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Abstract. In this paper we perform a numerical study of the spectra, eigenstates, and
Lyapunov exponents of the skew-shift counterpart to Harper’s equation. This study
is motivated by various conjectures on the spectral theory of these ’pseudo-random’
models, which are reviewed in detail in the initial sections of the paper. The numerics
carried out at different scales are within agreement with the conjectures and show a
striking difference compared with the spectral features of the Almost Mathieu model.
In particular our numerics establish a small upper bound on the gaps in the spectrum
(conjectured to be absent).
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1 Introduction

The almost Mathieu operator is the self-adjoint operator acting on ℓ2(Z) defined by

[Hλ,ω,θu](n)=2λcos
(

2π(nω+θ)
)

un+un+1+un−1, (1.1)

where ω,θ ∈ T = R/Z and λ is the coupling parameter. We always assume that ω is
irrational (and later on, it is diophantine), so the potential in (1.1) is almost-periodic.
A discussion of the physical motivation and background of (1.1) may be found in [12]
for instance. Let us recall that Hλ,ω,θ is a model for the Hamiltonian of an electron in a
one-dimensional lattice, subject to a potential, and is also related to the Hamiltonian of
an electron in a two-dimensional lattice subject to a perpendicular magnetic field. Such
models go back to the work of Peierls [14] related to the theory of the quantum Hall
effect where (1.1) describes a Bloch electron in a magnetic field. The case λ=1 is particu-
larly important and called Harper’s equation. From the mathematical side, (1.1) has been
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extensively studied over the recent decades and the complete spectral theory in the dif-
ferent regimes is understood (the main features will be summarized later). An important
property of (1.1) is the so-called Aubry duality relating the regimes |λ|<1 and |λ|>1. A
major break-through in this area came with the work of Jitomirskaya [6].

To be noted is that the theory of almost periodic Schrödinger operator has been devel-
oped in far greater generality than (1.1) (many of its specific properties are in some sense
‘special’) but we will not further elaborate on this here. Our interest goes to the formally
related Hamiltonian

[Hu](n)=2λ
(

cos(2πn2ω)
)

un+un+1+un−1, (1.2)

which we refer to as the skew shift Schrödinger operators, since its potential can be gen-
erated from the orbits of the skew shift Tω acting on T

2, defined by Tω(x,y)=(x+y,y+ω).
Such models are relevant to the theory of the quantum-kicked rotor, the quantum version
of the classical Chirikov standard map. More generally, Jacobi matrices on Z+ of the form

[Hu](n)=2λ
(

cos(nβ)
)

un+un+1+un−1, (1.3)

with β>1 were considered in the works of Griniasty-Fishman [4] and Brenner-Fishman
[2] (written in the form (1.3), assuming β not an integer). As these authors point out,
there is a large variety of potentials that are neither periodic nor incommensurate and
the study of deterministic ‘pseudo-random’ systems is of broad interest beyond quantum
chaos, including to theoretical computer science. It is believed that the spectral theory of
(1.2) and (1.3), at least for β> 2, resembles that of Schrödinger operator with a random
potential, even at small disorder λ. They were proposed in [4], [2] as ‘pseudo-random’
models and discussed heuristically. So far, the main rigorous results for (1.2) assume |λ|
large. See in particular H. Krüger’s paper [8] and the related references. For 0< |λ|≤ 1,
there are only a few contributions and they relate either to somewhat atypical frequencies
ω or modifications of (1.2) (see [9] and the discussion in that paper). Thus at this point,
there is no satisfactory mathematical theory that explains the expected phenomenology
(which will be stated explicitly in Section 3).

Taking ω= 1+
√

5
2 the golden mean ratio, the purpose of this Note is to carry out some

numerics related to the spectrum and eigenstates of the operator

[Hu](n)=2(cos2πn2ω)un+un+1+un−1, (1.4)

which is the skew shift counterpart of Harper’s equation. The interest of such numerics
is two-fold. Firstly, it gives some understanding how, on a finite scale, the eigenvalue
distribution and eigenvector localization compares with the Harper case

[Hu](n)=2(cos2πnω)un+un+1+un−1. (1.5)

Secondly, using numerics, one can in fact prove certain spectral properties of the full
operator. We illustrate this with the modest example of an upperbound on the size of
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possible gaps (if any) in the spectrum of (1.4). Obviously larger scale numerics would
likely lead to better estimates. We also indicate how, ‘in principle’, appropriate numerics
may permit one to start the multi-scale analysis underlying the approach for large λ, in
order to prove small λ results (for instance in the context of [8]).

