k
b , f ∈ C1+k,2+2k,2+2k,2+2k

b and ϕ ∈ C2+2k+α
b for

some α∈ (0,1), then u∈C1+k,2+2k
b .

The accuracy of Scheme 3.1 obviously also depends on the accuracy of (3.2) for solving
the forward SDE in (2.1).

Assumption 4.2. We assume that the approximation solution Xn+1 solved by (3.2) has
the stability property: for positive integer r, there exists a constant C∈ (0,∞) such that

max
0≤n≤N

E[|Xn |r]≤C(1+E[|X0|r]), (4.15)
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and the approximation properties: there exist positive numbers r1,r2,β,γ such that for

any g∈C
2β+2
P , n=0,1,2,··· ,N,

|EXn

tn
[g(Xtn ,Xn

tn+1
)−g(Xn+1)]|≤Cg(1+|Xn|2r1)(∆t)β+1, (4.16a)

|EXn

tn
[(g(Xtn ,Xn

tn+1
)−g(Xn+1))∆W̃tn+1

]|≤Cg(1+|Xn|2r2)(∆t)γ+1, (4.16b)

|E[g(Xtn )−g(Xn)]|≤Cg(∆t)β, (4.16c)

where Cg>0 is a constant which does not depend on ∆t. The number β+1 will be called
the local order of the approximation.

In fact, many numerical schemes for forward stochastic differential equations, such as
the Euler scheme, the Milstein scheme, and the Itô-Taylor type weak or strong schemes of
order 1.5 or 2 (see [16]) have the approximation properties (4.16a), (4.16b) and (4.16c) with
β=1 or β=2, and the stability property (4.15). Under Assumption 4.1, if E(|X0|2m)<∞

for some integer m≥1, the solution of (2.3a) also has the estimate

E
Xn

tn
(|Xtn ,Xn

s |2m)≤ (1+E
Xn

tn
(|Xn|2m))eC(s−tn), (4.17)

for any s∈[tn,T], where C is a positive constant depending only on the constants K, L and
m.

In the following lemmas, we will present estimations for Ri
y, Ri

z, Rn
y1

, Rn
y2

, Rn
z1

and
Rn

z2
under certain regularity conditions on b, σ, f and ϕ. For the sake of presentation

simplicity, we only consider the case q=d=1, and the results obtained also hold true for
general positive integers q and d. In the sequel, we also let L0 and L1 be two differential
operators defined by

L1=σ∂x, L0=∂t+b∂x+
1

2
σ2∂2

xx.

Lemma 4.2. If f (t,x,y,z) ∈ C2,4,4,4
b , b(t,x),σ(t,x) ∈ C2,4

b , ϕ ∈ C4+α
b ,α ∈ (0,1) and |b(t,x)|2 ≤

K(1+|x|2),|σ(t,x)|2≤K(1+|x|2), then for sufficiently small time step ∆tn, we have that for any
0≤n≤N−1,

E[|Rn
y |2]≤C(1+E[|Xn |8])(∆t)6, (4.18)

where C is a positive constant depending only on T, K, and upper bounds of the derivatives of b,
σ, f and ϕ.

Proof. Lemma 4.1 tells us that the solution (Yt,Zt) of FBSDEs (2.1) can be represented

as Yt = u(t,Xt) and Zt = ∇xu(t,Xt)σ(t,Xt), and if f (t,x,y,z) ∈ C2,4,4,4
b , b(t,x),σ(t,x) ∈

C2,4
b ,ϕ∈C4+α

b ,α∈ (0,1), then f (t,Xt,u(t,Xt),∇xu(t,Xt)σ(t,Xt))=F(t,Xt)∈C2,4
b . We denote

F(t,Xtn,Xn

t ) by Ftn,Xn

t . From the reference equation (2.5), we have

Rn
y =

∫ tn+1

tn

(

E
Xn

tn
[Ftn,Xn

s ]− 1

2
Ftn,Xn

tn
− 1

2
E

Xn

tn
[Ftn ,Xn

tn+1
]
)

ds. (4.19)
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By the Itô-Taylor expansion, we deduce

∫ tn+1

tn

E
Xn

tn
[Ftn ,Xn

s ]ds

=
∫ tn+1

tn

E
Xn

tn
[Ftn ,Xn

tn
+
∫ s

tn

L0Ftn,Xn

r dr+
∫ s

tn

L1Ftn,Xn

r dWr ]ds

=Ftn,Xn

tn

∫ tn+1

tn

ds+
∫ tn+1

tn

∫ s

tn

E
Xn

tn
[L0Ftn,Xn

r ]drds

=∆tnFtn,Xn

tn
+
∫ tn+1

tn

∫ s

tn

E
Xn

tn
[L0Ftn,Xn

tn
+
∫ r

tn

L0L0Ftn,Xn

z dz]drds

=∆tnFtn,Xn

tn
+

1

2
(∆tn)

2L0Ftn,Xn

tn
+
∫ tn+1

tn

∫ s

tn

∫ r

tn

E
Xn

tn
[L0L0Ftn,Xn

z ]dzdrds, (4.20)

and similarly

∫ tn+1

tn

E
Xn

tn
[Ftn,Xn

tn+1
]ds=∆tnFtn,Xn

tn
+(∆tn)

2L0Ftn,Xn

tn

+
∫ tn+1

tn

∫ tn+1

tn

∫ r

tn

E
Xn

tn
[L0L0Ftn,Xn

z ]dzdrds. (4.21)

