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Abstract. In this paper we use the Generalized Multiscale Finite Element Method
(GMsFEM) framework, introduced in [26], in order to solve nonlinear elliptic equa-
tions with high-contrast coefficients. The proposed solution method involves lineariz-
ing the equation so that coarse-grid quantities of previous solution iterates can be re-
garded as auxiliary parameters within the problem formulation. With this convention,
we systematically construct respective coarse solution spaces that lend themselves
to either continuous Galerkin (CG) or discontinuous Galerkin (DG) global formula-
tions. Here, we use Symmetric Interior Penalty Discontinuous Galerkin approach.
Both methods yield a predictable error decline that depends on the respective coarse
space dimension, and we illustrate the effectiveness of the CG and DG formulations
by offering a variety of numerical examples.
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1 Introduction

Nonlinear partial differential equations represent a class of problems that have applica-
tions in many scientific communities [19, 22, 33, 47, 50]. Forchheimer flow, nonlinear elas-
ticity, and electromagnetics are particular examples of physical processes that are mod-
eled by nonlinear equations [3,19,33,35,50]. In addition to difficulties associated with the
nonlinearity, these types of problems often involve coefficients that exhibit high-contrast,
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heterogeneous behavior. For example, when modeling subsurface flow, the underlying
permeability field is often represented by a high-contrast coefficient in the pressure equa-
tion. One approach for solving a nonlinear equation is to linearize the problem and use
an iterative method for obtaining the solution. For example, a Picard iteration yields an
iterative process where a previous solution iterate is directly used in order to update the
solution at the current iteration. In this case, a final solution is obtained when a suitable
tolerance between the current and previous iteration is reached. While relatively easy to
implement, iterative techniques typically require a repeated number of solves in order
to obtain a convergent solution. In the case of a nonlinear elliptic equation, each itera-
tion requires the numerical solution of a large system of equations that depends on the
previous iterate. Thus, computing solutions on a fully resolved mesh quickly becomes a
prohibitively expensive task. As such, techniques that allow for a more efficient compu-
tational procedure with a suitable level of accuracy are desirable.

The past few decades have seen the development of various multiscale solution tech-
niques for capturing small scale effects on a coarse grid [1,7,30,38,39,41]. The multiscale
finite element methods (MsFEM’s) that we consider in this paper hinge on the construc-
tion of coarse spaces that are spanned by a set of independently computed multiscale
basis functions. The multiscale basis functions are then coupled via a respective global
formulation in order to compute the solution. In particular, solutions may be computed
on a coarse grid while maintaining the fine-scale effects that are embedded into the ba-
sis functions. While standard multiscale methods have proven effective for a variety of
applications (see, e.g., [29–31, 41]), in this paper we consider a more recent framework
in which the coarse spaces may be systematically enriched to converge to the fine grid
solution [9, 27, 28, 45]. More specifically, additional basis functions are chosen based on
localized eigenvalue problems that capture the underlying behavior of the system. In
this case, we may carefully choose the number of basis functions (and dimension of the
coarse space) such that we achieve a desired level of accuracy. In this paper we addition-
ally show that the systematic enrichment of coarse spaces is flexible with respect to the
global formulation that is chosen to couple the resulting basis functions.

To treat the nonlinear elliptic equation considered in this paper we make use of the
Generalized Multiscale Finite Element Method (GMsFEM) which was introduced in [26].
In order to do so, we apply a Picard iteration and treat an upscaled quantity of a previ-
ous solution iterate as a parameter in the problem. With this convention we follow an
offline-online procedure in which the coarse space construction is split into two distinct
stages; offline and online (see [12, 14, 20, 45, 49]). The main goal of this approach is to
allow for the efficient construction of an online space (and an online solution) for each
fixed parameter value and iteration. In the process, we precompute a larger-dimensional,
parameter-independent offline space that accounts for an appropriate range of parameter
values that may be used in the online stage. As construction of the offline space will con-
stitute a one-time preprocessing step, only the online space will require additional work
within the solution procedure. In the offline stage we first choose a fixed set of parameter
values and generate an associated set of ”snapshot” functions by solving localized prob-
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lems on specified coarse subdomains. The functions obtained through this step constitute
a snapshot space which will be used in the offline space construction. To construct the
offline space we solve localized eigenvalue problems that use averaged quantities of the
parameter(s) of interest within the space of snapshots. We then keep a certain number of
eigenfunctions (based on some criterion) to form the offline space. At the online stage we
solve similar localized problems using a fixed parameter value within the offline space,
and keep a certain number of eigenfunctions for the online space construction.

We remark that the underlying machinery of the proposed technique incorporates
some ideas from the reduced-basis (RB) community (see, e.g., [4, 6, 20, 40, 44]), where
computations are split into offline and online stages. In particular, the concept of the of-
fline stage is typically devoted to the construction of a reduced basis set which captures
the relevant behavior of the parameter dependence. As a result, the online solutions may
be quickly obtained through the use of a precomputed (or adaptively computed) surro-
gate space. The proposed method may be regarded as a local model reduction approach
for nonlinear elliptic equations (see also [4, 5, 20, 37, 46] for some related work). In [4] the
authors present a related approach for treating linear problems, in which reduced-basis
computations are performed to increase the efficiency of solving localized cell problems.
As a result, for the local online computations the authors are able to quickly obtain ef-
fective cell properties that are required of the high-order coarse scale discretizations. A
reduced-basis approach for treating nonlinear problems (parabolic and hyperbolic) is of-
fered in [20]. In this work, the authors decompose the nonlinear operator into distinct
contributions (parameter-independent and -dependent) using so-called empirical opera-
tor interpolation. The reduced-basis spaces are then constructed for the approximation of
the operator, such that they are able to accurately capture the time evolution of parabolic
and hyperbolic equations.