Returning to (1.3) and more generally operators of the form

[Hu](n)= f (nβ)un+un+1+un−1, (1.6)

with f a nonconstant, continuous periodic function on R, the case β > 0,β 6∈ Z may be
studied by different methods. It was shown for instance in [10] that for H as in (1.6),

Spec H=[min f −2,max f +2]. (1.7)

The paper is organized as follows. In the next section, we briefly review several as-
pects of the theory of 1D lattice Schrödinger operator with various types of potentials,
the almost Mathieu operator and also the conjectured behavior of models with weakly
mixing potentials (for instance governed by skew-shift dynamics). In Section 3, we ex-
plain how information on certain spectral parameters (such as location and gaps in the
spectrum) for the full Hamiltonian H may be derived from properties of the eigenval-
ues and eigenvectors of ‘finite models’ obtained by restriction of H to a finite interval.
In Section 4, these considerations are further specified in the context of the skew shift
potential, which is our main interest in this work. The numerical implementation ap-
pears in Section 5. We compare the Harper model (the Almost Mathieu operator at the
critical coupling λ=1) with its skew shift counterpart, with emphasize on their spectra,
eigenfunction localization and Lyapunov exponents through the energy range. Section 6
summarizes the conclusions and stresses some further research perspectives.

2 Some background on discrete Schrödinger operators

We only discuss the 1D model (on the lattice Z). Thus H=ℓ2(Z) is the underlying Hilbert
space. We consider self-adjoint operators of the form

H=V+∆, (2.1)

where V is a diagonal operator given by a bounded potential, i.e.,

V= ∑
n∈Z

Vn(en⊗en), (2.2)

with {en} the unit vectors of H, ∆= lattice Laplacian on Z, given by

∆= ∑
n∈Z

(en⊗en+1+en+1⊗en). (2.3)
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The potential is often introduced by evaluation of a given bounded function f : Ω→R

on the orbits of some dynamical system (Ω,µ,T) with T an ergodic measure preserving
transformation. Thus

Vn= f (Tnx), (2.4)

with x ∈ Ω some base point. Recall that if we start from a general bounded sequence
(Vn)n∈Z, the format (2.4) may always be attained by a classical construction which con-
sists in taking for Ω the pointwise closure in R

Z of the orbit of (Vn)n∈Z under the left
shift T

(Tx)n = xn+1 for x=(xn)n∈Z, (2.5)

and for µ a Banach invariant mean (ergodicity is then achieved by decomposing the re-
sulting dynamical system (Ω,µ,T) in its ergodic components).

Returning to (1.2), there are two models extensively studied by many authors. The
first is the case of a random potential

Vω =
(

Vn(ω)
)

n∈Z
, (2.6)

with Vn independent identically distributed random variables. This is the 1D Anderson
model which describes for instance transport in inhomogeneous media (such as a metal
alloy). In this situation, H=Hω and its main spectral features are the following (assuming
the distribution non-constant).

(2.7) For almost all ω, the spectrum Spec (Hω) is the set

∑=[−2,2]+ range V.

(2.8) For almost all ω, Hω has pure point spectrum and the corresponding eigenfunc-
tions are exponentially localized i.e. decay exponentially for |n|→∞.

Property (2.8) is referred to as ”Anderson localization”. Let us emphasize that this
discussion is 1D, which is a well understood theory (unlike in dimension ≥2 where dif-
ferent phenomena are expected). There are many reference works, see for instance [3]. It
is convenient to replace V by λV, where λ 6=0 is called the disorder parameter. Thus (2.8)
remains true, also for small λ.

Another extensively studied model is (1.1), i.e. the almost Mathieu operator with
almost periodic potential

Vn =2λcos
(

2π(nω+θ)
)

. (2.9)

There is a long list of contributors and contributions to this subject, but we restrict our-
selves to a summary of the final state of the theory. We always assume ω irrational,
implying ergodicity of the potential and Spec Hλ,ω,θ independent of θ (as a set). Say that
ω is diophantine if it satisfies for some constant C>0

‖kω‖> 1

C
|k|−C for all k∈Z\{0}. (2.10)
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(2.11) For λ 6=0, Spec Hλ,ω is a Cantor set of Lebesque measure

|Spec Hλ,ω|=4|1−λ|, (2.12)

assuming moreover ω diophantine.

(2.13) For 0≤|λ|<1,Hλ,ω has purely absolutely continuous (ac) spectrum.

(2.14) For |λ|>1, for almost all θ, Hλ,ω,θ has pure point spectrum and exhibits Anderson
localization.