By (4.19), (4.20) and (4.21), we obtain

Rn
y =

∫ tn+1

tn

∫ s

tn

∫ r

tn

E
Xn

tn
[L0L0Ftn,Xn

z ]dzdrds− 1

2

∫ tn+1

tn

∫ tn+1

tn

∫ r

tn

E
Xn

tn
[L0L0Ftn,Xn

z ]dzdrds. (4.22)

Square both sides of the above equation and take mathematical expectation, we get the
inequality

E[|Rn
y |2]≤2E

[

∣

∣

∣

∫ tn+1

tn

∫ s

tn

∫ r

tn

E
Xn

tn
[L0L0Ftn,Xn

z ]dzdrds
∣

∣

∣

2
]

+2E

[

1

4

∣

∣

∣

∣

∫ tn+1

tn

∫ tn+1

tn

∫ r

tn

E
Xn

tn
[L0L0Ftn,Xn

z ]dzdrds

∣

∣

∣

∣

2]

. (4.23)

From the definition of the operator L0, we have

L0L0F=F′′
tt+bF′′

tx+
1

2
σ2F′′′

txx+b′tF
′
x+bF′′

xt+bb′xF′
x+b2F′′

xx+
1

2
σ2b′′xxF′

x

+
1

2
σ2bF′′′

xxx+σσ′
t F′′

xx+
1

2
σ2F′′′

xxt+bσσ′
x F′′

xx+
1

2
bσ2F′′′

xxx

+
1

2
σ2(σ′

x)
2+

1

2
σ3σ′′

xxF′′
xx+σ3σ′

xF′′′
xxx+

1

4
σ4F

(4)
xxxx.
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Thus by applying the Cauchy-Schwarz inequality to (4.23) and using (4.17), we have

E[|Rn
y |2]≤

1

3
(∆tn)

3
∫ tn+1

tn

∫ s

tn

∫ r

tn

E[|L0L0Ftn,Xn

z |2]dzdrds

+
1

4
(∆tn)

3
∫ tn+1

tn

∫ tn+1

tn

∫ r

tn

E[|L0L0Ftn,Xn

z |2]dzdrds

≤ 1

3
(∆tn)

3
∫ tn+1

tn

∫ s

tn

∫ r

tn

E[C(1+|Xtn ,Xn

z |8)]dzdrds

+
1

4
(∆tn)

3
∫ tn+1

tn

∫ tn+1

tn

∫ r

tn

E[C(1+|Xtn ,Xn

z |8)]dzdrds

≤C(1+E[|Xn|8])(∆tn)
6.

The proof is complete.

Lemma 4.3. Assume that the conditions of Lemma 4.2 hold, then for sufficiently small time step
∆tn, we have that for any 0≤n≤N−1,

∣

∣

∣

∫ tn+1

tn

E
Xn

tn
[ f tn ,Xn

s ∆W̃tn+1
]ds−∆tnE

Xn

tn
[ f tn ,Xn

tn+1
∆W̃tn+1

]
∣

∣

∣

2
≤C(1+E

Xn

tn
[|Xn |8])(∆tn)

6, (4.24)

where C is a positive constant depending only on T, K, and the upper bounds of the derivatives of
b, σ, f and ϕ.

Proof. Under the condition of the lemma, it is easy to verify that F(t,Xt)∈ C2,4
b . By the

Itô-Taylor expansion, we have
∣

∣

∣

∣

∫ tn+1

tn

E
Xn

tn
[Ftn,Xn

s ∆W̃tn+1
]ds−∆tnE

Xn

tn
[Ftn,Xn

tn+1
∆W̃tn+1

]

∣

∣

∣

∣

=

∣

∣

∣

∣

∫ tn+1

tn

E
Xn

tn

[(

∫ s

tn

L0Ftn,Xn

z dz+
∫ s

tn

L1Ftn,Xn

z dWz

)

∆W̃tn+1

]

ds

−
∫ tn+1

tn

E
Xn

tn

[(

∫ tn+1

tn

L0Ftn,Xn

z dz+
∫ tn+1

tn

L1Ftn,Xn

z dWz

)

∆W̃tn+1

]

ds

∣

∣

∣

∣

≤A1+A2, (4.25)

where

A1=

∣

∣

∣

∣

∫ tn+1

tn

(

E
Xn

tn

[

∫ s

tn

L0Ftn,Xn

z dz∆W̃tn+1

]

−E
Xn

tn

[

∫ tn+1

tn

L0Ftn,Xn

z dz∆W̃tn+1

]

)

ds

∣

∣

∣

∣

,

A2=

∣

∣

∣

∣

∫ tn+1

tn

(

E
Xn

tn

[

∫ s

tn

L1Ftn,Xn

z dWz∆W̃tn+1
−
∫ tn+1

tn

L1Ftn,Xn

z dWz∆W̃tn+1

]

)

ds

∣

∣

∣

∣

.