In this paper we consider the continuous Galerkin (CG) and discontinuous Galerkin
(DG) formulations for the global coupling of the online basis functions. We show that
each method offers a suitable solution technique, however, at this point we highlight
some distinguishing characteristics of the respective methods as motivation for consid-
ering both formulations. For the nonlinear elliptic equation considered in this paper,
the CG coupling yields a bilinear form that closely resembles the standard finite element
method (FEM). In particular, the integrations that define the CG formulation are taken
over the whole domain, and result in a reduced-order system of equations that is similar
in nature to the fine-scale system. As such, the ease of implementation, classical FEM
analogues, and well understood structure make CG a tractable method for coupling the
coarse basis functions in order to solve the global problem [38]. While the discontinuous
Galerkin formulation is arguably more delicate than its CG counterpart, DG offers an
attractive feature such as it does not require partition of unity functions to couple basis
functions. DG methods also allow for flexible meshing, and directly yield a local mass
conservation property that is required for coupling to transport problems. As for the ac-
curacy of these approaches, we observe that the error between the online and the offline
solutions is comparable for CG and DG GMsFEM except in the case of very low dimen-
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sional coarse spaces. In this case, DG GMsFEM gives larger errors which are due to the
penalty error. The flexibility of the coarse space enrichment, along with the choice of us-
ing CG or DG as the global coupling mechanism, makes GMsFEM a robust and suitable
technique for solving the model equation that we consider in this paper. A variety of
numerical examples are presented to validate the performance of the proposed method.

We note that some numerical results for GMsFEM in the context of continuous
Galerkin methods for nonlinear equations are presented in [26]. These numerical results
are mostly presented to demonstrate the main concepts of GMsFEM and we do not have
careful studies for nonlinear problems in [26]. Moreover, the numerical results presented
in [26] use reduced basis approach to identify dominant eigenmodes which is different
from the local mode decomposition approach presented here. Moreover, the current pa-
per also studies DG approach for nonlinear equations.

The organization of the paper is as follows. In Section 2 we introduce the model
problem, the iterative procedure, and notation to be used throughout the paper. In Sec-
tion 3 we carefully describe the coarse space enrichment procedure, and introduce the
continuous and discontinuous Galerkin global coupling formulations. In particular, sub-
section 3.1 is devoted to the offline-online coarse space construction, and in subsection 3.2
we describe the CG and DG global coupling procedures. A variety of numerical exam-
ples are presented in Section 4 to validate the performance of the proposed approaches,
and in Section 5 we offer some concluding remarks.

2 Preliminaries

In this paper we consider non-linear, elliptic equations of the form

−div
(
κ(x;u)∇u

)
= f in D, (2.1)

where u= 0 on ∂D. We assume that u is bounded above and below, i.e., u0 ≤ u(x)≤ uN,
where u0 and uN are pre-defined constants. We will also assume that the interval [u0,uN ]
is divided into N equal subintervals whose endpoints are given by u0<u1< ···<uN−1<

uN.

In order to solve Eq. (2.1) we will consider a Picard iteration

−div
(
κ(x;un(x))∇un+1(x)

)
= f in D, (2.2)

where superscripts involving n denote respective iteration levels. To discretize (2.2), we
next introduce the notion of fine and coarse grids. We let T H be a usual conforming
partition of the computational domain D into finite elements (triangles, quadrilaterals,
tetrahedrals, etc). We refer to this partition as the coarse grid and assume that each coarse
subregion is partitioned into a connected union of fine grid blocks. The fine grid partition

will be denoted by T h. We use {xi}
Nv
i=1 (where Nv denotes the number of coarse nodes)

to denote the vertices of the coarse mesh T H, and define the neighborhood of the node xi
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Figure 1: Illustration of a coarse neighborhood and coarse element.

by

ωi=
⋃
{Kj ∈T H; xi∈K j}. (2.3)

See Fig. 1 for an illustration of neighborhoods and elements subordinated to the coarse
discretization. We emphasize the use of ωi to denote a coarse neighborhood, and K to
denote a coarse element throughout the paper.

Next, we briefly outline the global coupling and the role of coarse basis functions
for the respective formulations that we consider. For the discontinuous Galerkin (DG)
formulation, we will use a coarse element K as the support for basis functions, and for the
continuous Galerkin (CG) formulation, we will use ωi as the support of basis functions.
In turn, throughout the paper we use the notation

τ=

{
ωi, for CG,

K, for DG,
(2.4)

when referring to a coarse region where respective local computations are performed
(see Fig. 1). To further motivate the coarse basis construction, we offer a brief outline of
the global coupling associated with the CG formulation below. For the purposes of this
description, we formally denote the CG basis functions by ψωi

k . In particular, we note
that the proposed approach will employ the use of multiple basis functions per coarse
neighborhood. In turn, the CG solution at n-th iteration will be sought as uCG

ms (x;µ) =

∑i,k ci
kψωi

k (x;µ), where ψωi

k (x;µ) are the basis functions for n-th iteration, and µ is used to
denote dependence on the previous solution. We note that a main consideration of our
method is to allow for rapid calculations of basis functions at each iteration.

Once the basis functions are identified, the CG global coupling is given through the
variational form

a(uCG
ms ,v;µ)=( f ,v) for all v∈VCG

on , (2.5)

where VCG
on is used to denote the space formed by those basis functions.