(2.15) For |λ|=1 and almost all θ, Hλ,ω,θ has purely singular continuous spectrum.

See [1, 5–7] for statements (2.11), (2.12), (2.14), (2.15) respectively; (2.13) is a conse-
quence of Aubry duality. Some of the above results were actually proven in a stronger
form, but this is not important for what follows. Note also that, by (2.12), the Harper op-
erator has spectrum of zero Lebesgue measure which forces it automatically to be Cantor.

Let us consider next the skew shift Schrödinger operator obtained by taking in (2.4)
for T the skew shift acting on the 2-torus T

2, i.e.

T(x,y)=(x+y,y+ω),

and f =λcosθ acting on the first coordinate. Thus

Hλ,ω,x,y=2λV+∆ with Vn=cos
(

x+ny+
n(n−1)

2
ω
)

, (2.16)

and we assume again ω diophantine.
It is conjectured that (2.16) displays a spectral behaviour similar to the random case

(2.6), also for small λ. In particular that Spec Hλ,ω,x,y has no gaps and for most x,y,Hλ,ω,x,y

has pure point spectrum with Anderson localization. This last statement has been proven
for |λ| sufficiently large and (ω,x,y)∈T

3 taken in a suitable set of positive measure. From
this respect, there is no difference with the almost periodic case; in particular (1.1) satisfies
(2.14). On the other hand, it was shown more recently in [8], again for λ sufficiently
large (and ω satisfying the stronger DC ‖kω‖> c

k2 ), that Spec Hλ,ω,x,y contains at least an
interval, hence is not a Cantor set.

Returning to (2.1), the 1D lattice Schrödinger operator can be studied using the trans-
fer matrix formalism (which is a powerful tool specific to the 1D situation). Given an
arbitrary sequence (un)n∈Z, the equation

Hu=Eu

is equivalent with
(

un+1

un

)

=Mn(E)

(

u1

u0

)

, (2.17)
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where the transfer matrix Mn(E)∈SL2(R) is given by

Mn(E)=
1

∏
j=n

(

Vj−E −1
1 0

)

. (2.18)

Assuming Vn given by (2.4), define

Ln(E)=
1

n

∫

log‖Mn(E,x)‖dx, (2.19)

and the Lyapunov exponent
L(E)= lim

n→∞
Ln(E). (2.20)

For ergodic T, one has

L(E)= lim
n→∞

1

n
log‖Mn(E,x)‖ x a.s. (2.21)

The Lyapunov exponent plays a prominent role in the spectral theory of H. Recall in
particular Kotani’s theorem, stating the following:

Let (a,b)⊂R be an interval. Then H has no ac spectrum in (a,b), i.e.

∑
ac

(H)∩(a,b)=φ (2.22)

if and only if
L(E)>0 for almost all energies E∈ (a,b) (2.23)

(again assuming the underlying transformation T ergodic).
For both (1.1) and (2.16), the Lyapunov exponent satisfies

L(E)≥max(0,log|λ|). (2.24)

Moreover, for the almost Mathieu operator, (2.14) becomes an equality if E ∈ Spec H,
which in view of Katani’s theorem is consistent with (2.13)-(2.15). Note however that
while positivity of the Lyapunov exponent excludes ac spectrum, it does not necessarily
imply point spectrum. For random potentials, the Lyapunov exponents are positive, also
at small disorder. The same is conjectured to be true for the skew-shift potential (2.16),
which is a central issue in this discussion. Establishing positivity of the Lyapunov expo-
nents of (2.16) (at a given λ) immediately implies absence of ac spectrum. However, it is
also the first step in a multi-scale analysis leading to Anderson localization, so far only
proven for large λ. Going one step further, sufficient information about the function

1

n
log‖Mn(E;x,y)‖ (2.25)

of the three variables (E,x,y) at a sufficiently large scale n would already suffice for this
purpose. In a similar vein, it would permit an extension of the theory developed in [8] to
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other values of λ, proving that Spec Hλ,ω,x,y is not a Cantor set. While in principle a com-
puter assisted approach to some of the conjectures above may be possible because it only
involves the analysis at some fixed scale, the technical difficulties are considerable. First,
one would have to determine an appropriate formulation of the bootstrap process and
the necessary numerical input at some fixed cale n. This bootstrap argument depends
on a rather lengthy and sophisticated mathematical analysis that would have to be im-
proved. Also, the required scale n may be computationally infeasible. On a much more
modest level, it turns out that the numerical evaluation of Ln(E) for large n is already
a nontrivial task, due to the accumulation of errors in calculating the matrix products.
Such numerics were carried out several years ago by W. Schlag (private communication)
and turned out to be inconclusive at large scale for the above reason.