Again by the Itô-Taylor expansion, we deduce

A1=

∣

∣

∣

∣

∫ tn+1

tn

E
Xn

tn

[

∫ s

tn

(

∫ z

tn

L0L0Ftn,Xn

r dr+
∫ z

tn

L1L0Ftn,Xn

r dWr

)

dz∆W̃tn+1

]

ds

−
∫ tn+1

tn

E
Xn

tn

[

∫ tn+1

tn

(

∫ z

tn

L0L0Ftn,Xn

r dr+
∫ z

tn

L1L0Ftn,Xn

r dWr

)

dz∆W̃tn+1

]

ds

∣

∣

∣

∣

.
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Notice that
∣

∣

∣

∣

∫ tn+1

tn

E
Xn

tn

[

(

∫ s

tn

∫ z

tn

L0L0Ftn,Xn

r drdz−
∫ tn+1

tn

∫ z

tn

L0L0Ftn,Xn

r drdz
)

∆W̃tn+1

]

ds

∣

∣

∣

∣

≤
√

∆tn

∣

∣

∣

∣

∣

∫ tn+1

tn

E
Xn

tn

[

(

∫ s

tn

∫ z

tn

L0L0Ftn,Xn

r drdz−
∫ tn+1

tn

∫ z

tn

L0L0Ftn,Xn

r drdz
)2

]
1
2

ds

∣

∣

∣

∣

∣

≤2∆tn

∣

∣

∣

∣

∫ tn+1

tn

E
Xn

tn

[

(

∫ s

tn

∫ z

tn

L0L0Ftn,Xn

r drdz
)2

+
(

∫ tn+1

tn

∫ z

tn

L0L0Ftn,Xn

r drdz
)2

]

ds

∣

∣

∣

∣

1
2

≤C(1+E
Xn

tn
[|Xn|8]) 1

2 (∆tn)
7
2 ,

and by the Itô’s isometry formula, we have

∣

∣

∣

∣

∫ tn+1

tn

E
Xn

tn

[(

∫ s

tn

∫ z

tn

L1L0FrdWrdz−
∫ tn+1

tn

∫ z

tn

L1L0FrdWrdz

)

∆W̃tn+1

]

ds

∣

∣

∣

∣

≤
∣

∣

∣

∣

∫ tn+1

tn

∫ s

tn

∫ z

tn

E
Xn

tn
[2L1L0Fr]drdzds

∣

∣

∣

∣

+

∣

∣

∣

∣

∫ tn+1

tn

∫ s

tn

∫ z

tn

E
Xn

tn

[ 3

∆tn
L1L0Fr(r−tn)

]

drdzds

∣

∣

∣

∣

+

∣

∣

∣

∣

∫ tn+1

tn

∫ tn+1

tn

∫ z

tn

E
Xn

tn
[2L1L0Fr]drdzds

∣

∣

∣

∣

+

∣

∣

∣

∣

∫ tn+1

tn

∫ tn+1

tn

∫ z

tn

E
Xn

tn

[ 3

∆tn
L1L0Fr(r−tn)

]

drdzds

∣

∣

∣

∣

≤C(1+E
Xn

tn
[|Xn|3])(∆tn)

3.

The above two inequalities lead to the estimate of A1 as

A1≤C(1+E
Xn

tn
[|Xn|8]) 1

2 (∆tn)
7
2 +C(1+E

Xn

tn
[|Xn|3])(∆tn)

3.

Now we turn into estimate A2. Using the identity

∣

∣

∣

∣

∫ tn+1

tn

E
Xn

tn

[

∫ s

tn

dWz∆W̃tn+1
−
∫ tn+1

tn

dWz∆W̃tn+1

]

ds

∣

∣

∣

∣

=

∣

∣

∣

∣

∫ tn+1

tn

E
Xn

tn

[

∫ s

tn

dWz

(

2∆Wtn+1
− 3

∆tn

∫ tn+1

tn

(z−tn)dWz

)]

−E
Xn

tn

[

∫ tn+1

tn

dWz

(

2∆Wtn+1
− 3

∆tn

∫ tn+1

tn

(z−tn)dWz

)]

∣

∣

∣

∣

=

∣

∣

∣

∣

∫ tn+1

tn

(

(

∫ s

tn

2dz− 3

∆tn

∫ s

tn

(z−tn)dz
)

−
(

∫ tn+1

tn

2dz− 3

∆tn

∫ tn+1

tn

(z−tn)dz
)

)
∣

∣

∣

∣

=0
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and the Itô expansion again, we obtain

A2=

∣

∣

∣

∣

∫ tn+1

tn

E
Xn

tn

[(

∫ s

tn

(L1Ftn,Xn

tn
+
∫ z

tn

L0L1Ftn,Xn

r dr+
∫ z

tn

L1L1Ftn,Xn

r dWr)dWz

)

∆W̃tn+1

]

ds

−
∫ tn+1

tn

E
Xn

tn

[(

∫ tn+1

tn

(L1Ftn,Xn

tn
+
∫ z

tn

L0L1Ftn,Xn

r dr+
∫ z

tn

L1L1Ftn,Xn

r dWr)dWz

)

∆W̃tn+1

]

ds

∣

∣

∣

∣

=

∣

∣

∣

∣

∫ tn+1

tn

E
Xn

tn

[

∫ s

tn

∫ z

tn

L0L1Ftn,Xn

r drdWz∆W̃tn+1

]

ds

−
∫ tn+1

tn

E
Xn

tn

[

∫ tn+1

tn

∫ z

tn

L0L1Ftn,Xn

r drdWz∆W̃tn+1

]

ds

∣

∣

∣

∣

≤C(1+E
Xn

tn
[|Xn|3])(∆tn)

3.

By (4.25) and the estimates of A1 and A2, we complete the proof.

Lemma 4.4. Assume the conditions of Lemma 4.2 hold, then for sufficiently small time step ∆tn,
we have that for any 0≤n≤N−1,

∣

∣

∣

∣

1

2
∆tnZtn,Xn

tn
−E

Xn

tn

[(

∫ tn+1

tn

Ztn,Xn

s dWs

)

∆W̃tn+1

]

∣

∣

∣

∣

2

≤C(1+E
Xn

tn
[|Xn|8])(∆tn)

6, (4.26)

where C is a positive constant depending only on T, K, and upper bounds of the derivatives of b,
σ, f and ϕ.