We also note that an appropriate set of basis functions defined on each coarse element
K may be respectively coupled via a discontinuous Galerkin formulation (see e.g., [8, 21,
48]).
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3 CG and DG GMsFEM for nonlinear problems

3.1 Local basis functions

To motivate the local basis construction, we first introduce an approximation to the solu-
tion of Eq. (2.2) given by

−div
(
κ(x;un(x))∇un+1(x)

)
= f in D, (3.1)

where u denotes the average of u in each coarse region τ (recall Eq. (2.4)) depending on
the global formulation. Since the nonlinearity of the problem depends only on the solu-
tion, un may be treated as a scalar in each coarse subregion. As the solution is a smooth
function, we can assume un to be approximately constant in these regions (and we use un

as the value). As a result, the nonlinearity may be treated though introduction of an aux-
iliary scalar parameter which represents the nearly constant solution dependence within
the iteration. Because the variation in un is not known a priori, we will use µ to represent
the dependence of the solution on un in the following sections. As part of the iterative
solution process, multiscale basis functions will be computed for a selected number of
the parameter values at the offline stage, and we will compute multiscale basis functions
for each new value of un at the online stage. In this section we will describe these details,
and note that we maintain the convention of denoting u by the parameter µ. We omit
the iterative index n (and n+1) for additional notational brevity, although note that the
iterative process should be clearly implied.

With the notational conventions in place we now describe the offline-online compu-
tational procedure, and elaborate on some applicable choices for the associated bilinear
forms to be used in the coarse space construction. Below we offer a general outline for
the procedure.

1. Offline computations:

1.0. Coarse grid generation.

1.1. Construction of snapshot space that will be used to compute an offline space.

1.2. Construction of a small dimensional offline space by performing dimension
reduction in the space of global snapshots.

2. Online computations:

2.1. For each input parameter, compute multiscale basis functions.
2.2. Solution of a coarse-grid problem for any force term and boundary condition.
2.3. Iterative solvers, if needed.

In the offline computation, we first construct a snapshot space Vτ
snap, corresponding

to either the continuous Galerkin or discontinuous Galerkin formulation. Construction
of the snapshot space involves solving the local problems for various choices of input
parameters, and we describe the details below.
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In order to construct the space of snapshots we propose to solve the following eigen-
value problem on a coarse subdomain τ:

−div(κ(x,µj)∇ψ
τ,snap
l,j )=λ

τ,snap
l,j ψ

τ,snap
l,j in τ, (3.2)

where µj (j=1,··· , J) is a specified set of fixed parameter values, and J denotes the num-
ber of parameter values we choose. We are careful to note that zero Neumann boundary
conditions are generally used to solve eigenvalue problem, except in the DG case when
Dirichlet conditions are used on element boundaries that coincide with the global do-
main. Discretization of (3.2) yields a system of the form

A(µj)ψ
τ,snap
l,j =λ

τ,snap
l,j S(µj)ψ

τ,snap
l,j in τ, (3.3)

where

A(µj)= [a(µj)mn]=
∫

τ
κ(x;µj)∇φn ·∇φm and S(µj)= [s(µj)mn]=

∫

τ
κ̃(x;µj)φnφm, (3.4)

φn denotes the fine-scale bilinear basis functions, and κ̃ will be carefully introduced in the
next section.

For brevity of notation we now omit the superscript τ for eigenvalue problems, yet
it is assumed throughout this section that the offline and online space computations are
localized to respective coarse subdomains. After solving Eq. (3.3), we keep the first Li

eigenfunctions corresponding to the dominant eigenvalues (asymptotically vanishing in
this case) to form the space

Vsnap=span{ψ
snap
l,j : 1≤ j≤ J and 1≤ l≤ Li},

for each coarse subdomain τ. To ensure adequate accuracy, the number of small eigen-
values to be used in the construction should be minimally taken as the number of high-
contrast inclusions on the coarse subdomain [28].

We reorder the snapshot functions using a single index to create the matrix

Rsnap=
[
ψ

snap
1 ,··· ,ψ

snap
Msnap

]
,

where Msnap denotes the total number of functions to keep in the snapshot matrix con-
struction.

In order to construct the offline space Vτ
off, we perform a dimension reduction of the

space of snapshots using an auxiliary spectral decomposition. The main objective is to
use the offline space to efficiently (and accurately) construct a set of multiscale basis func-
tions for each µ value in the online stage. More precisely, we seek a subspace of the
snapshot space such that it can approximate any element of the snapshot space in the
appropriate sense defined via auxiliary bilinear forms. At the offline stage the bilinear
forms are chosen to be parameter-independent, such that there is no need to reconstruct the
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offline space for each µ value. The analysis in [28] motivates the following eigenvalue
problem in the space of snapshots:

AoffΨoff
k =λoff

k SoffΨoff
k , (3.5)

where

Aoff=[aoff
mn]=

∫

τ
κ(x,µ)∇ψ

snap
m ·∇ψ

snap
n =RT

snapARsnap,

Soff=[soff
mn]=

∫

τ
κ̃(x,µ)ψ

snap
m ψ

snap
n =RT

snapSRsnap,

where κ(x,µ), and κ̃(x,µ) are domain-based averaged coefficients with µ chosen as the
average of pre-selected µi’s. We note that A and S denote analogous fine scale matri-
ces as defined in Eq. (3.3), except that averaged coefficients are used in the construc-
tion. To generate the offline space we then choose the smallest Moff eigenvalues from
Eq. (3.5) and form the corresponding eigenvectors in the space of snapshots by setting
ψoff

k =∑j Ψ
off
kj ψ

snap
j (for k=1,··· ,Moff), where Ψoff

kj are the coordinates of the vector Ψoff
k . We

then create the offline matrix

Roff=[ψoff
1 ,··· ,ψoff

Moff
]

to be used in the online space construction.
For a given input parameter, we next construct the associated online coarse space