A few more comments on ‘pseudo-random’ potentials: while the skew shift T dis-
cussed above is an example of a weakly mixing potential, deterministic strongly mixing
potentials may be obtained, considering for instance the doubling map x 7→2x acting on
T or a hyperbolic toral automorphism A∈SL2(Z) acting on T

2.

Thus one would define

Vn=2λcosπ2nω (2.26)

in the first case and

Vn =2λcos
〈

An

(

x
y

)

,e1

〉

(2.27)

in the second setting. For these models, a closer analogy with the random Schrödinger
operator theory may be proven. In particular, at small λ, one obtains positivity of the
Lyapunov exponents and Anderson localization. However, the underlying techniques
do not seem applicable to skew shift dynamics.

For the operator (1.3), (1.6) with β>1 and β 6∈Z (this last assumption is essential), the
semi-continuity methods from [13] may be applied. In addition to (1.7), it was proven
in [10] that for H f ,β defined in (1.6) and 1≤ r<β< r+1, r∈ Z,

∑
ac

(H f ,β)⊂
⋂

a0,a1,···,ar∈R

∑
ac

(Ha0,a1,···,ar), (2.28)

where Ha0,···,ar is the Schrödinger operator with potential f
(

∑
r
j=0 ajn

j).
The results from [11] have further implications on the Lyapunov exponents of (1.6). In

particular, for (1.3), i.e. f (t)=2λcost, Lyapunov exponents do not vanish for all energies
E 6∈Eλ, where Eλ⊂R is a set satisfying |Eλ|→0 for λ→0.

3 Finite scale restrictions

It is possible to derive spectral information for the full Hamiltonian H by studying its
restriction to finite boxes.
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Given an interval I in Z, denote HI the finite matrix (indexed by I) defined by

HI(m,n)=H(m,n) for m,n∈ I.

Thus, if for instance I=[0,N−1] and H is given by (2.1),

HI =



























V0 1 0 0 ··· 0
1 V1 1 0 ··· 0
0 1 V2 1 ··· 0

0 0 1 V3
...

...
... 0 1

. . . 1
...

...
...

...
0 0 0 0 1Vn−1



























.

We will need a few elementary results that relate Spec H with Spec HI and can be used
for numerical calculations. They are well-known and we record them here in the explicit
form needed.

Lemma 3.1. Let I=[a,a+N−1]⊂Z.

Let E∈R,ξ=∑n∈I ξnen,‖ξ‖=
(

∑n∈I |ξn|2
)

1
2
=1 such that

‖HI ξ−Eξ‖< ε. (3.1)

Then
dist (E,Spec H)< ε+|ξa|+|ξa+N−1|. (3.2)

Proof. Define the vector η∈ ℓ2(Z) by

{

ηn = ξn if n∈ I,

ηn =0 if n∈Z\I.

Obviously ‖η‖=‖ξ‖=1.
We compute Hη

(Hη)n =Vnηn+ηn+1+ηn−1

=











































Vnξn+ξn+1+ξn−1=(HIξ)n if a<n< a+N−1,

Vaξa+ξa+1=(HIξ)a if n= a,

Va+N−1ξa+N−1+ξa+N−2=(HIξ)a+N−1 if n= a+N−1,

ξa if n= a−1,

ξa+N−1 if n= a+N,

0 if n< a−1 or n> a+N.
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Hence
Hη= ∑

n∈I

(HIξ)nen+ξaea−1+ξa+N−1ea+N (3.3)

and

Hη−Eη= ∑
n∈I

(

(HIξ)n−Eξn

)

en+ξaea−1+ξa+N−1ea+N ,

‖Hη−Eη‖≤‖HI ξ−Eξ‖+|ξa |+|ξa+N−1|
< ε+|ξa|+|ξa+N−1|. (3.4)

Conclusion (3.2) then follows from (3.4) and the spectral theorem.

As an immediate consequence, we get

Corollary 3.1. Let I=[a,a+N−1]⊂Z.
Let ξ(1),··· ,ξ(N) be the normalized eigenvectors of HI and λ1,··· ,λN the corresponding eigen-

values.
Then, for each j=1,··· ,N,

dist (λj,Spec H)≤|ξ(j)
a |+|ξ(j)

a+N−1|. (3.5)

This property is clearly of interest in order to establish an upperbound on possible
gaps in the spectrum of H, by considering eigenvalues and eigenvectors of a restriction
HI . In view of (3.5), only those eigenvalues of HI are of interest for which the corre-
sponding eigenvector is small at the edges of the box I. Recall also that for the skew-shift
Schrödinger operator, one expects strong localization of the eigenvectors so the boundary
contribution for most of them should be quite small.