Proof. From the definition of ∆W̃s, we have

∣

∣

∣

∣

1

2
∆tnZtn,Xn

tn
−E

Xn

tn

[

∫ tn+1

tn

Ztn,Xn

s dWs ·∆W̃tn+1

]

∣

∣

∣

∣

=

∣

∣

∣

∣

1

2
∆tnZtn,Xn

tn
−2

∫ tn+1

tn

E
Xn

tn
[Ztn,Xn

s ]ds+
3

∆tn

∫ tn+1

tn

E
Xn

tn
[Ztn,Xn

s (s−tn)]ds

∣

∣

∣

∣

.

By the Itô-Taylor expansion, we obtain

∣

∣

∣

∣

1

2
∆tnZtn,Xn

tn
−E

Xn

tn

[

∫ tn+1

tn

Ztn,Xn

s dWs ·∆W̃tn+1

]

∣

∣

∣

∣

=

∣

∣

∣

∣

1

2
Ztn,Xn

tn
∆tn−2

(

∆tnZtn,Xn

tn
+
∫ tn+1

tn

∫ s

tn

E
Xn

tn
[L0Ztn,Xn

r ]drds
)

+
3

∆tn

(1

2
(∆tn)

2Ztn,Xn

tn
+
∫ tn+1

tn

∫ s

tn

E
Xn

tn
[L0Ztn,Xn

r (s−tn)]drds
)

∣

∣

∣

∣

=

∣

∣

∣

∣

2
∫ tn+1

tn

∫ s

tn

E
Xn

tn
[L0Ztn,Xn

r ]drds− 3

∆tn

∫ tn+1

tn

∫ s

tn

E
Xn

tn
[L0Ztn,Xn

r (s−tn)]drds

∣

∣

∣

∣

.



636 W. Zhao, W. Zhang and L. Ju / Commun. Comput. Phys., 15 (2014), pp. 618-646

Use the Itô-Taylor expansion again we then get
∣

∣

∣

∣

1

2
∆tnZtn ,Xn

tn
−E

Xn

tn

[

∫ tn+1

tn

Ztn,Xn

s dWs ·∆W̃tn+1

]

∣

∣

∣

∣

=

∣

∣

∣

∣

−2
∫ tn+1

tn

∫ s

tn

E
Xn

tn

[

L0Ztn,Xn

tn
+
∫ r

tn

L0L0Ztn,Xn

z dz
]

drds

+
3

∆tn

∫ tn+1

tn

∫ s

tn

E
Xn

tn

[

L0Ztn,Xn

tn
(s−tn)+

∫ r

tn

L0L0Ztn,Xn

z (s−tn)dz
]

drds

∣

∣

∣

∣

=

∣

∣

∣

∣

∫ tn+1

tn

∫ s

tn

∫ r

tn

(

2E
Xn

tn
[L0L0Ztn,Xn

z ]− 3

∆tn
E

Xn

tn
[L0L0Ztn,Xn

z (s−tn)]
)

dzdrds

∣

∣

∣

∣

≤C(1+E
Xn

tn
[|Xn |4])(∆tn)

3.

The proof is completed.

Lemma 4.5. Assume the conditions of Lemma 4.2 hold, then for sufficiently small time step ∆tn,
we have that for any 0≤n≤N−1,

|Rn
z |2≤C(1+E

Xn

tn
[|Xn|8])(∆t)6,

where C is a positive constant depending only on T and K, and upper bounds of the derivatives of
b, σ, f and ϕ.

Proof. From (2.14), Rn
z =Rn

1+Rn
2 with Rn

1 and Rn
2 defined in (2.10) and (2.12) respectively.

It is easy to show that the lemma is the direct consequence of Lemmas 4.3 and 4.4.

Theorem 4.2. Assume Assumption 4.2 and the conditions of Lemma 4.2 holds. Then for suffi-
ciently small time step ∆tn, we have that for any 0≤n≤N−1,

E[|en
y |2]+∆t

N−1

∑
i=n

E[|ei
z|2]≤C1(E[|eN

y |2]+∆tE[|eN
z |2])+C2(∆t2β+∆t2γ+∆t4), (4.27)

where C1 is a positive constant depending on c0, T and L, C2 is also a positive constant depending
on c0, T, L, K, the initial value of Xt in (1.1), and the upper bounds of the derivatives of b, σ, f
and ϕ.

Proof. From the definitions of Ri
y1

, Ri
y2

, Ri
z1

and Ri
y2

in Theorem 4.1, if Assumption 4.2
holds, under the conditions of Lemma 4.2 we have the following estimates

E[|Xi|2]≤C(1+E[|X0|2]), (4.28a)

E[|Ri
y1
|2]≤C(1+E[|Xi |4r1 ])(∆t)2β+2≤C(1+E[|X0|4r1 ])(∆t)2β+2, (4.28b)

E[|Ri
y2
|2]≤C(1+E[|Xi |4r1 ])(∆t)2β+2≤ C(1+E[|X0|4r1 ])(∆t)2β+2, (4.28c)

E[|Ri
z1
|2]≤C(1+E[|Xi|4r2)(∆t)2γ+2≤ C(1+E[|X0|4r2)(∆t)2γ+2, (4.28d)

E[|Ri
z2
|2]≤C(1+E[|Xi|4r2 ])(∆t)2γ+2≤C(1+E[|X0|4r2 ])(∆t)2γ+2 (4.28e)
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for i=0,1,··· ,N−1. By Lemmas 4.2 and 4.5, we have that for 0≤ i≤N−1,