Vτ
on(µ) for each µ value on each coarse subdomain. In principle, we want this to be a

small dimensional subspace of the offline space for computational efficiency. The online
coarse space will be used within the finite element framework to solve the original global
problem, where a continuous or discontinuous Galerkin coupling of the multiscale ba-
sis functions is used to compute the global solution. In particular, we seek a subspace
of the offline space such that it can approximate any element of the offline space in an
appropriate sense. We note that at the online stage, the bilinear forms are chosen to be
parameter-dependent. Similar analysis (see [28]) motivates the following eigenvalue prob-
lem in the offline space:

Aon(µ)Ψon
k =λon

k Son(µ)Ψon
k , (3.6)

where

Aon(µ)= [aon(µ)mn]=
∫

τ
κ(x;µ)∇ψoff

m ·∇ψoff
n =RT

off A(µ)Roff,

Son(µ)= [son(µ)mn]=
∫

τ
κ̃(x;µ)ψoff

m ψoff
n =RT

offS(µ)Roff,

and κ(x;µ) and κ̃(x;µ) are now parameter dependent. To generate the online space we
then choose the smallest Mon eigenvalues from Eq. (3.6) and form the corresponding
eigenvectors in the offline space by setting ψon

k =∑j Ψ
on
kj ψoff

j (for k=1,··· ,Mon), where Ψon
kj

are the coordinates of the vector Ψon
k .
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3.2 Global coupling

3.2.1 Continuous Galerkin coupling

In this subsection we aim to create an appropriate solution space and variational formula-
tion that is suitable for a continuous Galerkin approximation of Eq. (3.1). We begin with

an initial coarse space Vinit
0 (µ) = span{χi}

Nv
i=1, where the χi are the standard multiscale

partition of unity functions defined by

−div(κ(x;µ)∇χi)=0, K∈ωi, (3.7a)

χi = gi on ∂K, (3.7b)

for all K∈ωi, where gi is assumed to be linear. Referring back to Eq. (3.4) (for example),
we note that the summed, pointwise energy κ̃ required for the eigenvalue problems will
be defined as

κ̃=κ
Nv

∑
i=1

H2|∇χi|
2,

where H denotes the coarse mesh size.

We then multiply the partition of unity functions by the eigenfunctions in the online
space Vωi

on to construct the resulting basis functions

ψCG
i,k =χiψ

ωi,on
k for 1≤ i≤Nv and 1≤ k≤Mωi

on, (3.8)

where Mωi
on denotes the number of online eigenvectors that are chosen for each coarse

node i. We note that the construction in Eq. (3.8) yields inherently continuous basis func-
tions due to the multiplication of online eigenvectors with the initial (continuous) par-
tition of unity. This convention is not necessary for the discontinuous Galerkin global
coupling, and is a focal point of contrast between the respective methods. However,
with the continuous basis functions in place, we define the continuous Galerkin spectral
multiscale space as

VCG
on (µ)=span{ψCG

i,k : 1≤ i≤Nv and 1≤ k≤Mωi
on}. (3.9)

Using a single index notation, we may write VCG
on (µ)= span{ψCG

i }Nc
i=1, where Nc denotes

the total number of basis functions that are used in the coarse space construction. We also
construct an operator matrix RT

0 =[ψCG
1 ,··· ,ψCG

Nc
] (where ψCG

i are used to denote the nodal
values of each basis function defined on the fine grid), for later use in this subsection.

Before introducing the continuous Galerkin formulation, we recall that the param-
eter µ is used to denote a solution that is computed at a previous iteration level (see
Eq. (3.1)). In turn, to update the solution at the current iteration level we seek uCG

ms (x;µ)=

∑i ciψ
CG
i (x;µ)∈VCG

on such that

aCG(uCG
ms ,v;µ)=( f ,v) for all v∈VCG

on , (3.10)



742 Y. Efendiev et al. / Commun. Comput. Phys., 15 (2014), pp. 733-755

where aCG(u,v;µ) =
∫

D
κ(x;µ)∇u·∇vdx, and ( f ,v) =

∫
D

f vdx. We note that variational
form in (3.10) yields the following linear algebraic system

A0UCG
0 =F0, (3.11)

where UCG
0 denotes the nodal values of the discrete CG solution, and

A0(µ)= [aI J ]=
∫

D
κ(x;µ)∇ψCG

I ·∇ψCG
J dx and F0=[ f I ]=

∫

D
f ψCG

I dx.

Using the operator matrix RT
0 , we may write A0(µ) = R0A(µ)RT

0 and F0 = R0F, where
A(µ) and F are the standard, fine scale stiffness matrix and forcing vector corresponding
to the form in Eq. (3.10). We also note that the operator matrix may be analogously used
in order to project coarse scale solutions onto the fine grid.

3.2.2 Discontinuous Galerkin coupling

One can also use the discontinuous Galerkin (DG) approach (see also [8,21,48]) to couple
multiscale basis functions. This may avoid the use of the partition of unity functions;
however, a global formulation needs to be chosen carefully. We have been investigating
the use of DG coupling and the detailed results will be presented elsewhere, see [24].
Here, we would like to briefly mention a general global coupling that can be used. The
global formulation is given by

aDG(u,v;µ)= f (v) for all v={vK ∈VK}, (3.12)

where

aDG(u,v;µ)=∑
K

aDG
K (u,v;µ) and f (v)=∑

K

∫

K
f vKdx, (3.13)

for all u= {uK}, v= {vK} with K being the coarse element depicted in Fig. 1. Each local
bilinear form aDG

K is given as a sum of three bilinear forms:

aDG
K (u,v;µ) := aK(u,v;µ)+rK(u,v;µ)+pK(u,v;µ), (3.14)

where aK is the bilinear form,

aK(u,v;µ) :=
∫

K
κK(x;µ)∇uK ·∇vKdx, (3.15)

where κK(x;µ) is the restriction of κ(x;µ) in K; the rK is the symmetric bilinear form,

rK(u,v;µ) := ∑
E⊂∂K

1

lE

∫

E
κ̃E(x;µ)