Next, we prove in some sense a converse property.

Lemma 3.2. Let N≥2 be a positive integer. Let 0< ε<1 be arbitrary.
If E∈Spec H, then there is an interval I⊂Z of size N and an eigenvalue E′ of HI such that

|E−E′|<
√

2

N
+ε. (3.6)

Proof. Since E∈Spec H, there is a finitely supported vector η=∑
′ηnen, ‖η‖=1 such that

‖Hη−Eη‖< ε

4
. (3.7)

Let I=[a,a+N−1], with a∈Z to be specified, and define the vector η′=∑n∈I ηnen. Then

(HIη
′)n =











Vnηn+nn−1+ηn+1=(Hη)n if a<n< a+N−1,

Vaηa+ηa+1=(Hη)a−ηa−1 if n= a,

Va+N−1ηa+N−1+ηa+N−2=(Hη)a+N−1−ηa+N if n= a+N−1.
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Hence

HIη
′−Eη′=

a+N−2

∑
n=a+1

(Hη−Eη)n en+
(

((H−E)η)a−ηa−1

)

ea

+
(

((H−E)η)a+N−1−ηa+N

)

ea+N−1.

Therefore

‖HI η
′−Eη′‖2

2= ℓ1+ℓ2+ℓ3,

where

ℓ1=
a+N−2

∑
n=a+1

|
(

(H−E)η
)

n
|2, (3.8)

ℓ2= |
(

(H−E)η
)

a
−ηa−1|2, (3.9)

ℓ3= |
(

(H−E)η
)

a+N−1
−ηa+N |2. (3.10)

We claim that we can choose a∈Z such that

ℓ1+ℓ2+ℓ3<

(2+ε

N
+

ε2

16

)[a+N−1

∑
n=a

|ηn|2
]

=
(2+ε

N
+

ε2

16

)

‖η′‖2
2. (3.11)

To prove that there exists a∈Z such that (3.11) holds, simply sum both sides of (3.11)
over a∈Z and show that the left hand side is smaller than the right hand side.

Thus

∑
a∈Z

ℓ1= ∑
a∈Z

N−2

∑
n=1

|
(

(H−E)η)a+n|2

=(N−2) ∑
n∈Z

|
(

(H−E)η
)

n
|2=(N−2)‖Hη−Eη‖2

< (N−2)
ε2

16

by (3.7).

Next

∑
a∈Z

ℓ2= ∑
a∈Z

|
(

(H−E)η
)

a
|2+ ∑

a∈Z

|ηa−1|2−2 Re
[

∑
a∈Z

(

(H−E)η
)

a
η̄a−1

]

≤‖(H−E)η‖2+‖η‖2+2 ∑
a∈Z

|
(

(H−E)η
)

a
||ηa−1|

<
ε2

16
+1+2 ∑

a∈Z

|
(

(H−E)η
)

a
| |ηa−1|.
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By the Cauchy-Schwarz inequality

∑
a∈Z

|
(

(H−E)η
)

a
||ηa−1|≤

(

∑
a∈Z

|
(

(H−E)η
)

a
|2
)

1
2
(

∑
a∈Z

|ηa−1|2
)

1
2

=‖(H−E)η‖·‖η‖2 <
ε

4
.

Thus

∑
a∈Z

ℓ2<1+
ε2

16
+2.

ε

4
=
(

1+
ε

4

)2

and similarly

∑
a∈Z

ℓ3<

(

1+
ε

4

)2
.

Therefore

∑
a∈Z

[ℓ1+ℓ2+ℓ3]< (N−2)
ε2

16
+2

(

1+
ε

4

)2

=N
ε2

16
+2

(

1+
ε

2

)

. (3.12)

Summing the right hand side of (3.11) over a∈Z, we obtain indeed

(2+ε

N
+

ε2

16

)

∑
a∈Z

(a+N−1

∑
n=a

|ηn|2
)

=
(2+ε

N
+

ε2

16

)

N ∑
n∈Z

|ηn|2

=2+ε+
ε2

16
N= (3.12).

This proves that we can find some a∈Z for which (3.11) holds, thus such that

‖HI η
′−Eη′‖2

<

(2+ε

N
+

ε2

16

)

‖η′‖2
2. (3.13)

Define

ξ=
η′

‖η′‖2
,

which satisfies by (3.13)

‖HI ξ−Eξ‖<
( 2+ε

N
+

ε2

16

)
1
2
<

√

2

N
+ε.