E[|Ri
y|2]≤C(1+E[|X0|8])(∆t)6, E[|Ri

z|2]≤C(1+E[|X0|8])(∆t)6. (4.29)

By (4.28) and (4.29), we deduce

N−1

∑
i=n

(1+C∆t

1−C∆t

)i−n CE[|Ri
y1
|2+(∆t)2|Ri

y2
|2+|Ri

y|2]
∆t(1−C∆t)

≤C(1+E[|X0|4r1 ]+E[|X0|8])((∆t)2β+(∆t)4), (4.30)

and

N−1

∑
i=n

(1+C∆t

1−C∆t

)i−n C∆tE[( 1
∆tn

)2|Ri
z1
|2+|Ri

z2
|2+( 1

∆tn
)2|Ri

z|2]
(1−C∆t)

≤C(1+E[|X0|4r2 ]+E[|X0|8])((∆t)2γ+(∆t)4). (4.31)

Now by Theorem 4.1, the estimates (4.31) and (??), we complete the proof.

4.3 Classical schemes for solving SDEs

In this subsection we introduce some classical numerical schemes in the form of (3.2) that
can be used in Scheme 3.1 for solving the forward SDE (2.1) and identify the validity of
Assumption 4.2 for these schemes, and finally conclude the respective error estimates of
the Scheme 3.1 for each of the cases.

4.3.1 The Euler scheme

The Euler scheme [16] for solving (2.1) is given by

Xn+1=Xn+b(tn,Xn)∆tn+σ(tn,Xn)∆Wtn+1
. (4.32)

By the Itô-Taylor expansion, the exact solution Xt of (2.1) at t= tn+1 satisfies

Xtn+1
=Xtn +b(tn,Xtn)∆tn+σ(tn,Xtn)∆Wtn+1

+Rn
x, (4.33)

where

Rn
x =

∫ tn+1

tn

∫ s

tn

L0b(r,Xr)drds+
∫ tn+1

tn

∫ s

tn

L1b(r,Xr)dWrds

+
∫ tn+1

tn

∫ s

tn

L0σ(r,Xr)drdWs+
∫ tn+1

tn

∫ s

tn

L1σ(r,Xr)dWrdWs.

Thus we easily have

|EXn

tn
[Xtn,Xn

tn+1
−Xn+1]|= |EXn

tn
[Rn

x ]|≤C(∆tn)
2, (4.34)
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and
∣

∣E
Xn

tn
[(Xtn,Xn

tn+1
−Xn+1)∆W̃tn+1

]
∣

∣

=

∣

∣

∣

∣

E
Xn

tn

[(

∫ tn+1

tn

∫ s

tn

L0b(r,Xtn ,Xn

r )drds+
∫ tn+1

tn

∫ s

tn

L1b(r,Xtn ,Xn

r )dWrds

+
∫ tn+1

tn

∫ s

tn

L0σ(r,Xtn ,Xn

r )drdWs+
∫ tn+1

tn

∫ s

tn

L1σ(r,Xtn ,Xn

r )dWrdWs

)

∆W̃tn+1

]

∣

∣

∣

∣

≤A1+A2+A3+A4, (4.35)

where

A1=

∣

∣

∣

∣

E
Xn

tn

[

∫ tn+1

tn

∫ s

tn

L0b(r,Xtn ,Xn

r )drds∆W̃tn+1

]

∣

∣

∣

∣

,

A2=

∣

∣

∣

∣

E
Xn

tn

[

∫ tn+1

tn

∫ s

tn

L1b(r,Xtn ,Xn

r )dWrds∆W̃tn+1

]

∣

∣

∣

∣

,

A3=

∣

∣

∣

∣

E
Xn

tn

[

∫ tn+1

tn

∫ s

tn

L0σ(r,Xtn ,Xn

r )drdWs∆W̃tn+1

]

∣

∣

∣

∣

,

A4=

∣

∣

∣

∣

E
Xn

tn

[

∫ tn+1

tn

∫ s

tn

L1σ(r,Xtn ,Xn

r )dWrdWs∆W̃tn+1

]

∣

∣

∣

∣

.

For Ai (i=1,2,3,4), the following estimates hold

A1=

∣

∣

∣

∣

E
Xn

tn

[

∫ tn+1

tn

∫ s

tn

L0b(r,Xtn ,Xn

r )drds∆W̃tn+1

]

∣

∣

∣

∣

≤
∣

∣

∣

∣

E
Xn

tn

[(

∫ tn+1

tn

∫ s

tn

L0b(r,Xtn ,Xn

r )drds
)2] 1

2
E

Xn

tn
[(∆W̃tn+1

)2]
1
2

∣

∣

∣

∣

≤
√

∆tn

∣

∣

∣

∣

∫ tn+1

tn

∫ s

tn

drds
∫ tn+1

tn

∫ s

tn

E
Xn

tn
[(L0b(r,Xtn ,Xn

r ))2]drds

∣

∣

∣

∣

1
2

≤C(1+E
Xn

tn
[|Xn|4]) 1

2 (∆tn)
5
2 ,

A2=

∣

∣

∣

∣

E
Xn

tn

[

∫ tn+1

tn

∫ s

tn

L1b(r,Xtn ,Xn

r )dWrds∆W̃tn+1

]

∣

∣

∣

∣

=

∣

∣

∣

∣

∫ tn+1

tn

E
Xn

tn

[

∫ s

tn

L1b(r,Xtn ,Xn

r )dWr∆W̃s

]

ds

∣

∣

∣

∣

≤C(1+E
Xn

tn
[|Xn|2]) 1

2 (∆tn)
2,

A3=

∣

∣

∣

∣

E
Xn

tn

[

∫ tn+1

tn

∫ s

tn

L0σ(r,Xtn ,Xn

r )drdWs∆W̃tn+1

]