(∂uK

∂nK
(vK−vK′)+

∂vK

∂nK
(uK′−uK)

)
ds,

where κ̃E(x;µ) is the harmonic average of κ(x;µ) along the edge E, lE = 1 if E is on the
boundary of the macrodomain, and lE=2 if E is an inner edge of the macrodomain. Here,
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K′ and K are two coarse-grid elements sharing the common edge E; and pK is the penalty
bilinear form,

pK(u,v;µ) := ∑
E⊂∂K

1

lE

1

hE
δE

∫

E
κ̃E(x;µ)(uK′−uK)(vK′−vK)ds. (3.16)

Here hE is harmonic average of the length of the edge E and E′, δE is a positive penalty
parameter that needs to be selected and its choice affects the performance of GMsFEM.
One can choose other eigenvalue problems where the mass matrix is modified such that
the matrix corresponding to pK(·,·,·) is also added (see [24]).

The inherent unconformal property of DG formulation determines the removal of the
partition of unity functions while constructing basis functions in Eq. (3.8). Similarly, we
can obtain the discontinuous Galerkin spectral multiscale space as

VDG
on (µ)=span{ψDG

k : 1≤ k≤MK
on}, (3.17)

for every coarse element K.
Using the same process as in the continuous Galerkin formulation, we can obtain an

operator matrix constructed by the basis functions of VDG
on (µ). For the consistency of the

notation, we denote the matrix as R0, and RT
0 =[ψDG

1 ,··· ,ψDG
Nc

]. Recall that Nc denotes the
total number of coarse basis functions.

Solving the problem (2.1) in the coarse space VDG
on (µ) using the DG formulation de-

scribed in Eq. (3.12) is equivalent to seeking uDG
ms (x;µ)=∑i ciψ

DG
i (x;µ)∈VDG

on such that

aDG(uDG
ms ,v;µ)= f (v) for all v∈VDG

on , (3.18)

where aDG(u,v;µ) and f (v) are defined in Eq. (3.13). Similar as the CG case, we can obtain
a coarse linear algebra system

A0UDG
0 =F0, (3.19)

where UDG
0 denotes the discrete coarse DG solution, and

A0(µ)=R0 A(µ)RT
0 and F0=R0F,

where A(µ) and F are the standard, fine scale stiffness matrix and forcing vector cor-
responding to the form in Eq. (3.13). After solving the coarse system, we can use the
operator matrix R0 to obtain the fine-scale solution in the form of RT

0 UDG
0 .

We emphasize that using either GMsFEM formulation offers a computational gain as
compared to solving the fine scale problem directly. This is partially due to the fact that
the offline stage involves the independent construction of the partition of unity and of-
fline basis functions. In particular, all quantities required of the online computation are
pre-computed offline. Furthermore, the size of online system is typically much smaller
than the fine scale system, and the online construction only involves a stiffness matrix
assembly and local basis computations. An advantage of local approaches in the studied
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problems is that the solution can be treated as a scalar within each coarse region. In turn,
it is cost effective to represent the stiffness matrix via pre-computed matrices. We note
that this matrix summation is automatic for the case when the coefficient has a linear rep-
resentation, however, the discrete empirical interpolation method (see, e.g., [16]) allows
for a similar (but approximate) representation for more general cases.

4 Numerical results

In this section we solve the nonlinear, elliptic model equation given in Eq. (2.2) using both
the continuous (CG) and discontinuous Galerkin (DG) GMsFEM formulations described
in Section 3. More specifically, we consider the equation

−div
(
eκ(x)u(x)∇u(x)

)
= f in D, (4.1a)

u=0 on ∂D, (4.1b)

where the general coefficient from (2.2) is taken to be κ(x;u)=eκ(x)u(x). For the coefficient
κ(x), we consider the high-contrast permeability fields as illustrated Fig. 2. Fig. 2(a)
represents a field whose high-permeability values are randomly assigned, while the field
in Fig. 2(b) has a different channelized structure with fixed maximum values. We use
a source term f = 0.1, and solve the problem on the unit two-dimensional domain D=
[0,1]×[0,1].

To solve Eq. (4.1) we first linearize it by using a Picard iteration. In particular, for a
given initial guess u0 we solve

−div
(
eκ(x)un(x)∇un+1(x)

)
= f in D, (4.2a)

un+1=0 on ∂D, (4.2b)

for n≥0.
In our simulations, we take the initial guess u0 = 0, and terminate the iterative loop

when
‖A(un+1)un+1−b‖≤δ‖b‖,

where δ is the tolerance for the iteration and we select δ = 10−3. We note that A and b
correspond to the linear system resulting from either the CG or DG global formulations.
In particular, we solve the problem as follows:

A(un)un+1=b for n=0,1,··· . (4.3)

We note that since un and un+1 will not necessarily be computed in coarse spaces of the
same dimension, we cannot directly use the residual criterion listed above. Actually,
we use the Galerkin projection of the fine solution to the corresponding coarse space to
calculate the residual error from above. For all cases presented in this paper, the global
iteration resulting from the linearization converges in 4 or 5 iterations.
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Figure 2: High-contrast permeability fields.

Remark 4.1. In this section we will consider two types of coefficients κ(x) to be used
in Eq. (4.1). We recall that throughout the paper we have used an auxiliary variable
µ= un to denote the solution dependence of the nonlinear problem. As such, we have
referred to the model equation as parameter-dependent while describing the iterative
solution procedure. Consequently, we are careful to introduce (and distinguish) a related
case where we use a ”physical” parameter µp for the purpose of constructing a field of
the form κ(x)=µpκ1(x)+(1−µp)κ2(x). See Fig. 3 for an illustration of κ1(x) and κ2(x).
We note that the coefficient will be constructed by summing contributions that depend
on the physical parameter µp, in addition to the auxiliary parameter dependence from
the iterative form. In Subsection 4.1 we use a field that does not depend on µp, and in
Subsection 4.2 we use a field that does depend on µp.
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Figure 3: Decomposition of permeability field Fig. 2(b).