This means that there is an eigenvalue E′ of HI satisfying

|E−E′|<
√

2

N
+ε

which proves Lemma 3.2.
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The interest of Lemma 3.2 is to establish conversely the presence of gaps in Spec H.
The numerics in this paper also require evaluation of sup(Spec H) and inf(Spec H) for
which we have a slightly better estimate using spectra of finite restrictions.

Lemma 3.3. Under the assumptions of Lemma 3.2, there is an interval I ⊂Z of size N and an
eigenvalue E′ of HI such that

E′
>sup(Spec H)− 2

N
−ε. (3.14)

Proof. We proceed again by an averaging argument.

Denote Ia =[a,a+N−1]. Clearly

1

N ∑
a∈Z

1Ia(x)1Ia(y)=

{

1− |x−y|
N if x,y∈Z, |x−y|≤N,

0 if x,y∈Z, |x−y|>N.
(3.15)

Denote for η∈ ℓ2(Z) by ηI the vector ∑n∈I ηnen.

It follows from (3.15) that

1

N ∑
a∈Z

HIa =
1

N ∑
a∈Z

1Ia H1Ia =V+
(

1− 1

N

)

∆=H− 1

N
∆.

Take η∈ ℓ2(Z),‖η‖2 =1 such that 〈Hη,η〉>sup(Spec H)−ε.

It follows that

1

N ∑
a∈Z

〈HIa ηIa ,ηIa〉= 〈Hη,η〉− 2

N
Re

(

∑ηnη̄n+1

)

>sup(Spec H)−ε− 2

N
.

Also
1

N ∑
a∈Z

‖ηIa‖2
2=1.

Hence, there is a∈Z such that

〈HIa ηIa ,ηIa〉>
(

sup(Spec H)−ε− 2

N

)

‖ηIa‖2
2,

and the claim in Lemma 3.3 follows.

Corollary 3.2. Denote

σ+=sup(Spec H) and σ−= inf(Spec H).

Then

σ+≤ sup
|I|=N

sup(Spec HI)+
2

N
and σ−≥ inf

|I|=N
inf(Spec HI)−

2

N
. (3.16)
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At first sight, the expressions on the r.h.s. of (3.14), (3.16) seem useless for numerics
because they involve all intervals I⊂Z of size N.

In the situation of an ergodic Jacobi operator

H(x)=V+∆ with Vn = f (Tnx). (3.17)

Observe that if

H
(x)
I =(H

(x)
m,n)m,n∈I,

then for I=[a,a+N−1], clearly

H
(x)
I =H

(Tax)
[0,N−1]

. (3.18)

Therefore, denoting λ+(x), resp λ−(x), the largest and smallest eigenvalues of H
(x)
[0,N−1]

,

we have

sup
|I|=N

sup(Spec HI)=sup
x

λ+(x) (3.19)

and

inf
|I|=N

inf(Spec HI)= inf
x

λ−(x). (3.20)

Consequently, we obtain

Corollary 3.3. Let H(x) be an ergodic Jacobi operator (3.17) and σ+,σ− defined as in Corollary
3.2. Let N ≥ 2 be an integer and λ+(x), resp λ−(x) the largest and smallest eigenvalue of the

N×N-matrix H
(x)
[0,N−1]

. Then

σ+≤max
x

λ+(x)+
2

N
(3.21)

and

σ−≥min
x

λ−(x)− 2

N
. (3.22)

In the particular case of the skew shift Schrödinger operator

H=2cos2πn2ω+∆ (3.23)

the underlying dynamics is the skew shift T on T
2 mapping (x,y) to (x+y,y+2ω). Thus

we define

H(x,y)=2 ∑
n∈Z

cos2π(n2ω+ny+x)en⊗en+∆ (3.24)

and

H
(x,y)
N =H

(x,y)
[0,N−1]

=2
N−1

∑
n=0

cos2π(n2ω+ny+x)en⊗en+
N−1

∑
n=0

(en⊗en+1+en+1⊗en). (3.25)
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Note the following property. Assume ξ=∑
N−1
n=0 ξnen satisfies

H
(x,y)
N ξ=Eξ

and let ξ′=∑
N−1
n=0 (−1)nξnen. Then

H
(x+ 1

2 ,y)
N ξ′=−Eξ′.