∣

∣

∣

∣

≤C(1+E
Xn

tn
[|Xn|2])(∆tn)

2,

A4=

∣

∣

∣

∣

E
Xn

tn

[

∫ tn+1

tn

∫ s

tn

L1σ(r,Xtn ,Xn

r )dWrdWs∆W̃tn+1

]

∣

∣

∣

∣

=0.
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By (4.34), (4.35) and the estimates of Ai (i=1,2,3,4), we obtain

|EXn

tn
[(Xtn ,Xn

tn+1
−Xn+1)∆W̃tn+1

]|≤C(1+E
Xn

tn
[|Xn|4]) 1

2 (∆tn)
2. (4.36)

Thus we conclude that Assumption 4.2 holds true for the Euler scheme with β= γ= 1.
Furthermore, if E[|YtN

−YN|2]≤C(∆t)2, E[|ZtN
−ZN |2]≤C(∆t)2 and the Euler scheme is

used in (3.2), then by Theorem 4.2 we obtain the error estimate of Scheme 3.1 as

E[|en
y |2]+∆t

N−1

∑
i=n

E[|ei
z|2]≤C(∆t)2. (4.37)

The estimate (4.37) implies Scheme 3.1 for solving the decouple FBSDEs is a first-order
accurate method when the Euler scheme is used for solution of the forward SDE.

4.3.2 The Milstein scheme

The Milstein scheme [16] is given by

Xn+1=Xn+b(tn,Xn)∆tn+σ(tn,Xn)∆Wtn+1

+
1

2
σσ′(tn,Xn)((∆Wtn+1

)2−∆tn), (4.38)

which is obtained by the Itô-Taylor expansion

Xtn+1
=Xtn+b(tn,Xtn)∆tn+σ(tn,Xtn)∆Wtn+1

+
1

2
σσ′(tn,Xtn)((∆Wtn+1

)2−∆tn)+Rn
x , (4.39)

where

Rn
x =

∫ tn+1

tn

∫ s

tn

L0b(r,Xtn ,Xn

r )drds+
∫ tn+1

tn

∫ s

tn

L1b(r,Xtn,Xn

r )dWrds

+
∫ tn+1

tn

∫ s

tn

L0σ(r,Xtn ,Xn

r )drdWs+
∫ tn+1

tn

∫ s

tn

∫ r

tn

L0L1σ(z,Xtn ,Xn

z )dzdWr dWs

+
∫ tn+1

tn

∫ s

tn

∫ r

tn

L1L1σ(z,Xtn ,Xn

z )dWzdWrdWs. (4.40)

It is easy to check that

|EXn

tn
[Xtn,Xn

tn+1
−Xn+1]|= |EXn

tn
[Rn

x ]|≤C(∆tn)
2, (4.41)
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and
∣

∣E
Xn

tn
[(Xtn,Xn

tn+1
−Xn+1)∆W̃tn+1

]
∣

∣

=

∣

∣

∣

∣

E
Xn

tn

[(

∫ tn+1

tn

∫ s

tn

L0b(r,Xtn ,Xn

r )drds+
∫ tn+1

tn

∫ s

tn

L1b(r,Xtn ,Xn

r )dWrds

+
∫ tn+1

tn

∫ s

tn

L0σ(r,Xtn ,Xn

r )drdWs+
∫ tn+1

tn

∫ s

tn

∫ r

tn

L0L1σ(z,Xtn ,Xn

z )dzdWrdWs

+
∫ tn+1

tn

∫ s

tn

∫ r

tn

L1L1σ(z,Xtn ,Xn

z )dWzdWrdWs

)

∆W̃tn+1

]

∣

∣

∣

∣

≤A1+A2+A3+B1+B2, (4.42)

where A1, A2 and A3 are the same as those defined in Section 4.3.1, and

B1=

∣

∣

∣

∣

E
Xn

tn

[

∫ tn+1

tn

∫ s

tn

∫ r

tn

L0L1σ(z,Xtn ,Xn

z )dzdWr dWs∆W̃tn+1

]

∣

∣

∣

∣

, (4.43a)

B2=

∣

∣

∣

∣

E
Xn

tn

[

∫ tn+1

tn

∫ s

tn

∫ r

tn

L1L1σ(z,Xtn ,Xn

z )dWzdWrdWs∆W̃tn+1

]

∣

∣

∣

∣

. (4.43b)

From the adapted properties of the solution of SDEs and of the Itô’s integral, we easily
get

B1=B2=0.

By (4.41), (4.42), and the estimate of A1, A2, and A3, we get

|EXn

tn
[(Xtn,Xn

tn+1
−Xn+1)∆W̃tn+1

]|≤C(1+E
Xn

tn
[|Xn|4]) 1

2 (∆tn)
2. (4.44)

Thus from (4.41) and (4.44), we conclude that Assumption 4.2 also holds true for the
Milstein scheme with β=γ=1. Furthermore, if E[|YtN

−YN|2]≤C(∆t)2, E[|ZtN
−ZN |2]≤

C(∆t)2 and the Milstein scheme is used in (3.2), then by Theorem 4.2 we obtain the error
estimate of Scheme 3.1 as

E[|en
y |2]+∆t

N−1

∑
i=n

E[|ei
z|2]≤C(∆t)2. (4.45)

The estimate (4.45) implies Scheme 3.1 for solving the decouple FBSDEs is a first-order
accurate method when the Milstein scheme is used for solution of the forward SDE.