4.1 Parameter-independent permeability field

In the following simulations we first generate a snapshot space, use a spectral decom-
position to obtain the offline space, and then for an initial guess apply a similar spectral
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decomposition to obtain the online space. We recall that in order to construct the snap-
shot space we choose a specified number of eigenfunctions (denoted by Msnap) on either
a coarse neighborhood or coarse element depending on whether we use continuous (CG)
or discontinuous Galerkin (DG) global coupling, respectively. In our simulations, we se-
lect the range of solutions [umin,umax] that correspond to solving the fine scale equation
using a source term that ranges from f ∈ [0.1,1]. For the first set of simulations we di-
vide the domain [umin,umax] into Ns−1 equally spaced subdomains to obtain Ns discrete
points u1,··· ,uNs . For these simulations we fix a value of Ns =9.

For either formulation, we solve a localized eigenvalue problems as defined in sub-
section 3.1 for each point uj on a coarse neighborhood and keep a specified number of
eigenfunctions. For example, in the CG case we keep lmax = 3 snapshot eigenfunctions,
and this construction leads to a local space of dimension Msnap = lmax×Ns =3×9=27. In
the DG case, we adaptively choose the number of eigenfunctions based on a considera-
tion of the eigenvalue differences. In the offline space construction we fix u as the aver-
age of the previously defined fixed snapshot values. We then solve the offline eigenvalue
problem and construct the offline space by keeping the eigenvectors corresponding to a
specified number of dominant eigenvalues. At the online stage we use the initial guess
u0=0 in order to solve the respective eigenvalue problem required for the space construc-
tion. We note that the size of our online space and the associated solution accuracy will
depend on the number of eigenvectors that we keep in the online space construction.

In the CG formulation, we recall that the online eigenfunctions are multiplied by the
corresponding partition of unity functions with support in the same neighborhood of the
respective coarse node. We then solve Eq. (4.1) iteratively within the online space. In
particular, for each iteration we update the online space and solve the Eq. (4.1) using the
previously computed solution.

In the simulations using the CG formulation we discretize our domain into coarse
elements of size H = 1/10, and fine elements of size h= 1/100. The results correspond-
ing to the permeability fields from Fig. 2(a) and Fig. 2(b) are shown in Tables 1 and 2,
respectively. The first column shows the dimension of the online solution space, and
the second column shows the eigenvalue λ∗ which corresponds to the first eigenfunction
that is discarded from space enrichment. We note that this eigenvalue is an important
consideration in error estimates of enriched multiscale spaces (see [28]). As a formal
consideration, we mention that the error analysis typically yields estimates of the form
‖u−ums‖∼O(Hγλ∗) when the dominant eigenvalues are taken to be small. The next two
columns correspond to the L2-weighted relative error ‖u−ums‖L2

κ(D)/‖u‖L2
κ(D)×100%

and energy relative error ‖u−ums‖H1
κ(D)/‖u‖H1

κ(D)×100% between the GMsFEM solu-
tion ums and the fine-scale solution u. We note that as the dimension of the online space
increases (i.e., we keep more eigenfunctions in the space construction), the relative errors
decrease accordingly. As an example, for the field in Fig. 2(a), we encounter L2 rela-
tive errors that decrease from 1.43−0.24%, and energy relative errors that decrease from
16.12−6.85% as the online space is systematically enriched. In the tables, analogous er-
rors between the online GMsFEM solution and the offline solution are computed. The
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Table 1: CG relative errors corresponding to the permeability field in Fig. 2(a).

dim(VCG
on ) λ∗ GMsFEM Relative Error (%) Online-Offline Relative Error (%)

L2
κ(D) H1

κ (D) L2
κ(D) H1

κ (D)

319 0.0021 1.43 16.12 1.25 16.33

497 0.0010 0.69 11.71 0.48 10.66

770 3.36×10−4 0.40 9.13 0.20 7.30

1043 1.06×10−4 0.31 7.76 0.09 4.43

1270 — 0.24 6.85 0.00 0.00

Table 2: CG relative errors corresponding to the permeability field in Fig. 2(b).

dim(VCG
on ) λ∗ GMsFEM Relative Error (%) Online-Offline Relative Error (%)

L2
κ(D) H1

κ (D) L2
κ(D) H1

κ (D)

316 0.0026 1.36 15.28 1.18 15.74

482 0.0010 0.71 11.89 0.51 11.17

722 3.18×10−4 0.43 9.53 0.22 7.77

996 1.02×10−4 0.33 8.02 0.11 4.72

1236 — 0.26 7.05 0.00 0.00

dimension of the offline space is taken to be the maximum dimension of the online space.
We note that in this case the Picard iteration converges in 4 steps for all simulations. In
Fig. 4 we also plot the fine and coarse-scale CG solutions that correspond to the field in
Fig. 2(b). We note that the fine solution, and the coarse solutions corresponding to the
largest and smallest online spaces are nearly indistinguishable.

We also illustrate the relation between the online-offline energy errors and λ∗ in Fig. 5
for the same permeability fields considered above. From the plots in Fig. 5, we see that
the energy error predictably decreases as λ∗ decreases, thus following the appropriate
error behavior.