Denoting

λ+= max
0≤x,y≤1

λ+(x,y), (3.26)

λ−= min
0≤x,y≤1

λ−(x,y), (3.27)

with λ+(x,y) and λ−(x,y) the largest and smallest eigenvalue of H
(x,y)
N , it follows from

the preceding that λ−=−λ+. Hence

Corollary 3.4. Let H be as in (3.23), N≥2 and λ+ defined by (3.26). Then

Spec H⊂
[

−λ+−
2

N
,λ++

2

N

]

. (3.28)

4 Bounding spectral gaps for the skew-shift potential

Recall the skew-shift Schrödinger operators (1.4)

[Hu](n)=2(cos2πn2ω)un+un+1+un−1 with ω=
1+

√
5

2
, (4.1)

and denote

σ+=sup(Spec H), σ−= inf(Spec H)=−σ+.

We can make a numerical approximation of σ+ by using Corollary 3.3. Thus we

choose a large N and denote λ+(x,y) the largest eigenvalue of H
(x,y)
N defined by (3.23)

H
(x,y)
N =2

N−1

∑
n=0

cos2π(n2ω+ny+x)en⊗en+
N−1

∑
n=0

(en⊗en+1+en+1⊗en). (4.2)

According to (3.26), one has

σ+≤ max
0≤x,y≤1

λ+(x,y)+
2

N
. (4.3)
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Once we established an upper and lower bound for Spec H, we can obtain informa-
tion about the size of possible gaps from Corollary 3.1. Thus we consider the restricted
operator

HN =H
(0,0)
N =2

N−1

∑
n=0

(cos2πn2ω)en⊗en+
N−1

∑
n=0

(en⊗en+1+en+1⊗en) (4.4)

and denote λ1≥λ2≥···≥λN the eigenvalues of HN , ξ(1),··· ,ξ(N) the corresponding nor-
malized eigenvectors.

Our choice of N here does not necessarily have to be the same as in (4.4). It follows
from (3.5) that for any t∈R

dist (t,Spec H)≤ min
1≤j≤N

{|t−λj |+|ξ(j)
0 |+|ξ(j)

N−1|}, (4.5)

with ξ(j)=∑
N−1
n=0 ξ

(j)
n en, ‖ξ(j)‖2=1.

Denote Γ the largest gap in Spec H. Thus

Γ=2[ max
−σ+<t<σ+

dist (t,Spec H)] (4.6)

and by (4.5)

Γ≤2 max
−σ+<t<σ+

min
1≤j≤N

{|t−λj |+|ξ(j)
0 |+|ξ(j)

N−1|}. (4.7)

Instead of H
(0,0)
N , we may as well consider H

(x,y)
N . Hence

Γ≤2 max
−σ+<t<σ+

min
x,y

min
1≤j≤N

{|t−λj|+|ξ(x,y,j)
0 |+|ξ(x,y,j)

N−1 |}. (4.8)

5 Numerics

Considering the Harper model (1.5) and the skew-shift model (1.4) with ω = 1
2(
√

5−1),
our purpose is to explore the finite scale behavior of the spectra and eigenvectors and
compare them for these two models. Our numerics are based on the package MATLAB.

5.1 Eigenvalues and eigenvectors for the Harper model

Set

HN =2
N−1

∑
n=0

(cos2πnω)en⊗en+
N−1

∑
n=0

(en⊗en+1+en+1⊗en). (5.1)

Fig. 1 shows the eigenvalue structure at N=100,200,300,400, and 500.
Note the persistency of gaps, in agreement with the (rigorously proven) Cantor struc-

ture of the spectrum of (1.1), which for λ=1 is in fact of zero Lebesque measure.
Next we examine the normalized eigenvectors of (5.2) for N=200 in different parts of

the spectrum.
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Figure 1: Eigenvalues and eigenvectors for the Harper model, with (a) Spectrum; (b) Eigenvectors from the left
edge of the spectrum; (c) Eigenvectors from the center of the spectrum; (d) Eigenvectors from the right edge
of the spectrum.

5.2 Eigenvalues and eigenvectors for the skew shift model

Now set

HN =2
N−1

∑
n=0

(cos2πn2ω)en⊗en+
N−1

∑
n=0

(en⊗en+1+en+1⊗en). (5.2)

The eigenvalue behavior turns out to be very different as the gaps tend to close for large
N, in agreement with the conjecture that the spectrum of (1.4) has no gaps.

Also note that the shape of the eigenvectors is in agreement with the conjecture that
(1.4) has localized states. Fig. 2 shows some plots for (5.2) at N=200 in the center and the
edges of the spectrum.