4.3.3 The order-2.0 weak Taylor scheme

The order-2.0 weak Taylor scheme [16] is given by

Xn+1=Xn+b(tn,Xn)∆tn+σ(tn,Xn)∆Wtn+1

+L0b(tn,Xn)
∫ tn+1

tn

∫ s

tn

drds+L1b(tn,Xn)
∫ tn+1

tn

∫ s

tn

dWrds

+L0σ(tn,Xn)
∫ tn+1

tn

∫ s

tn

drdWs+L1σ(tn,Xn)
∫ tn+1

tn

∫ s

tn

dWrdWs (4.46)
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which is obtained by the Itô-Taylor expansion

Xtn+1
=Xtn+b(tn,Xtn)∆tn+σ(tn,Xtn)∆Wtn+1

+L0b(tn,Xtn)
∫ tn+1

tn

∫ s

tn

drds+L1b(tn,Xtn)
∫ tn+1

tn

∫ s

tn

dWrds

+L0σ(tn,Xtn)
∫ tn+1

tn

∫ s

tn

drdWs+L1σ(tn,Xtn)
∫ tn+1

tn

∫ s

tn

dWrdWs+Rn
x, (4.47)

where Rn
x =D1+D2+D3+D4+D5+D6+D7+D8 with

D1=
∫ tn+1

tn

∫ s

tn

∫ r

tn

L0L0b(z,Xtn,Xn

z )dzdrds,

D2=
∫ tn+1

tn

∫ s

tn

∫ r

tn

L1L0b(z,Xtn,Xn

z )dWzdrds,

D3=
∫ tn+1

tn

∫ s

tn

∫ r

tn

L0L1b(z,Xtn,Xn

z )dzdWr ds,

D4=
∫ tn+1

tn

∫ s

tn

∫ r

tn

L1L1b(z,Xtn,Xn

z )dWzdWrds,

D5=
∫ tn+1

tn

∫ s

tn

∫ r

tn

L0L0σ(z,Xtn ,Xn

z )dzdrdWs ,

D6=
∫ tn+1

tn

∫ s

tn

∫ r

tn

L1L0σ(z,Xtn ,Xn

z )dWzdrdWs ,

D7=
∫ tn+1

tn

∫ s

tn

∫ r

tn

L0L1σ(z,Xtn ,Xn

z )dzdWrdWs ,

D8=
∫ tn+1

tn

∫ s

tn

∫ r

tn

L1L1σ(z,Xtn ,Xn

z )dWzdWrdWs.

It is easy to get

|EXn

tn
[Xtn,Xn

tn+1
−Xn+1]|= |EXn

tn
[Rn

x ]|≤C(∆tn)
3. (4.48)

Using the similar analysis as that for the Euler scheme in Section 4.3.1 and the Milstein
scheme in Section 4.3.2, we can obtain

|EXn

tn
[D1∆W̃tn+1

]|≤C(1+E
Xn

tn
[|Xn|8]) 1

2 (∆tn)
7
2 ,

|EXn

tn
[D2∆W̃tn+1

]|≤C(1+E
Xn

tn
[|Xn|3])(∆tn)

3,

|EXn

tn
[D3∆W̃tn+1

]|≤C(1+E
Xn

tn
[|Xn|3])(∆tn)

3,

|EXn

tn
[D5∆W̃tn+1

]|≤C(1+E
Xn

tn
[|Xn|8]) 1

2 (∆tn)
3,

and

|EXn

tn
[D4∆W̃tn+1

]|=0, |EXn

tn
[D6∆W̃tn+1

]|=0,

|EXn

tn
[D7∆W̃tn+1

]|=0, |EXn

tn
[D8∆W̃tn+1

]|=0.
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Thus we also have

|EXn

tn
[(Xtn,Xn

tn+1
−Xn+1)∆W̃tn+1

]|≤C(1+E
Xn

tn
[|Xn|8]) 1

2 (∆tn)
3. (4.49)

Now from (4.48) and (4.49), we conclude that Assumption 4.2 also holds true for the
order-2.0 weak Taylor scheme with β = γ = 2. Furthermore, if E[|YtN

−YN|2]≤ C(∆t)4,
E[|ZtN

−ZN |2]≤ C(∆t)4 and the order-2.0 weak Taylor scheme is used in (3.2), then by
Theorem 4.2 we obtain the error estimate of Scheme 3.1 as

E[|en
y |2]+∆t

N−1

∑
i=n

E[|ei
z|2]≤C(∆t)4. (4.50)

The estimate (4.50) implies Scheme 3.1 for solving the decouple FBSDEs is a second-
order accurate method when the order-2.0 weak Taylor scheme is used for solution of the
forward SDE.

5 Numerical experiments

In this section, some numerical tests will be performed to demonstrate the effectiveness
and accuracy of the proposed method — Scheme 3.1 for solving the decoupled FBSDEs
(1.1) and verify the above theoretical results. We will show that the convergence order of
Scheme 3.1 depends on the numerical method for solving the forward SDE as shown in
our theoretical analysis (Theorem 4.2, (4.37), (4.45) and (4.50)) although the BSDE of (1.1)
is solved by a second-order accurate scheme.