In order to solve the model problem using the DG formulation, we note that the space
of snapshots is constructed in a slightly different fashion. In this case, the selection of
eigenvectors hinges on a comparison between the difference of consecutive eigenvalues
resulting from the localized computations. In contrast to the CG case, the initial number
of eigenfunctions (call this number lK

init) used in the snapshot space construction are adap-
tively chosen based on the relative size of consecutive eigenvalues. We note that either
way for choosing eigenfunctions is relevant for both global formulations, and both con-
structions yield a predictable snapshot space dimension. For the results corresponding to
the DG formulation, we note that two configurations for the snapshot space construction
are used. In particular, we consider a case when the original number of eigenfunctions
lK
init are used in the construction, and a case when lK

max = lK
init+3 are used in the construc-

tion.

In the simulations using the DG formulation, we partition the original domain using
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Figure 4: Comparison of fine and coarse CG solutions corresponding to Fig. 2(b).
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Figure 5: Relation between the first discarded eigenvalue and the CG relative energy error; permeability from
Fig. 2(a) (left), permeability from Fig. 2(b) (right).

a coarse mesh of size H=1/10, and use a fine mesh composed of uniform triangular ele-
ments of mesh size h=1/100. The numerical results for permeability fields Fig. 2(a) and
Fig. 2(b) are represented in Tables 3 and 4, respectively. The first column shows the di-
mension of the online space, the second column represents the corresponding eigenvalue
(λ∗) of the first eigenfunction discarded from the online space, and the next two columns
illustrate the interior energy relative error (Eint) and the boundary energy relative error
(E∂) between the fine scale solution and DG GMsFEM solution. We follow the definition
of Eint and E∂ as in [24]:

T=
N

∑
i=1

‖κ
1
2

i ∇u‖Ωi
2+

N

∑
i=1

∑
Eij⊂∂Ωi

1

lij

1

hij

∫

Eij

κij(ui−uj)
2, (4.4a)

Eint=

( N

∑
i=1

‖κ
1
2
i ∇e‖Ωi

2
/

T

) 1
2

, (4.4b)

E∂=

( N

∑
i=1

∑
Eij⊂∂Ωi

1

lij

1

hij

∫

Eij

κij(ei−ej)
2
/

T

) 1
2

. (4.4c)

Here,
e=u−ums and ei = e|Eij

.
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Table 3: DG relative errors corresponding to the permeability field in Fig. 2(a); snapshot space uses lK
init

eigenfunctions.

dim(VDG
on ) λ∗ GMsFEM Relative Error (%) Online-Offline Relative Error (%)

Eint E∂ Eint E∂

271 1.53×10−4 55.08 8.94 44.38 8.43

331 1.24×10−4 36.59 6.63 10.05 3.08

466 3.03×10−5 35.57 6.56 7.00 1.67

624 1.72×10−5 34.90 6.48 2.12 0.40

716 — 34.86 6.40 0.00 0.00

Table 4: DG relative errors corresponding to the permeability field in Fig. 2(b); snapshot space uses lK
init

eigenfunctions.

dim(VDG
on ) λ∗ GMsFEM Relative Error (%) Online-Offline Relative Error (%)

Eint E∂ Eint E∂

270 1.56×10−4 56.29 10.30 46.37 9.75

331 1.05×10−4 36.72 6.71 9.54 3.32

444 3.12×10−5 35.67 6.56 6.48 1.67

582 1.21×10−5 35.06 6.48 2.14 0.41

663 — 35.03 6.48 0.00 0.00

The errors between the offline and online solutions are offered in the final two
columns. We note that as the dimension of the online space increases (i.e., we keep more
eigenfunctions in the space construction), the relative errors decrease accordingly. For
example, the DG solution corresponding to Fig. 2(a) yields interior relative energy errors
that decrease from 55.08−34.86%, and boundary relative energy errors that decrease from
8.94−6.40%. We note that in this case the Picard iteration converges in 4 or 5 steps for all
simulations. In Fig. 6 we also plot the fine and coarse DG solutions that correspond to
the field in Fig. 2(b). We note that the fine solution and the coarse solution corresponding
to the smallest online space show some slight differences. However, the discrepancies
noticeably diminish when the coarse DG solution is computed within the largest online
space.

As in the CG case, we also illustrate the relation between the DG online-offline interior
errors and λ∗ in Fig. 7. From the plots in Fig. 7, we see that the relative errors decrease
as λ∗ decreases. However, we elaborate on two distinctions between these results and
the CG results. In particular, we first note that the snapshot error for the DG solutions
is roughly 35% (recall Tables 3 and 4). Thus, we accept this residual error and use the
online-offline error as a measure of convergence. In addition, we omit the error quantity
that corresponds to the lowest dimensional online space for the plots in Fig. 7. In this
case, the smallest space does not offer an adequate representation of the solution because
of the dominant penalty.
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Figure 6: Comparison of fine and coarse DG solutions corresponding to Fig. 2(b).
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Figure 7: Relation between the first discarded eigenvalue and the DG relative interior energy error; permeability
from Fig. 2(a) (left), permeability from Fig. 2(b) (right), Fig. 2(a) and Fig. 2(b).

Remark 4.2. When solving the nonlinear equation using the discontinuous Galerkin ap-
proach, we use different penalty parameters for fine-grid problem and coarse-grid prob-
lem (refer back to subsection 3.2.2). However, we observe that for different coarse penalty
parameters that yield a convergent solution, the number of iterations and the relative er-
rors (both interior and boundary) stay the same.

Remark 4.3. Recall that we use the Galerkin projection of the previous coarse solution
onto the current online space as the approximation of the previous coarse solution to
obtain the terminal condition. If the coarse penalty parameter is changed, we should use
the current coarse penalty parameter to construct the Galerkin projection.