The localized behavior is already visible at relatively low scale, as is apparent from
the collective displays at N=50, N=100.
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Figure 2: Eigenvalues and eigenvectors for the skew shift model, with (a) Spectrum; (b) Eigenvectors from the
left edge of the spectrum; (c) Eigenvectors from the center of the spectrum; (d) Eigenvectors from the right
edge of the spectrum.

Figure 3: Eigenvectors for the skew shift model. (a) N=50; (b) N=100.



E. Bourgain-Chang / Commun. Comput. Phys., 15 (2014), pp. 712-732 729

5.3 Bounding the gaps in the spectrum

We performed some numerics pertaining to the skew shift model (4.1) as suggested by

the discussion in Section 4, considering the matrices H
(x,y)
N as defined by (4.2).

The first issue is a numerical evaluation of the maximum σ+ of the spectrum, based
on (4.3). We obtained

σ+≈3.430. (5.3)

Fig. 4(a) graphs the function

min
x,y

min
1≤j≤N

{|t−λj|+|ξ(x,y,j)
0 |+|ξ(x,y,j)

N−1 |}, (5.4)

with {λj} the eigenvalues of H
(x,y)
N and {ξ(x,y,j)} the corresponding normalized eigenvec-

tors.
Based on (4.8), an upper bound on the largest gap in the spectrum of (4.1)

Γ<5.708∗10−4 (5.5)

was obtained. Recall that Γ=0 according to the conjecture.
As a measure of comparison, we carried out these same numerics for the Harper

model (1.4). The maximum of the spectrum now appears to be

σ+≈2.5975. (5.6)

The function (5.4) for the Harper model is plotted in Fig. 4(b). A numerical estimate

Γ≈1.683 (5.7)

for the largest gap is obtained.

Figure 4: Distance to the Spectrum for (a) the skew shift model; (b) the Harper model.
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5.4 Lyapunov exponents

Using the notation from Section 2, we computed the function

log‖MN(E)‖
N

, (5.8)

where MN(E) is the transfer matrix given by (2.18) and potential

Vj=2cos2πj2ω for the skew shift, (5.9)

Vj=2cos2πjω for the Harper model. (5.10)

As was already clear from earlier calculations performed by W. Schlag [15] around
2002, these numerics are quite unstable when N becomes reasonably large (not surpris-
ingly so).

Fig. 5(a) below for (5.9) at N=20,50,100 seems consistent.
There is also consistence with the conjecture that the Lyapunov function L(E) given

by (2.21) for the skew shift (1.2) remains positive, even at small disorder λ 6=0. Recall that
this was only rigorously proven for |λ|>1.

In Fig. 5(b), the corresponding display for the Harper model (5.10), which is in accor-
dance with the known fact that L(E)=0 for E in the spectrum of (1.1) when |λ|≤1, and
the fact that this spectrum is of zero Lebesque measure when |λ|=1.

Figure 5: Lyapunov exponents for (a) the skew shift model; (b) the Harper model.

6 Conclusions

The numerics carried out for the Schrödinger operator with skew shift potential are in
convincing agreement with the general beliefs and conjectures reviewed in the first two
sections. In particular, they indicate a spectrum with no gaps, localized eigenstates and
positive Lyapunov exponents for all energies. This is in contrast with the Harper model
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where the spectrum is a Cantor set. We have performed these numerics at different scales
and obtained consistent results. Our numerics lead moreover to a (rigorous) upperbound
on the size of possible gaps (if any) for the skew shift spectrum at the critical coupling,
establishing a definitively different spectral structure compared with the Harper model.

In the case of the Harper model, our numerical findings are in accordance with the
rigorously proven theoretical results, supporting the reliability of the numerical results.
Few such rigorous results are available for the skew-shift counterpart, which makes the
present numerical study of interest. Our main finding for the latter model is a strong
indication of absence of gaps in the spectrum, as confirmed by an analysis of ‘truncated
models’ at different scales, within computational constraints.

This project offers several further research perspectives. The first is an exploration at
larger scales and a finer comparison between random and pseudo-random spectra. Of
particular interest is the study of the ‘local eigenvalue spacings’ in finite models, which
are known to be universal and obey Poisson statistics in the random model. One may
also wish to consider Schrödinger operators with frequency vectors ω other than the
golden mean (as a test of consistency) and also other couplings λ. Then one could also
numerically analyze Schrödinger operators with different pseudo-random potentials, for
instance by replacing in (1.2) the n2 by n3 etc. (which corresponds to higher order skew
shifts) and comparing the results with the present conclusions and discussions from [2,4].
Finally, the problem of positivity of Lyapunov exponents remains an issue to be further
studied, technically requiring a balance between scale and computational instability.
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