We here consider one-dimensional problems. In order to use Scheme 3.1, space
partition and approximation of E

Xn

tn
[·] at discrete space grid point xi are needed. In

our numerical experiments, with the spatial step size h, the discrete grid points are
xi = ih, i = 0,±1,±2,··· . In the calculations of the conditional mathematical expectation
E

Xn

tn
[·], the Gauss-Hermite quadrature rule is used, and the values of the integrands of

the conditional mathematical expectations at non-grid points are approximated by local
cubic interpolations. Since our goal is to test the accuracy of the scheme with respect to
the time step size, we set the number of the Gauss-Hermite quadrature points to be big
enough so that the error contributed by spacial approximation is very small and will af-
fect the convergence rate just very little. For simplicity, we take a uniform partition with
a time step size ∆t. Then the time partition number N is given by N= T

∆t , where T is the
terminal time.

Let |Y0−Y0| and |Z0−Z0| represent the errors between the exact solution (Yt,Zt) of
(2.3a) at time t=0 and the solution (Yn,Zn) of Scheme 3.1 at n=0. The convergence rate
(CR) with respect to time step ∆t is obtained by using linear least square fitting to the
errors. The time step sizes used in our experiments are N= 1

2i (i=4,··· ,8).

Example 5.1. In this example, we test our scheme for the decoupled FBSDEs which con-
tain a linear BSDE. The considered decoupled FBSDEs are (written in the differential
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form)






dXt =sin(2Xt)dt+tcosXtdWt,

−dYt =

(

−cosXt−
2sinXtZt

t
+t2cos2 Xt

(

2Yt−
3

2
tcosXt

))

dt−ZtdWt.
(5.1)

The terminal condition is chosen to be YT = sin(2XT)+TcosXT. Then the exact solution
of (5.1) is

{

Yt=sin(2Xt)+tcosXt,

Zt= tcosXt(2cos(2Xt)−tsinXt).
(5.2)

Let the Brownian motion Xt start at the time-space point (0,1) (i.e. X0 = 1), then the
exact solution at t = 0 is (Y0,Z0) = (sin2,0). The errors |Y0−Y0| and |Z0−Z0| and their
convergence rates are listed in Table 1, which clearly match our theoretical results (4.37),
(4.45) and (4.50) very well.

Table 1: Errors and convergence rates of Scheme 3.1 in Example 5.1.

SDE Scheme Euler Milstein Order-2.0 Weak Taylor

N |Y0−Y0| |Z0−Z0| |Y0−Y0| |Z0−Z0| |Y0−Y0| |Z0−Z0|
16 3.4329E-01 5.0297E-01 1.1522E-01 8.7098E-02 3.1026E-02 6.0657E-02

32 1.6850E-01 2.3713E-01 6.6925E-02 4.7832E-02 8.0831E-03 1.5890E-02

64 8.3344E-02 1.1508E-01 3.5356E-02 2.8589E-02 2.0542E-03 4.0718E-03

128 4.1438E-02 5.6683E-02 1.8054E-02 1.5667E-02 5.1731E-04 1.0310E-03

256 2.0661E-02 2.8126E-02 9.1381E-03 8.1818E-03 1.2979E-04 2.5946E-04

CR 1.0133 1.0386 0.9203 0.9116 1.9768 1.9684

Example 5.2. In this example, we test our scheme for solving the decoupled FBSDEs
which contain a nonlinear BSDE. The decouple FBSDEs are given by















dXt =sin(t+Xt)dt+
3

10
cos(t+Xt)dWt,

−dYt =

(

3

20
YtZt−cos(t+Xt)(1+Yt)

)

dt−ZtdWt.
(5.3)

We choose the terminal condition YT = sin(T+XT). Then the analytic solution of (5.3) is
given by

{

Yt=sin(t+Xt),

Zt=
3

10 cos2(t+Xt).
(5.4)

In this example, we still let X0 = 1, then the exact solution (Yt,Zt) at the time t = 0 is
(Y0,Z0) = (sin1, 3

10 cos21). We report the errors |Y0−Y0| and |Z0−Z0| and their conver-
gence rates in Table 2, which again are consistent with our theoretical results (4.37), (4.45)
and (4.50).
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Table 2: Errors and convergence rates of Scheme 3.1 in Example 5.2.

SDE Scheme Euler Milstein Order-2.0 Weak Taylor

N |Y0−Y0| |Z0−Z0| |Y0−Y0| |Z0−Z0| |Y0−Y0| |Z0−Z0|
16 4.5572E-02 6.4819E-03 4.5371E-02 7.5672E-03 8.5929E-04 1.7091E-03

32 2.2241E-02 2.8144E-03 2.2193E-02 3.3407E-03 2.0463E-04 4.0518E-04

64 1.0986E-02 1.3068E-03 1.0980E-02 1.5669E-03 4.9937E-05 9.8233E-05

128 5.4598E-03 6.2924E-04 5.4609E-03 7.5926E-04 1.2335E-05 2.4156E-05

256 2.7216E-03 3.0870E-04 2.7231E-03 3.7358E-04 3.0653E-06 5.9876E-06

CR 1.0158 1.0945 1.0140 1.0818 2.0314 2.0382

6 Conclusions

In this paper, we first propose a new numerical method for solving the decoupled
forward-backward stochastic differential equations based on some specially derived ref-
erence equations. Then we rigorously analyze errors of the proposed method for general
cases. When some classical numerical schemes are applied in the method for solving the
forward equation part, we discuss specific error estimates for each of the cases. While
many existing numerical methods for the decoupled FBSDEs are of only half-order accu-
racy in time, we in particular would like to remark that the proposed method is overall
1.0 order accurate to Yt and Zt when the Euler scheme or the Milstein scheme is used, and
is 2.0 order accurate to Yt and Zt when the order-2.0 weak Taylor scheme is used. The nu-
merical experiments are also very consistent with the theoretical results and demonstrate
accuracy of the proposed scheme.
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