We observe from Tables 1-4 that the offline spaces for DG formulation are much
smaller than those obtained through CG formulation. As a result, in Table 5 we use more
eigenfunctions (more specifically, we set lK

max=lK
init+3) in the snapshot space construction

to yield a larger offline space. For these examples, we use the permeability field from
Fig. 2(b). Due to the increase of the offline (and corresponding online) space dimensions,
we see more accurate results than those offered in Table 4.
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Table 5: DG relative errors corresponding to the permeability field in Fig. 2(b); snapshot space uses lK
max=lK

init
+3

eigenfunctions.

dim(VDG
on ) λ∗ GMsFEM Relative Error (%) Online-Offline Relative Error (%)

Eint E∂ Eint E∂

381 1.47×10−4 37.34 7.42 22.80 6.00

440 1.54×10−4 35.92 6.16 20.07 4.36

707 9.54×10−5 32.80 5.29 13.64 2.90

958 2.71×10−5 29.44 5.48 4.80 0.98

1352 — 28.98 5.39 0.00 0.00

4.2 Parameter-dependent permeability field

For the next set of numerical results, we consider solving the nonlinear elliptic problem
in Eq. (4.1) with a coefficient of the form κ(x,u,µp)= exp[(µpκ1(x)+(1−µp)κ2(x))u(x)].
For κ1(x) and κ2(x) we use the fields shown in Figs. 3(a) and 3(b), respectively. As for the
parameter-dependent simulation, we are careful to distinguish the difference between
the auxiliary parameter µ=un which is used to denote a previous solution iterate, and a
“physical” parameter µp that is used in the construction of a new permeability field. We
take the range of µp to be [0,1], and use three equally spaced values in order to construct
the snapshot space in this case. We use the same [umin,umax] interval from the previous
results, yet use four equally spaced values in this case. In particular, we use the pairs
(uj,µ

p
l ), where 1≤ j≤4, and 1≤ l≤3 as the fixed parameter values for the snapshot space

construction. At the online stage we use the initial guess u0 = 0 and a fixed value of
µp =0.2 while solving the respective eigenvalue problem required for the continuous or
discontinuous Galerkin online space construction.

In Table 6 we offer results corresponding to the CG formulation, and in Tables 7 and
8 we offer results corresponding to the DG formulation. In all cases we encounter very
similar error behavior compared to the examples offered earlier in the section. In partic-
ular, an increase of the dimension of the online space yields predictably smaller errors,
and smaller values of λ∗ correspond to the error decrease. And while it suffices to refer
back to related discussions earlier in the section, we emphasize that this distinct set of re-
sults serves to further illustrate the robustness of the proposed method. In particular, we
show that the solution procedure allows for a suitable treatment of nonlinear problems
that involve auxiliary parameters that are used to represent the nearly constant solution
behavior on a coarse subregion, and physical parameters that are explicitly used in the
permeability field construction.

5 Concluding remarks

In this paper we use the Generalized Multiscale Finite Element (GMsFEM) framework
in order to solve nonlinear elliptic equations with high-contrast coefficients. In order to
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Table 6: CG relative errors corresponding to the parameter-dependent field constructed from Fig. 3(a) and
Fig. 3(b).

dim(VCG
on ) λ∗ GMsFEM Relative Error (%) Online-Offline Relative Error (%)

L2
κ(D) H1

κ (D) L2
κ(D) H1

κ(D)

309 0.0027 1.30 14.89 1.10 15.32

492 0.0010 0.59 10.82 0.39 9.76

580 6.76×10−4 0.45 9.55 0.24 7.92

728 3.33×10−4 0.34 7.87 0.12 5.23

991 — 0.28 6.74 0.00 0.00

Table 7: DG relative errors corresponding to the parameter-dependent field constructed from Fig. 3(a) and

Fig. 3(b); snapshot space uses lK
init

eigenfunctions.

dim(VDG
on ) λ∗ GMsFEM Relative Error (%) Online-Offline Relative Error (%)

Eint E∂ Eint E∂

300 1.02×10−4 37.56 7.94 10.15 3.16

313 6.25×10−5 37.55 7.81 10.00 2.85

403 2.58×10−5 36.81 7.35 5.83 1.38

497 1.22×10−5 36.37 7.21 0.84 0.10

517 — 36.36 7.21 0.00 0.00

Table 8: DG relative errors corresponding to the parameter-dependent field constructed from Fig. 3(a) and

Fig. 3(b); snapshot space uses lK
max= lK

init
+3 eigenfunctions.

dim(VDG
on ) λ∗ GMsFEM Relative Error (%) Online-Offline Relative Error (%)

Eint E∂ Eint E∂

300 2.13×10−4 37.59 7.94 22.54 6.40

440 1.54×10−5 35.78 5.92 18.89 3.74

668 7.69×10−5 32.54 5.39 11.62 2.58

902 1.51×10−5 30.23 5.29 3.87 1.06

1093 — 29.88 5.29 0.00 0.00

solve this type of problem we linearize the equation such that upscaled quantities of pre-
vious solution iterates may be regarded as auxiliary coefficient parameters in the problem
formulation. As a result, we are able to construct a respective set of coarse basis functions
using an offline-online procedure in which the precomputed offline space allows for the
efficient computation of a smaller-dimensional online space for any parameter value at
each iteration. In this paper, the coarse space construction involves solving a set of local-
ized eigenvalue problems that are tailored to either continuous Galerkin (CG) or discon-
tinuous Galerkin (DG) global coupling mechanisms. In particular, the respective coarse
spaces are formed by keeping a set of eigenfunctions that correspond to the localized
eigenvalue behavior. Using either formulation, we show that the process of systemati-



Y. Efendiev et al. / Commun. Comput. Phys., 15 (2014), pp. 733-755 753

cally enriching the coarse solution spaces yields a predictable error decline between the
fine and coarse-grid solutions. As a result, the proposed methodology is shown to be an
effective and flexible approach for solving the nonlinear, high-contrast elliptic equation
that we consider in this paper.
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